| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/string.h> |
| #include <linux/bootmem.h> |
| #include <linux/bitops.h> |
| #include <linux/module.h> |
| #include <linux/kgdb.h> |
| #include <linux/topology.h> |
| #include <linux/delay.h> |
| #include <linux/smp.h> |
| #include <linux/percpu.h> |
| #include <asm/i387.h> |
| #include <asm/msr.h> |
| #include <asm/io.h> |
| #include <asm/linkage.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mtrr.h> |
| #include <asm/mce.h> |
| #include <asm/pat.h> |
| #include <asm/asm.h> |
| #include <asm/numa.h> |
| #ifdef CONFIG_X86_LOCAL_APIC |
| #include <asm/mpspec.h> |
| #include <asm/apic.h> |
| #include <mach_apic.h> |
| #endif |
| #include <asm/pda.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/desc.h> |
| #include <asm/atomic.h> |
| #include <asm/proto.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/genapic.h> |
| |
| #include "cpu.h" |
| |
| /* We need valid kernel segments for data and code in long mode too |
| * IRET will check the segment types kkeil 2000/10/28 |
| * Also sysret mandates a special GDT layout |
| */ |
| /* The TLS descriptors are currently at a different place compared to i386. |
| Hopefully nobody expects them at a fixed place (Wine?) */ |
| DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = { |
| [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } }, |
| [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } }, |
| [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } }, |
| [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } }, |
| [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } }, |
| [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } }, |
| } }; |
| EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); |
| |
| __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata; |
| |
| /* Current gdt points %fs at the "master" per-cpu area: after this, |
| * it's on the real one. */ |
| void switch_to_new_gdt(void) |
| { |
| struct desc_ptr gdt_descr; |
| |
| gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id()); |
| gdt_descr.size = GDT_SIZE - 1; |
| load_gdt(&gdt_descr); |
| } |
| |
| struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; |
| |
| static void __cpuinit default_init(struct cpuinfo_x86 *c) |
| { |
| display_cacheinfo(c); |
| } |
| |
| static struct cpu_dev __cpuinitdata default_cpu = { |
| .c_init = default_init, |
| .c_vendor = "Unknown", |
| }; |
| static struct cpu_dev *this_cpu __cpuinitdata = &default_cpu; |
| |
| int __cpuinit get_model_name(struct cpuinfo_x86 *c) |
| { |
| unsigned int *v; |
| |
| if (c->extended_cpuid_level < 0x80000004) |
| return 0; |
| |
| v = (unsigned int *) c->x86_model_id; |
| cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); |
| cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); |
| cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); |
| c->x86_model_id[48] = 0; |
| return 1; |
| } |
| |
| |
| void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c) |
| { |
| unsigned int n, dummy, ebx, ecx, edx; |
| |
| n = c->extended_cpuid_level; |
| |
| if (n >= 0x80000005) { |
| cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); |
| printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), " |
| "D cache %dK (%d bytes/line)\n", |
| edx>>24, edx&0xFF, ecx>>24, ecx&0xFF); |
| c->x86_cache_size = (ecx>>24) + (edx>>24); |
| /* On K8 L1 TLB is inclusive, so don't count it */ |
| c->x86_tlbsize = 0; |
| } |
| |
| if (n >= 0x80000006) { |
| cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); |
