| /* ZD1211 USB-WLAN driver for Linux |
| * |
| * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> |
| * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> |
| * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net> |
| * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/usb.h> |
| #include <linux/jiffies.h> |
| #include <net/ieee80211_radiotap.h> |
| |
| #include "zd_def.h" |
| #include "zd_chip.h" |
| #include "zd_mac.h" |
| #include "zd_rf.h" |
| |
| struct zd_reg_alpha2_map { |
| u32 reg; |
| char alpha2[2]; |
| }; |
| |
| static struct zd_reg_alpha2_map reg_alpha2_map[] = { |
| { ZD_REGDOMAIN_FCC, "US" }, |
| { ZD_REGDOMAIN_IC, "CA" }, |
| { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */ |
| { ZD_REGDOMAIN_JAPAN, "JP" }, |
| { ZD_REGDOMAIN_JAPAN_ADD, "JP" }, |
| { ZD_REGDOMAIN_SPAIN, "ES" }, |
| { ZD_REGDOMAIN_FRANCE, "FR" }, |
| }; |
| |
| /* This table contains the hardware specific values for the modulation rates. */ |
| static const struct ieee80211_rate zd_rates[] = { |
| { .bitrate = 10, |
| .hw_value = ZD_CCK_RATE_1M, }, |
| { .bitrate = 20, |
| .hw_value = ZD_CCK_RATE_2M, |
| .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT, |
| .flags = IEEE80211_RATE_SHORT_PREAMBLE }, |
| { .bitrate = 55, |
| .hw_value = ZD_CCK_RATE_5_5M, |
| .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT, |
| .flags = IEEE80211_RATE_SHORT_PREAMBLE }, |
| { .bitrate = 110, |
| .hw_value = ZD_CCK_RATE_11M, |
| .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT, |
| .flags = IEEE80211_RATE_SHORT_PREAMBLE }, |
| { .bitrate = 60, |
| .hw_value = ZD_OFDM_RATE_6M, |
| .flags = 0 }, |
| { .bitrate = 90, |
| .hw_value = ZD_OFDM_RATE_9M, |
| .flags = 0 }, |
| { .bitrate = 120, |
| .hw_value = ZD_OFDM_RATE_12M, |
| .flags = 0 }, |
| { .bitrate = 180, |
| .hw_value = ZD_OFDM_RATE_18M, |
| .flags = 0 }, |
| { .bitrate = 240, |
| .hw_value = ZD_OFDM_RATE_24M, |
| .flags = 0 }, |
| { .bitrate = 360, |
| .hw_value = ZD_OFDM_RATE_36M, |
| .flags = 0 }, |
| { .bitrate = 480, |
| .hw_value = ZD_OFDM_RATE_48M, |
| .flags = 0 }, |
| { .bitrate = 540, |
| .hw_value = ZD_OFDM_RATE_54M, |
| .flags = 0 }, |
| }; |
| |
| /* |
| * Zydas retry rates table. Each line is listed in the same order as |
| * in zd_rates[] and contains all the rate used when a packet is sent |
| * starting with a given rates. Let's consider an example : |
| * |
| * "11 Mbits : 4, 3, 2, 1, 0" means : |
| * - packet is sent using 4 different rates |
| * - 1st rate is index 3 (ie 11 Mbits) |
| * - 2nd rate is index 2 (ie 5.5 Mbits) |
| * - 3rd rate is index 1 (ie 2 Mbits) |
| * - 4th rate is index 0 (ie 1 Mbits) |
| */ |
| |
| static const struct tx_retry_rate zd_retry_rates[] = { |
| { /* 1 Mbits */ 1, { 0 }}, |
| { /* 2 Mbits */ 2, { 1, 0 }}, |
| { /* 5.5 Mbits */ 3, { 2, 1, 0 }}, |
| { /* 11 Mbits */ 4, { 3, 2, 1, 0 }}, |
| { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }}, |
| { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}}, |
| { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }}, |
| { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }}, |
| { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }}, |
| { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }}, |
| { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }}, |
| { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }} |
| }; |
| |
| static const struct ieee80211_channel zd_channels[] = { |
| { .center_freq = 2412, .hw_value = 1 }, |
| { .center_freq = 2417, .hw_value = 2 }, |
| { .center_freq = 2422, .hw_value = 3 }, |
| { .center_freq = 2427, .hw_value = 4 }, |
| { .center_freq = 2432, .hw_value = 5 }, |
| { .center_freq = 2437, .hw_value = 6 }, |
| { .center_freq = 2442, .hw_value = 7 }, |
| { .center_freq = 2447, .hw_value = 8 }, |
| { .center_freq = 2452, .hw_value = 9 }, |
| { .center_freq = 2457, .hw_value = 10 }, |
| { .center_freq = 2462, .hw_value = 11 }, |
| { .center_freq = 2467, .hw_value = 12 }, |
| { .center_freq = 2472, .hw_value = 13 }, |
| { .center_freq = 2484, .hw_value = 14 }, |
| }; |
| |
| static void housekeeping_init(struct zd_mac *mac); |
| static void housekeeping_enable(struct zd_mac *mac); |
| static void housekeeping_disable(struct zd_mac *mac); |
| |
| static int zd_reg2alpha2(u8 regdomain, char *alpha2) |
| { |
| unsigned int i; |
| struct zd_reg_alpha2_map *reg_map; |
| for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) { |
