| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/mm/page_io.c |
| * |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * Swap reorganised 29.12.95, |
| * Asynchronous swapping added 30.12.95. Stephen Tweedie |
| * Removed race in async swapping. 14.4.1996. Bruno Haible |
| * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie |
| * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/gfp.h> |
| #include <linux/pagemap.h> |
| #include <linux/swap.h> |
| #include <linux/bio.h> |
| #include <linux/swapops.h> |
| #include <linux/buffer_head.h> |
| #include <linux/writeback.h> |
| #include <linux/frontswap.h> |
| #include <linux/blkdev.h> |
| #include <linux/psi.h> |
| #include <linux/uio.h> |
| #include <linux/sched/task.h> |
| #include <asm/pgtable.h> |
| |
| static struct bio *get_swap_bio(gfp_t gfp_flags, |
| struct page *page, bio_end_io_t end_io) |
| { |
| int i, nr = hpage_nr_pages(page); |
| struct bio *bio; |
| |
| bio = bio_alloc(gfp_flags, nr); |
| if (bio) { |
| struct block_device *bdev; |
| |
| bio->bi_iter.bi_sector = map_swap_page(page, &bdev); |
| bio_set_dev(bio, bdev); |
| bio->bi_end_io = end_io; |
| |
| for (i = 0; i < nr; i++) |
| bio_add_page(bio, page + i, PAGE_SIZE, 0); |
| VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr); |
| } |
| return bio; |
| } |
| |
| void end_swap_bio_write(struct bio *bio) |
| { |
| struct page *page = bio->bi_io_vec[0].bv_page; |
| |
| if (bio->bi_status) { |
| SetPageError(page); |
| /* |
| * We failed to write the page out to swap-space. |
| * Re-dirty the page in order to avoid it being reclaimed. |
| * Also print a dire warning that things will go BAD (tm) |
| * very quickly. |
| * |
| * Also clear PG_reclaim to avoid rotate_reclaimable_page() |
| */ |
| set_page_dirty(page); |
| pr_alert("Write-error on swap-device (%u:%u:%llu)\n", |
| MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), |
| (unsigned long long)bio->bi_iter.bi_sector); |
| ClearPageReclaim(page); |
| } |
| end_page_writeback(page); |
| bio_put(bio); |
| } |
| |
| static void swap_slot_free_notify(struct page *page) |
| { |
| struct swap_info_struct *sis; |
| struct gendisk *disk; |
| |
| /* |
| * There is no guarantee that the page is in swap cache - the software |
| * suspend code (at least) uses end_swap_bio_read() against a non- |
| * swapcache page. So we must check PG_swapcache before proceeding with |
| * this optimization. |
| */ |
| if (unlikely(!PageSwapCache(page))) |
| return; |
| |
| sis = page_swap_info(page); |
| if (!(sis->flags & SWP_BLKDEV)) |
| return; |
| |
| /* |
| * The swap subsystem performs lazy swap slot freeing, |
| * expecting that the page will be swapped out again. |
| * So we can avoid an unnecessary write if the page |
| * isn't redirtied. |
| * This is good for real swap storage because we can |
| * reduce unnecessary I/O and enhance wear-leveling |
| * if an SSD is used as the as swap device. |
| * But if in-memory swap device (eg zram) is used, |
| * this causes a duplicated copy between uncompressed |
| * data in VM-owned memory and compressed data in |
| * zram-owned memory. So let's free zram-owned memory |
| * and make the VM-owned decompressed page *dirty*, |
| * so the page should be swapped out somewhere again if |
| * we again wish to reclaim it. |
| */ |
| disk = sis->bdev->bd_disk; |
| if (disk->fops->swap_slot_free_notify) { |
| swp_entry_t entry; |
| unsigned long offset; |
| |
| entry.val = page_private(page); |
| offset = swp_offset(entry); |
| |
| SetPageDirty(page); |
| disk->fops->swap_slot_free_notify(sis->bdev, |
| offset); |
| } |
| } |
| |
| static void end_swap_bio_read(struct bio *bio) |
| { |
| struct page *page = bio->bi_io_vec[0].bv_page; |
| struct task_struct *waiter = bio->bi_private; |
| |
| if (bio->bi_status) { |
| SetPageError(page); |
| ClearPageUptodate(page); |
| pr_alert("Read-error on swap-device (%u:%u:%llu)\n", |
| MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), |
| (unsigned long long)bio->bi_iter.bi_sector); |
| goto out; |
| } |
| |
| SetPageUptodate(page); |