| ecx = cpuid_ecx(0x80000006); |
| c->x86_cache_size = ecx >> 16; |
| c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); |
| |
| printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n", |
| c->x86_cache_size, ecx & 0xFF); |
| } |
| } |
| |
| void __cpuinit detect_ht(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_SMP |
| u32 eax, ebx, ecx, edx; |
| int index_msb, core_bits; |
| |
| cpuid(1, &eax, &ebx, &ecx, &edx); |
| |
| |
| if (!cpu_has(c, X86_FEATURE_HT)) |
| return; |
| if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) |
| goto out; |
| |
| smp_num_siblings = (ebx & 0xff0000) >> 16; |
| |
| if (smp_num_siblings == 1) { |
| printk(KERN_INFO "CPU: Hyper-Threading is disabled\n"); |
| } else if (smp_num_siblings > 1) { |
| |
| if (smp_num_siblings > NR_CPUS) { |
| printk(KERN_WARNING "CPU: Unsupported number of " |
| "siblings %d", smp_num_siblings); |
| smp_num_siblings = 1; |
| return; |
| } |
| |
| index_msb = get_count_order(smp_num_siblings); |
| c->phys_proc_id = phys_pkg_id(index_msb); |
| |
| smp_num_siblings = smp_num_siblings / c->x86_max_cores; |
| |
| index_msb = get_count_order(smp_num_siblings); |
| |
| core_bits = get_count_order(c->x86_max_cores); |
| |
| c->cpu_core_id = phys_pkg_id(index_msb) & |
| ((1 << core_bits) - 1); |
| } |
| out: |
| if ((c->x86_max_cores * smp_num_siblings) > 1) { |
| printk(KERN_INFO "CPU: Physical Processor ID: %d\n", |
| c->phys_proc_id); |
| printk(KERN_INFO "CPU: Processor Core ID: %d\n", |
| c->cpu_core_id); |
| } |
| |
| #endif |
| } |
| |
| static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c) |
| { |
| char *v = c->x86_vendor_id; |
| int i; |
| static int printed; |
| |
| for (i = 0; i < X86_VENDOR_NUM; i++) { |
| if (cpu_devs[i]) { |
| if (!strcmp(v, cpu_devs[i]->c_ident[0]) || |
| (cpu_devs[i]->c_ident[1] && |
| !strcmp(v, cpu_devs[i]->c_ident[1]))) { |
| c->x86_vendor = i; |
| this_cpu = cpu_devs[i]; |
| return; |
| } |
| } |
| } |
| if (!printed) { |
| printed++; |
| printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n"); |
| printk(KERN_ERR "CPU: Your system may be unstable.\n"); |
| } |
| c->x86_vendor = X86_VENDOR_UNKNOWN; |
| } |
| |
| static void __init early_cpu_support_print(void) |
| { |
| int i,j; |
| struct cpu_dev *cpu_devx; |
| |
| printk("KERNEL supported cpus:\n"); |
| for (i = 0; i < X86_VENDOR_NUM; i++) { |
| cpu_devx = cpu_devs[i]; |
| if (!cpu_devx) |
| continue; |
| for (j = 0; j < 2; j++) { |
| if (!cpu_devx->c_ident[j]) |
| continue; |
| printk(" %s %s\n", cpu_devx->c_vendor, |
| cpu_devx->c_ident[j]); |
| } |
| } |
| } |
| |
| /* |
| * The NOPL instruction is supposed to exist on all CPUs with |
| * family >= 6, unfortunately, that's not true in practice because |
| * of early VIA chips and (more importantly) broken virtualizers that |
| * are not easy to detect. Hence, probe for it based on first |
| * principles. |
| * |
| * Note: no 64-bit chip is known to lack these, but put the code here |
| * for consistency with 32 bits, and to make it utterly trivial to |
| * diagnose the problem should it ever surface. |
| */ |
| static void __cpuinit detect_nopl(struct cpuinfo_x86 *c) |
| { |
| const u32 nopl_signature = 0x888c53b1; /* Random number */ |
| u32 has_nopl = nopl_signature; |
| |
| clear_cpu_cap(c, X86_FEATURE_NOPL); |
| if (c->x86 >= 6) { |
| asm volatile("\n" |
| "1: .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */ |
| "2:\n" |
| " .section .fixup,\"ax\"\n" |
| "3: xor %0,%0\n" |
| " jmp 2b\n" |
| " .previous\n" |
| _ASM_EXTABLE(1b,3b) |