| reg_map = ®_alpha2_map[i]; |
| if (regdomain == reg_map->reg) { |
| alpha2[0] = reg_map->alpha2[0]; |
| alpha2[1] = reg_map->alpha2[1]; |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| int zd_mac_preinit_hw(struct ieee80211_hw *hw) |
| { |
| int r; |
| u8 addr[ETH_ALEN]; |
| struct zd_mac *mac = zd_hw_mac(hw); |
| |
| r = zd_chip_read_mac_addr_fw(&mac->chip, addr); |
| if (r) |
| return r; |
| |
| SET_IEEE80211_PERM_ADDR(hw, addr); |
| |
| return 0; |
| } |
| |
| int zd_mac_init_hw(struct ieee80211_hw *hw) |
| { |
| int r; |
| struct zd_mac *mac = zd_hw_mac(hw); |
| struct zd_chip *chip = &mac->chip; |
| char alpha2[2]; |
| u8 default_regdomain; |
| |
| r = zd_chip_enable_int(chip); |
| if (r) |
| goto out; |
| r = zd_chip_init_hw(chip); |
| if (r) |
| goto disable_int; |
| |
| ZD_ASSERT(!irqs_disabled()); |
| |
| r = zd_read_regdomain(chip, &default_regdomain); |
| if (r) |
| goto disable_int; |
| spin_lock_irq(&mac->lock); |
| mac->regdomain = mac->default_regdomain = default_regdomain; |
| spin_unlock_irq(&mac->lock); |
| |
| /* We must inform the device that we are doing encryption/decryption in |
| * software at the moment. */ |
| r = zd_set_encryption_type(chip, ENC_SNIFFER); |
| if (r) |
| goto disable_int; |
| |
| r = zd_reg2alpha2(mac->regdomain, alpha2); |
| if (r) |
| goto disable_int; |
| |
| r = regulatory_hint(hw->wiphy, alpha2); |
| disable_int: |
| zd_chip_disable_int(chip); |
| out: |
| return r; |
| } |
| |
| void zd_mac_clear(struct zd_mac *mac) |
| { |
| flush_workqueue(zd_workqueue); |
| zd_chip_clear(&mac->chip); |
| ZD_ASSERT(!spin_is_locked(&mac->lock)); |
| ZD_MEMCLEAR(mac, sizeof(struct zd_mac)); |
| } |
| |
| static int set_rx_filter(struct zd_mac *mac) |
| { |
| unsigned long flags; |
| u32 filter = STA_RX_FILTER; |
| |
| spin_lock_irqsave(&mac->lock, flags); |
| if (mac->pass_ctrl) |
| filter |= RX_FILTER_CTRL; |
| spin_unlock_irqrestore(&mac->lock, flags); |
| |
| return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter); |
| } |
| |
| static int set_mc_hash(struct zd_mac *mac) |
| { |
| struct zd_mc_hash hash; |
| zd_mc_clear(&hash); |
| return zd_chip_set_multicast_hash(&mac->chip, &hash); |
| } |
| |
| static int zd_op_start(struct ieee80211_hw *hw) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| struct zd_chip *chip = &mac->chip; |
| struct zd_usb *usb = &chip->usb; |
| int r; |
| |
| if (!usb->initialized) { |
| r = zd_usb_init_hw(usb); |
| if (r) |
| goto out; |
| } |
| |
| r = zd_chip_enable_int(chip); |
| if (r < 0) |
| goto out; |
| |
| r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G); |
| if (r < 0) |
| goto disable_int; |
| r = set_rx_filter(mac); |
| if (r) |
| goto disable_int; |
| r = set_mc_hash(mac); |
| if (r) |
| goto disable_int; |
| r = zd_chip_switch_radio_on(chip); |
| if (r < 0) |
| goto disable_int; |
| r = zd_chip_enable_rxtx(chip); |
| if (r < 0) |
| goto disable_radio; |
| r = zd_chip_enable_hwint(chip); |
| if (r < 0) |
| goto disable_rxtx; |
| |
| housekeeping_enable(mac); |
| return 0; |
| disable_rxtx: |
| zd_chip_disable_rxtx(chip); |
| disable_radio: |
| zd_chip_switch_radio_off(chip); |
| disable_int: |
| zd_chip_disable_int(chip); |
| out: |
| return r; |
| } |
| |
| static void zd_op_stop(struct ieee80211_hw *hw) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| struct zd_chip *chip = &mac->chip; |
| struct sk_buff *skb; |
| struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue; |
| |
| /* The order here deliberately is a little different from the open() |
| * method, since we need to make sure there is no opportunity for RX |
| * frames to be processed by mac80211 after we have stopped it. |
| */ |
| |
| zd_chip_disable_rxtx(chip); |
| housekeeping_disable(mac); |
| flush_workqueue(zd_workqueue); |
| |
| zd_chip_disable_hwint(chip); |
| zd_chip_switch_radio_off(chip); |
| zd_chip_disable_int(chip); |
| |
| |
| while ((skb = skb_dequeue(ack_wait_queue))) |
| dev_kfree_skb_any(skb); |
| } |
| |
| /** |
| * zd_mac_tx_status - reports tx status of a packet if required |
| * @hw - a &struct ieee80211_hw pointer |
| * @skb - a sk-buffer |
| * @flags: extra flags to set in the TX status info |
| * @ackssi: ACK signal strength |
| * @success - True for successful transmission of the frame |
| * |
| * This information calls ieee80211_tx_status_irqsafe() if required by the |