| swap_slot_free_notify(page); |
| out: |
| unlock_page(page); |
| WRITE_ONCE(bio->bi_private, NULL); |
| bio_put(bio); |
| wake_up_process(waiter); |
| put_task_struct(waiter); |
| } |
| |
| int generic_swapfile_activate(struct swap_info_struct *sis, |
| struct file *swap_file, |
| sector_t *span) |
| { |
| struct address_space *mapping = swap_file->f_mapping; |
| struct inode *inode = mapping->host; |
| unsigned blocks_per_page; |
| unsigned long page_no; |
| unsigned blkbits; |
| sector_t probe_block; |
| sector_t last_block; |
| sector_t lowest_block = -1; |
| sector_t highest_block = 0; |
| int nr_extents = 0; |
| int ret; |
| |
| blkbits = inode->i_blkbits; |
| blocks_per_page = PAGE_SIZE >> blkbits; |
| |
| /* |
| * Map all the blocks into the extent list. This code doesn't try |
| * to be very smart. |
| */ |
| probe_block = 0; |
| page_no = 0; |
| last_block = i_size_read(inode) >> blkbits; |
| while ((probe_block + blocks_per_page) <= last_block && |
| page_no < sis->max) { |
| unsigned block_in_page; |
| sector_t first_block; |
| |
| cond_resched(); |
| |
| first_block = bmap(inode, probe_block); |
| if (first_block == 0) |
| goto bad_bmap; |
| |
| /* |
| * It must be PAGE_SIZE aligned on-disk |
| */ |
| if (first_block & (blocks_per_page - 1)) { |
| probe_block++; |
| goto reprobe; |
| } |
| |
| for (block_in_page = 1; block_in_page < blocks_per_page; |
| block_in_page++) { |
| sector_t block; |
| |
| block = bmap(inode, probe_block + block_in_page); |
| if (block == 0) |
| goto bad_bmap; |
| if (block != first_block + block_in_page) { |
| /* Discontiguity */ |
| probe_block++; |
| goto reprobe; |
| } |
| } |
| |
| first_block >>= (PAGE_SHIFT - blkbits); |
| if (page_no) { /* exclude the header page */ |
| if (first_block < lowest_block) |
| lowest_block = first_block; |
| if (first_block > highest_block) |
| highest_block = first_block; |
| } |
| |
| /* |
| * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks |
| */ |
| ret = add_swap_extent(sis, page_no, 1, first_block); |
| if (ret < 0) |
| goto out; |
| nr_extents += ret; |
| page_no++; |
| probe_block += blocks_per_page; |
| reprobe: |
| continue; |
| } |
| ret = nr_extents; |
| *span = 1 + highest_block - lowest_block; |
| if (page_no == 0) |
| page_no = 1; /* force Empty message */ |
| sis->max = page_no; |
| sis->pages = page_no - 1; |
| sis->highest_bit = page_no - 1; |
| out: |
| return ret; |
| bad_bmap: |
| pr_err("swapon: swapfile has holes\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * We may have stale swap cache pages in memory: notice |
| * them here and get rid of the unnecessary final write. |
| */ |
| int swap_writepage(struct page *page, struct writeback_control *wbc) |
| { |
| int ret = 0; |
| |
| if (try_to_free_swap(page)) { |
| unlock_page(page); |
| goto out; |
| } |
| if (frontswap_store(page) == 0) { |
| set_page_writeback(page); |
| unlock_page(page); |
| end_page_writeback(page); |
| goto out; |
| } |
| ret = __swap_writepage(page, wbc, end_swap_bio_write); |
| out: |
| return ret; |
| } |
| |
| static inline void count_swpout_vm_event(struct page *page) |
| { |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| if (unlikely(PageTransHuge(page))) |
| count_vm_event(THP_SWPOUT); |
| #endif |
| count_vm_events(PSWPOUT, hpage_nr_pages(page)); |
| } |
| |
| int __swap_writepage(struct page *page, struct writeback_control *wbc, |
| bio_end_io_t end_write_func) |
| { |
| struct bio *bio; |
| int ret; |
| struct swap_info_struct *sis = page_swap_info(page); |
| |
| VM_BUG_ON_PAGE(!PageSwapCache(page), page); |
| if (sis->flags & SWP_FILE) { |
| struct kiocb kiocb; |
| struct file *swap_file = sis->swap_file; |
| struct address_space *mapping = swap_file->f_mapping; |
| struct bio_vec bv = { |
| .bv_page = page, |
| .bv_len = PAGE_SIZE, |
| .bv_offset = 0 |
| }; |
| struct iov_iter from; |
| |
| iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE); |
| init_sync_kiocb(&kiocb, swap_file); |
| kiocb.ki_pos = page_file_offset(page); |
| |
| set_page_writeback(page); |