| * control information. It copies the control information into the status |
| * information. |
| * |
| * If no status information has been requested, the skb is freed. |
| */ |
| static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, |
| int ackssi, struct tx_status *tx_status) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| int i; |
| int success = 1, retry = 1; |
| int first_idx; |
| const struct tx_retry_rate *retries; |
| |
| ieee80211_tx_info_clear_status(info); |
| |
| if (tx_status) { |
| success = !tx_status->failure; |
| retry = tx_status->retry + success; |
| } |
| |
| if (success) { |
| /* success */ |
| info->flags |= IEEE80211_TX_STAT_ACK; |
| } else { |
| /* failure */ |
| info->flags &= ~IEEE80211_TX_STAT_ACK; |
| } |
| |
| first_idx = info->status.rates[0].idx; |
| ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates)); |
| retries = &zd_retry_rates[first_idx]; |
| ZD_ASSERT(0<=retry && retry<=retries->count); |
| |
| info->status.rates[0].idx = retries->rate[0]; |
| info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1); |
| |
| for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) { |
| info->status.rates[i].idx = retries->rate[i]; |
| info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2); |
| } |
| for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) { |
| info->status.rates[i].idx = retries->rate[retry-1]; |
| info->status.rates[i].count = 1; // (success ? 1:2); |
| } |
| if (i<IEEE80211_TX_MAX_RATES) |
| info->status.rates[i].idx = -1; /* terminate */ |
| |
| info->status.ack_signal = ackssi; |
| ieee80211_tx_status_irqsafe(hw, skb); |
| } |
| |
| /** |
| * zd_mac_tx_failed - callback for failed frames |
| * @dev: the mac80211 wireless device |
| * |
| * This function is called if a frame couldn't be successfully be |
| * transferred. The first frame from the tx queue, will be selected and |
| * reported as error to the upper layers. |
| */ |
| void zd_mac_tx_failed(struct urb *urb) |
| { |
| struct ieee80211_hw * hw = zd_usb_to_hw(urb->context); |
| struct zd_mac *mac = zd_hw_mac(hw); |
| struct sk_buff_head *q = &mac->ack_wait_queue; |
| struct sk_buff *skb; |
| struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer; |
| unsigned long flags; |
| int success = !tx_status->failure; |
| int retry = tx_status->retry + success; |
| int found = 0; |
| int i, position = 0; |
| |
| q = &mac->ack_wait_queue; |
| spin_lock_irqsave(&q->lock, flags); |
| |
| skb_queue_walk(q, skb) { |
| struct ieee80211_hdr *tx_hdr; |
| struct ieee80211_tx_info *info; |
| int first_idx, final_idx; |
| const struct tx_retry_rate *retries; |
| u8 final_rate; |
| |
| position ++; |
| |
| /* if the hardware reports a failure and we had a 802.11 ACK |
| * pending, then we skip the first skb when searching for a |
| * matching frame */ |
| if (tx_status->failure && mac->ack_pending && |
| skb_queue_is_first(q, skb)) { |
| continue; |
| } |
| |
| tx_hdr = (struct ieee80211_hdr *)skb->data; |
| |
| /* we skip all frames not matching the reported destination */ |
| if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) { |
| continue; |
| } |
| |
| /* we skip all frames not matching the reported final rate */ |
| |
| info = IEEE80211_SKB_CB(skb); |
| first_idx = info->status.rates[0].idx; |
| ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates)); |
| retries = &zd_retry_rates[first_idx]; |
| if (retry < 0 || retry > retries->count) { |
| continue; |
| } |
| |
| ZD_ASSERT(0<=retry && retry<=retries->count); |
| final_idx = retries->rate[retry-1]; |
| final_rate = zd_rates[final_idx].hw_value; |
| |
| if (final_rate != tx_status->rate) { |
| continue; |
| } |
| |
| found = 1; |
| break; |
| } |
| |
| if (found) { |
| for (i=1; i<=position; i++) { |
| skb = __skb_dequeue(q); |
| zd_mac_tx_status(hw, skb, |
| mac->ack_pending ? mac->ack_signal : 0, |
| i == position ? tx_status : NULL); |
| mac->ack_pending = 0; |
| } |
| } |
| |
| spin_unlock_irqrestore(&q->lock, flags); |
| } |
| |
| /** |
| * zd_mac_tx_to_dev - callback for USB layer |
| * @skb: a &sk_buff pointer |
| * @error: error value, 0 if transmission successful |
| * |
| * Informs the MAC layer that the frame has successfully transferred to the |
| * device. If an ACK is required and the transfer to the device has been |
| * successful, the packets are put on the @ack_wait_queue with |
| * the control set removed. |
| */ |
| void zd_mac_tx_to_dev(struct sk_buff *skb, int error) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hw *hw = info->rate_driver_data[0]; |
| struct zd_mac *mac = zd_hw_mac(hw); |
| |
| ieee80211_tx_info_clear_status(info); |
| |
| skb_pull(skb, sizeof(struct zd_ctrlset)); |
| if (unlikely(error || |
| (info->flags & IEEE80211_TX_CTL_NO_ACK))) { |
| /* |
| * FIXME : do we need to fill in anything ? |
| */ |
| ieee80211_tx_status_irqsafe(hw, skb); |
| } else { |
| struct sk_buff_head *q = &mac->ack_wait_queue; |
| |
| skb_queue_tail(q, skb); |
| while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) { |
| zd_mac_tx_status(hw, skb_dequeue(q), |
| mac->ack_pending ? mac->ack_signal : 0, |
| NULL); |
| mac->ack_pending = 0; |
| } |
| } |
| } |
| |
| static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length) |
| { |
| /* ZD_PURE_RATE() must be used to remove the modulation type flag of |
| * the zd-rate values. |
| */ |
| static const u8 rate_divisor[] = { |
| [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1, |
| [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2, |
| /* Bits must be doubled. */ |
| [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11, |
| [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11, |
| [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6, |
| [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9, |
| [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12, |
| [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18, |
| [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24, |
| [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36, |
| [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48, |
| [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54, |
| }; |
| |
| u32 bits = (u32)tx_length * 8; |
| u32 divisor; |
| |
| divisor = rate_divisor[ZD_PURE_RATE(zd_rate)]; |
| if (divisor == 0) |
| return -EINVAL; |
| |
| switch (zd_rate) { |
| case ZD_CCK_RATE_5_5M: |
| bits = (2*bits) + 10; /* round up to the next integer */ |
| break; |
| case ZD_CCK_RATE_11M: |
| if (service) { |
| u32 t = bits % 11; |
| *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION; |
| if (0 < t && t <= 3) { |
| *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION; |
| } |
| } |
| bits += 10; /* round up to the next integer */ |
| break; |
| } |
| |
| return bits/divisor; |
| } |
| |
| static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs, |
| struct ieee80211_hdr *header, |
| struct ieee80211_tx_info *info) |
| { |
| /* |
| * CONTROL TODO: |
| * - if backoff needed, enable bit 0 |
| * - if burst (backoff not needed) disable bit 0 |
| */ |
| |
| cs->control = 0; |
| |
| /* First fragment */ |
| if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) |
| cs->control |= ZD_CS_NEED_RANDOM_BACKOFF; |
| |
| /* No ACK expected (multicast, etc.) */ |
| if (info->flags & IEEE80211_TX_CTL_NO_ACK) |
| cs->control |= ZD_CS_NO_ACK; |
| |
| /* PS-POLL */ |
| if (ieee80211_is_pspoll(header->frame_control)) |
| cs->control |= ZD_CS_PS_POLL_FRAME; |
| |
| if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) |
| cs->control |= ZD_CS_RTS; |
| |
| if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) |
| cs->control |= ZD_CS_SELF_CTS; |
| |
| /* FIXME: Management frame? */ |
| } |
| |
| static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| int r; |
| u32 tmp, j = 0; |
| /* 4 more bytes for tail CRC */ |
| u32 full_len = beacon->len + 4; |
| |
| r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 0); |
| if (r < 0) |
| return r; |
| r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp); |
| if (r < 0) |
| return r; |
| |
| while (tmp & 0x2) { |
| r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp); |
| if (r < 0) |
| return r; |
| if ((++j % 100) == 0) { |
| printk(KERN_ERR "CR_BCN_FIFO_SEMAPHORE not ready\n"); |
| if (j >= 500) { |
| printk(KERN_ERR "Giving up beacon config.\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| msleep(1); |
| } |
| |
| r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, full_len - 1); |
| if (r < 0) |
| return r; |
| if (zd_chip_is_zd1211b(&mac->chip)) { |
| r = zd_iowrite32(&mac->chip, CR_BCN_LENGTH, full_len - 1); |
| if (r < 0) |
| return r; |
| } |
| |
| for (j = 0 ; j < beacon->len; j++) { |
| r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, |
| *((u8 *)(beacon->data + j))); |
| if (r < 0) |
| return r; |
| } |
| |