| unlock_page(page); |
| ret = mapping->a_ops->direct_IO(&kiocb, &from); |
| if (ret == PAGE_SIZE) { |
| #ifdef CONFIG_MTK_MLOG |
| current->swap_out++; |
| #endif |
| count_vm_event(PSWPOUT); |
| ret = 0; |
| } else { |
| /* |
| * In the case of swap-over-nfs, this can be a |
| * temporary failure if the system has limited |
| * memory for allocating transmit buffers. |
| * Mark the page dirty and avoid |
| * rotate_reclaimable_page but rate-limit the |
| * messages but do not flag PageError like |
| * the normal direct-to-bio case as it could |
| * be temporary. |
| */ |
| set_page_dirty(page); |
| ClearPageReclaim(page); |
| pr_err_ratelimited("Write error on dio swapfile (%llu)\n", |
| page_file_offset(page)); |
| } |
| end_page_writeback(page); |
| return ret; |
| } |
| |
| ret = bdev_write_page(sis->bdev, map_swap_page(page, &sis->bdev), |
| page, wbc); |
| if (!ret) { |
| #ifdef CONFIG_MTK_MLOG |
| current->swap_out++; |
| #endif |
| count_swpout_vm_event(page); |
| return 0; |
| } |
| |
| ret = 0; |
| bio = get_swap_bio(GFP_NOIO, page, end_write_func); |
| if (bio == NULL) { |
| set_page_dirty(page); |
| unlock_page(page); |
| ret = -ENOMEM; |
| goto out; |
| } |
| bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); |
| #ifdef CONFIG_MTK_MLOG |
| current->swap_out++; |
| #endif |
| count_swpout_vm_event(page); |
| set_page_writeback(page); |
| unlock_page(page); |
| submit_bio(bio); |
| out: |
| return ret; |
| } |
| |
| int swap_readpage(struct page *page, bool do_poll) |
| { |
| struct bio *bio; |
| int ret = 0; |
| struct swap_info_struct *sis = page_swap_info(page); |
| blk_qc_t qc; |
| struct gendisk *disk; |
| unsigned long pflags; |
| |
| VM_BUG_ON_PAGE(!PageSwapCache(page), page); |
| VM_BUG_ON_PAGE(!PageLocked(page), page); |
| VM_BUG_ON_PAGE(PageUptodate(page), page); |
| |
| /* |
| * Count submission time as memory stall. When the device is congested, |
| * or the submitting cgroup IO-throttled, submission can be a |
| * significant part of overall IO time. |
| */ |
| psi_memstall_enter(&pflags); |
| |
| if (frontswap_load(page) == 0) { |
| SetPageUptodate(page); |
| unlock_page(page); |
| goto out; |
| } |
| |
| if (sis->flags & SWP_FILE) { |
| struct file *swap_file = sis->swap_file; |
| struct address_space *mapping = swap_file->f_mapping; |
| |
| ret = mapping->a_ops->readpage(swap_file, page); |
| if (!ret) { |
| #ifdef CONFIG_MTK_MLOG |
| current->swap_in++; |
| #endif |
| count_vm_event(PSWPIN); |
| } |
| goto out; |
| } |
| |
| ret = bdev_read_page(sis->bdev, map_swap_page(page, &sis->bdev), page); |
| if (!ret) { |
| if (trylock_page(page)) { |
| swap_slot_free_notify(page); |
| unlock_page(page); |
| } |
| #ifdef CONFIG_MTK_MLOG |
| current->swap_in++; |
| #endif |
| count_vm_event(PSWPIN); |
| goto out; |
| } |
| |
| ret = 0; |
| bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read); |
| if (bio == NULL) { |
| unlock_page(page); |
| ret = -ENOMEM; |
| goto out; |
| } |
| disk = bio->bi_disk; |
| /* |
| * Keep this task valid during swap readpage because the oom killer may |
| * attempt to access it in the page fault retry time check. |
| */ |
| get_task_struct(current); |
| bio->bi_private = current; |
| bio_set_op_attrs(bio, REQ_OP_READ, 0); |
| #ifdef CONFIG_MTK_MLOG |
| current->swap_in++; |
| #endif |
| count_vm_event(PSWPIN); |
| bio_get(bio); |
| qc = submit_bio(bio); |
| while (do_poll) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| if (!READ_ONCE(bio->bi_private)) |
| break; |
| |
| if (!blk_mq_poll(disk->queue, qc)) |
| break; |
| } |
| __set_current_state(TASK_RUNNING); |
| bio_put(bio); |
| |
| out: |
| psi_memstall_leave(&pflags); |
| return ret; |
| } |
| |
| int swap_set_page_dirty(struct page *page) |
| { |
| struct swap_info_struct *sis = page_swap_info(page); |
| |
| if (sis->flags & SWP_FILE) { |
| struct address_space *mapping = sis->swap_file->f_mapping; |
| |
| VM_BUG_ON_PAGE(!PageSwapCache(page), page); |
| return mapping->a_ops->set_page_dirty(page); |
| } else { |
| return __set_page_dirty_no_writeback(page); |
| } |
| } |