| for (j = 0; j < 4; j++) { |
| r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, 0x0); |
| if (r < 0) |
| return r; |
| } |
| |
| r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 1); |
| if (r < 0) |
| return r; |
| |
| /* 802.11b/g 2.4G CCK 1Mb |
| * 802.11a, not yet implemented, uses different values (see GPL vendor |
| * driver) |
| */ |
| return zd_iowrite32(&mac->chip, CR_BCN_PLCP_CFG, 0x00000400 | |
| (full_len << 19)); |
| } |
| |
| static int fill_ctrlset(struct zd_mac *mac, |
| struct sk_buff *skb) |
| { |
| int r; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| unsigned int frag_len = skb->len + FCS_LEN; |
| unsigned int packet_length; |
| struct ieee80211_rate *txrate; |
| struct zd_ctrlset *cs = (struct zd_ctrlset *) |
| skb_push(skb, sizeof(struct zd_ctrlset)); |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| |
| ZD_ASSERT(frag_len <= 0xffff); |
| |
| txrate = ieee80211_get_tx_rate(mac->hw, info); |
| |
| cs->modulation = txrate->hw_value; |
| if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) |
| cs->modulation = txrate->hw_value_short; |
| |
| cs->tx_length = cpu_to_le16(frag_len); |
| |
| cs_set_control(mac, cs, hdr, info); |
| |
| packet_length = frag_len + sizeof(struct zd_ctrlset) + 10; |
| ZD_ASSERT(packet_length <= 0xffff); |
| /* ZD1211B: Computing the length difference this way, gives us |
| * flexibility to compute the packet length. |
| */ |
| cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ? |
| packet_length - frag_len : packet_length); |
| |
| /* |
| * CURRENT LENGTH: |
| * - transmit frame length in microseconds |
| * - seems to be derived from frame length |
| * - see Cal_Us_Service() in zdinlinef.h |
| * - if macp->bTxBurstEnable is enabled, then multiply by 4 |
| * - bTxBurstEnable is never set in the vendor driver |
| * |
| * SERVICE: |
| * - "for PLCP configuration" |
| * - always 0 except in some situations at 802.11b 11M |
| * - see line 53 of zdinlinef.h |
| */ |
| cs->service = 0; |
| r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation), |
| le16_to_cpu(cs->tx_length)); |
| if (r < 0) |
| return r; |
| cs->current_length = cpu_to_le16(r); |
| cs->next_frame_length = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * zd_op_tx - transmits a network frame to the device |
| * |
| * @dev: mac80211 hardware device |
| * @skb: socket buffer |
| * @control: the control structure |
| * |
| * This function transmit an IEEE 802.11 network frame to the device. The |
| * control block of the skbuff will be initialized. If necessary the incoming |
| * mac80211 queues will be stopped. |
| */ |
| static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| int r; |
| |
| r = fill_ctrlset(mac, skb); |
| if (r) |
| goto fail; |
| |
| info->rate_driver_data[0] = hw; |
| |
| r = zd_usb_tx(&mac->chip.usb, skb); |
| if (r) |
| goto fail; |
| return 0; |
| |
| fail: |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| |
| /** |
| * filter_ack - filters incoming packets for acknowledgements |
| * @dev: the mac80211 device |
| * @rx_hdr: received header |
| * @stats: the status for the received packet |
| * |
| * This functions looks for ACK packets and tries to match them with the |
| * frames in the tx queue. If a match is found the frame will be dequeued and |
| * the upper layers is informed about the successful transmission. If |
| * mac80211 queues have been stopped and the number of frames still to be |
| * transmitted is low the queues will be opened again. |
| * |
| * Returns 1 if the frame was an ACK, 0 if it was ignored. |
| */ |
| static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr, |
| struct ieee80211_rx_status *stats) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| struct sk_buff *skb; |
| struct sk_buff_head *q; |
| unsigned long flags; |
| int found = 0; |
| int i, position = 0; |
| |
| if (!ieee80211_is_ack(rx_hdr->frame_control)) |
| return 0; |
| |
| q = &mac->ack_wait_queue; |
| spin_lock_irqsave(&q->lock, flags); |
| skb_queue_walk(q, skb) { |
| struct ieee80211_hdr *tx_hdr; |
| |
| position ++; |
| |
| if (mac->ack_pending && skb_queue_is_first(q, skb)) |
| continue; |
| |
| tx_hdr = (struct ieee80211_hdr *)skb->data; |
| if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN))) |
| { |
| found = 1; |
| break; |
| } |
| } |
| |
| if (found) { |
| for (i=1; i<position; i++) { |
| skb = __skb_dequeue(q); |
| zd_mac_tx_status(hw, skb, |
| mac->ack_pending ? mac->ack_signal : 0, |
| NULL); |
| mac->ack_pending = 0; |
| } |
| |
| mac->ack_pending = 1; |
| mac->ack_signal = stats->signal; |
| } |
| |
| spin_unlock_irqrestore(&q->lock, flags); |
| return 1; |
| } |
| |
| int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| struct ieee80211_rx_status stats; |
| const struct rx_status *status; |
| struct sk_buff *skb; |
| int bad_frame = 0; |
| __le16 fc; |
| int need_padding; |
| int i; |
| u8 rate; |
| |
| if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ + |
| FCS_LEN + sizeof(struct rx_status)) |
| return -EINVAL; |
| |
| memset(&stats, 0, sizeof(stats)); |
| |
| /* Note about pass_failed_fcs and pass_ctrl access below: |
| * mac locking intentionally omitted here, as this is the only unlocked |
| * reader and the only writer is configure_filter. Plus, if there were |
| * any races accessing these variables, it wouldn't really matter. |
| * If mac80211 ever provides a way for us to access filter flags |
| * from outside configure_filter, we could improve on this. Also, this |
| * situation may change once we implement some kind of DMA-into-skb |
| * RX path. */ |
| |
| /* Caller has to ensure that length >= sizeof(struct rx_status). */ |
| status = (struct rx_status *) |
| (buffer + (length - sizeof(struct rx_status))); |
| if (status->frame_status & ZD_RX_ERROR) { |
| if (mac->pass_failed_fcs && |
| (status->frame_status & ZD_RX_CRC32_ERROR)) { |
| stats.flag |= RX_FLAG_FAILED_FCS_CRC; |
| bad_frame = 1; |
| } else { |
| return -EINVAL; |
| } |
| } |
| |
| stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq; |
| stats.band = IEEE80211_BAND_2GHZ; |
| stats.signal = status->signal_strength; |
| |
| rate = zd_rx_rate(buffer, status); |
| |
| /* todo: return index in the big switches in zd_rx_rate instead */ |
| for (i = 0; i < mac->band.n_bitrates; i++) |
| if (rate == mac->band.bitrates[i].hw_value) |
| stats.rate_idx = i; |
| |
| length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status); |
| buffer += ZD_PLCP_HEADER_SIZE; |
| |
| /* Except for bad frames, filter each frame to see if it is an ACK, in |
| * which case our internal TX tracking is updated. Normally we then |
| * bail here as there's no need to pass ACKs on up to the stack, but |
| * there is also the case where the stack has requested us to pass |
| * control frames on up (pass_ctrl) which we must consider. */ |
| if (!bad_frame && |
| filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats) |
| && !mac->pass_ctrl) |
| return 0; |
| |
| fc = get_unaligned((__le16*)buffer); |
| need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc); |
| |
| skb = dev_alloc_skb(length + (need_padding ? 2 : 0)); |
| if (skb == NULL) |
| return -ENOMEM; |
| if (need_padding) { |
| /* Make sure the the payload data is 4 byte aligned. */ |
| skb_reserve(skb, 2); |
| } |
| |
| /* FIXME : could we avoid this big memcpy ? */ |
| memcpy(skb_put(skb, length), buffer, length); |
| |
| memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats)); |
| ieee80211_rx_irqsafe(hw, skb); |
| return 0; |
| } |
| |
| static int zd_op_add_interface(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| |
| /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */ |
| if (mac->type != NL80211_IFTYPE_UNSPECIFIED) |
| return -EOPNOTSUPP; |
| |
| switch (vif->type) { |
| case NL80211_IFTYPE_MONITOR: |
| case NL80211_IFTYPE_MESH_POINT: |
| case NL80211_IFTYPE_STATION: |
| case NL80211_IFTYPE_ADHOC: |
| mac->type = vif->type; |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return zd_write_mac_addr(&mac->chip, vif->addr); |
| } |
| |
| static void zd_op_remove_interface(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| mac->type = NL80211_IFTYPE_UNSPECIFIED; |
| zd_set_beacon_interval(&mac->chip, 0); |
| zd_write_mac_addr(&mac->chip, NULL); |
| } |
| |
| static int zd_op_config(struct ieee80211_hw *hw, u32 changed) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| struct ieee80211_conf *conf = &hw->conf; |
| |
| return zd_chip_set_channel(&mac->chip, conf->channel->hw_value); |
| } |
| |
| static void zd_process_intr(struct work_struct *work) |
| { |
| u16 int_status; |
| struct zd_mac *mac = container_of(work, struct zd_mac, process_intr); |
| |
| int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer+4)); |
| if (int_status & INT_CFG_NEXT_BCN) |
| dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n"); |
| else |
| dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n"); |
| |
| zd_chip_enable_hwint(&mac->chip); |
| } |
| |
| |
| static void set_multicast_hash_handler(struct work_struct *work) |
| { |
| struct zd_mac *mac = |
| container_of(work, struct zd_mac, set_multicast_hash_work); |
| struct zd_mc_hash hash; |
| |
| spin_lock_irq(&mac->lock); |
| hash = mac->multicast_hash; |
| spin_unlock_irq(&mac->lock); |
| |
| zd_chip_set_multicast_hash(&mac->chip, &hash); |
| } |
| |
| static void set_rx_filter_handler(struct work_struct *work) |
| { |
| struct zd_mac *mac = |
| container_of(work, struct zd_mac, set_rx_filter_work); |
| int r; |
| |
| dev_dbg_f(zd_mac_dev(mac), "\n"); |
| r = set_rx_filter(mac); |
| if (r) |
| dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r); |
| } |
| |
| static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw, |
| int mc_count, struct dev_addr_list *mclist) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| struct zd_mc_hash hash; |
| int i; |
| |
| zd_mc_clear(&hash); |
| |
| for (i = 0; i < mc_count; i++) { |
| if (!mclist) |
| break; |
| dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", mclist->dmi_addr); |
| zd_mc_add_addr(&hash, mclist->dmi_addr); |
| mclist = mclist->next; |
| } |
| |
| return hash.low | ((u64)hash.high << 32); |
| } |
| |
| #define SUPPORTED_FIF_FLAGS \ |
| (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \ |
| FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC) |
| static void zd_op_configure_filter(struct ieee80211_hw *hw, |
| unsigned int changed_flags, |
| unsigned int *new_flags, |
| u64 multicast) |
| { |
| struct zd_mc_hash hash = { |
| .low = multicast, |
| .high = multicast >> 32, |
| }; |
| struct zd_mac *mac = zd_hw_mac(hw); |
| unsigned long flags; |
| |
| /* Only deal with supported flags */ |
| changed_flags &= SUPPORTED_FIF_FLAGS; |
| *new_flags &= SUPPORTED_FIF_FLAGS; |
| |
| /* changed_flags is always populated but this driver |
| * doesn't support all FIF flags so its possible we don't |
| * need to do anything */ |
| if (!changed_flags) |
| return; |
| |
| if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI)) |
| zd_mc_add_all(&hash); |
| |
| spin_lock_irqsave(&mac->lock, flags); |
| mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL); |
| mac->pass_ctrl = !!(*new_flags & FIF_CONTROL); |
| mac->multicast_hash = hash; |
| spin_unlock_irqrestore(&mac->lock, flags); |
| |
| /* XXX: these can be called here now, can sleep now! */ |
| queue_work(zd_workqueue, &mac->set_multicast_hash_work); |
| |
| if (changed_flags & FIF_CONTROL) |
| queue_work(zd_workqueue, &mac->set_rx_filter_work); |
| |
| /* no handling required for FIF_OTHER_BSS as we don't currently |
| * do BSSID filtering */ |
| /* FIXME: in future it would be nice to enable the probe response |
| * filter (so that the driver doesn't see them) until |
| * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd |
| * have to schedule work to enable prbresp reception, which might |
| * happen too late. For now we'll just listen and forward them all the |
| * time. */ |
| } |
| |
| static void set_rts_cts_work(struct work_struct *work) |
| { |
| struct zd_mac *mac = |
| container_of(work, struct zd_mac, set_rts_cts_work); |
| unsigned long flags; |
| unsigned int short_preamble; |
| |
| mutex_lock(&mac->chip.mutex); |
| |
| spin_lock_irqsave(&mac->lock, flags); |
| mac->updating_rts_rate = 0; |
| short_preamble = mac->short_preamble; |
| spin_unlock_irqrestore(&mac->lock, flags); |
| |
| zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble); |
| mutex_unlock(&mac->chip.mutex); |
| } |
| |
| static void zd_op_bss_info_changed(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| struct ieee80211_bss_conf *bss_conf, |
| u32 changes) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| unsigned long flags; |
| int associated; |
| |
| dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes); |
| |
| if (mac->type == NL80211_IFTYPE_MESH_POINT || |
| mac->type == NL80211_IFTYPE_ADHOC) { |
| associated = true; |
| if (changes & BSS_CHANGED_BEACON) { |
| struct sk_buff *beacon = ieee80211_beacon_get(hw, vif); |
| |
| if (beacon) { |
| zd_mac_config_beacon(hw, beacon); |
| kfree_skb(beacon); |
| } |
| } |
| |
| if (changes & BSS_CHANGED_BEACON_ENABLED) { |
| u32 interval; |
| |
| if (bss_conf->enable_beacon) |
| interval = BCN_MODE_IBSS | |
| bss_conf->beacon_int; |
| else |
| interval = 0; |
| |
| zd_set_beacon_interval(&mac->chip, interval); |
| } |
| } else |
| associated = is_valid_ether_addr(bss_conf->bssid); |
| |
| spin_lock_irq(&mac->lock); |
| mac->associated = associated; |
| spin_unlock_irq(&mac->lock); |
| |
| /* TODO: do hardware bssid filtering */ |
| |
| if (changes & BSS_CHANGED_ERP_PREAMBLE) { |
| spin_lock_irqsave(&mac->lock, flags); |
| mac->short_preamble = bss_conf->use_short_preamble; |
| if (!mac->updating_rts_rate) { |
| mac->updating_rts_rate = 1; |
| /* FIXME: should disable TX here, until work has |
| * completed and RTS_CTS reg is updated */ |
| queue_work(zd_workqueue, &mac->set_rts_cts_work); |
| } |
| spin_unlock_irqrestore(&mac->lock, flags); |
| } |
| } |
| |
| static u64 zd_op_get_tsf(struct ieee80211_hw *hw) |
| { |
| struct zd_mac *mac = zd_hw_mac(hw); |
| return zd_chip_get_tsf(&mac->chip); |
| } |
| |
| static const struct ieee80211_ops zd_ops = { |
| .tx = zd_op_tx, |
| .start = zd_op_start, |
| .stop = zd_op_stop, |
| .add_interface = zd_op_add_interface, |
| .remove_interface = zd_op_remove_interface, |
| .config = zd_op_config, |
| .prepare_multicast = zd_op_prepare_multicast, |
| .configure_filter = zd_op_configure_filter, |
| .bss_info_changed = zd_op_bss_info_changed, |
| .get_tsf = zd_op_get_tsf, |
| }; |
| |
| struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf) |
| { |
| struct zd_mac *mac; |
| struct ieee80211_hw *hw; |
| |
| hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops); |
| if (!hw) { |
| dev_dbg_f(&intf->dev, "out of memory\n"); |
| return NULL; |
| } |
| |
| mac = zd_hw_mac(hw); |
| |
| memset(mac, 0, sizeof(*mac)); |
| spin_lock_init(&mac->lock); |
| mac->hw = hw; |
| |
| mac->type = NL80211_IFTYPE_UNSPECIFIED; |
| |
| memcpy(mac->channels, zd_channels, sizeof(zd_channels)); |
| memcpy(mac->rates, zd_rates, sizeof(zd_rates)); |
| mac->band.n_bitrates = ARRAY_SIZE(zd_rates); |
| mac->band.bitrates = mac->rates; |
| mac->band.n_channels = ARRAY_SIZE(zd_channels); |
| mac->band.channels = mac->channels; |
| |
| hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band; |
| |
| hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | |
| IEEE80211_HW_SIGNAL_UNSPEC; |
| |
| hw->wiphy->interface_modes = |
| BIT(NL80211_IFTYPE_MESH_POINT) | |
| BIT(NL80211_IFTYPE_STATION) | |
| BIT(NL80211_IFTYPE_ADHOC); |
| |
| hw->max_signal = 100; |
| hw->queues = 1; |
| hw->extra_tx_headroom = sizeof(struct zd_ctrlset); |
| |
| /* |
| * Tell mac80211 that we support multi rate retries |
| */ |
| hw->max_rates = IEEE80211_TX_MAX_RATES; |
| hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */ |
| |
| skb_queue_head_init(&mac->ack_wait_queue); |
| mac->ack_pending = 0; |
| |
| zd_chip_init(&mac->chip, hw, intf); |
| housekeeping_init(mac); |
| INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler); |
| INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work); |
| INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler); |
| INIT_WORK(&mac->process_intr, zd_process_intr); |
| |
| SET_IEEE80211_DEV(hw, &intf->dev); |
| return hw; |
| } |
| |
| #define LINK_LED_WORK_DELAY HZ |
| |
| static void link_led_handler(struct work_struct *work) |
| { |
| struct zd_mac *mac = |
| container_of(work, struct zd_mac, housekeeping.link_led_work.work); |
| struct zd_chip *chip = &mac->chip; |
| int is_associated; |
| int r; |
| |
| spin_lock_irq(&mac->lock); |
| is_associated = mac->associated; |
| spin_unlock_irq(&mac->lock); |
| |
| r = zd_chip_control_leds(chip, |
| is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING); |
| if (r) |
| dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r); |
| |
| queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, |
| LINK_LED_WORK_DELAY); |
| } |
| |
| static void housekeeping_init(struct zd_mac *mac) |
| { |
| INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler); |
| } |
| |
| static void housekeeping_enable(struct zd_mac *mac) |
| { |
| dev_dbg_f(zd_mac_dev(mac), "\n"); |
| queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, |
| 0); |
| } |
| |
| static void housekeeping_disable(struct zd_mac *mac) |
| { |
| dev_dbg_f(zd_mac_dev(mac), "\n"); |
| cancel_rearming_delayed_workqueue(zd_workqueue, |
| &mac->housekeeping.link_led_work); |
| zd_chip_control_leds(&mac->chip, ZD_LED_OFF); |
| } |