| : "+a" (has_nopl)); |
| |
| if (has_nopl == nopl_signature) |
| set_cpu_cap(c, X86_FEATURE_NOPL); |
| } |
| } |
| |
| static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c); |
| |
| void __init early_cpu_init(void) |
| { |
| struct cpu_vendor_dev *cvdev; |
| |
| for (cvdev = __x86cpuvendor_start ; |
| cvdev < __x86cpuvendor_end ; |
| cvdev++) |
| cpu_devs[cvdev->vendor] = cvdev->cpu_dev; |
| early_cpu_support_print(); |
| early_identify_cpu(&boot_cpu_data); |
| } |
| |
| /* Do some early cpuid on the boot CPU to get some parameter that are |
| needed before check_bugs. Everything advanced is in identify_cpu |
| below. */ |
| static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c) |
| { |
| u32 tfms, xlvl; |
| |
| c->loops_per_jiffy = loops_per_jiffy; |
| c->x86_cache_size = -1; |
| c->x86_vendor = X86_VENDOR_UNKNOWN; |
| c->x86_model = c->x86_mask = 0; /* So far unknown... */ |
| c->x86_vendor_id[0] = '\0'; /* Unset */ |
| c->x86_model_id[0] = '\0'; /* Unset */ |
| c->x86_clflush_size = 64; |
| c->x86_cache_alignment = c->x86_clflush_size; |
| c->x86_max_cores = 1; |
| c->x86_coreid_bits = 0; |
| c->extended_cpuid_level = 0; |
| memset(&c->x86_capability, 0, sizeof c->x86_capability); |
| |
| /* Get vendor name */ |
| cpuid(0x00000000, (unsigned int *)&c->cpuid_level, |
| (unsigned int *)&c->x86_vendor_id[0], |
| (unsigned int *)&c->x86_vendor_id[8], |
| (unsigned int *)&c->x86_vendor_id[4]); |
| |
| get_cpu_vendor(c); |
| |
| /* Initialize the standard set of capabilities */ |
| /* Note that the vendor-specific code below might override */ |
| |
| /* Intel-defined flags: level 0x00000001 */ |
| if (c->cpuid_level >= 0x00000001) { |
| __u32 misc; |
| cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4], |
| &c->x86_capability[0]); |
| c->x86 = (tfms >> 8) & 0xf; |
| c->x86_model = (tfms >> 4) & 0xf; |
| c->x86_mask = tfms & 0xf; |
| if (c->x86 == 0xf) |
| c->x86 += (tfms >> 20) & 0xff; |
| if (c->x86 >= 0x6) |
| c->x86_model += ((tfms >> 16) & 0xF) << 4; |
| if (test_cpu_cap(c, X86_FEATURE_CLFLSH)) |
| c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; |
| } else { |
| /* Have CPUID level 0 only - unheard of */ |
| c->x86 = 4; |
| } |
| |
| c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xff; |
| #ifdef CONFIG_SMP |
| c->phys_proc_id = c->initial_apicid; |
| #endif |
| /* AMD-defined flags: level 0x80000001 */ |
| xlvl = cpuid_eax(0x80000000); |
| c->extended_cpuid_level = xlvl; |
| if ((xlvl & 0xffff0000) == 0x80000000) { |
| if (xlvl >= 0x80000001) { |
| c->x86_capability[1] = cpuid_edx(0x80000001); |
| c->x86_capability[6] = cpuid_ecx(0x80000001); |
| } |
| if (xlvl >= 0x80000004) |
| get_model_name(c); /* Default name */ |
| } |
| |
| /* Transmeta-defined flags: level 0x80860001 */ |
| xlvl = cpuid_eax(0x80860000); |
| if ((xlvl & 0xffff0000) == 0x80860000) { |
| /* Don't set x86_cpuid_level here for now to not confuse. */ |
| if (xlvl >= 0x80860001) |
| c->x86_capability[2] = cpuid_edx(0x80860001); |
| } |
| |
| if (c->extended_cpuid_level >= 0x80000007) |
| c->x86_power = cpuid_edx(0x80000007); |
| |
| if (c->extended_cpuid_level >= 0x80000008) { |
| u32 eax = cpuid_eax(0x80000008); |
| |
| c->x86_virt_bits = (eax >> 8) & 0xff; |
| c->x86_phys_bits = eax & 0xff; |
| } |
| |
| detect_nopl(c); |
| |
| if (c->x86_vendor != X86_VENDOR_UNKNOWN && |
| cpu_devs[c->x86_vendor]->c_early_init) |
| cpu_devs[c->x86_vendor]->c_early_init(c); |
| |
| validate_pat_support(c); |
| } |
| |
| /* |
| * This does the hard work of actually picking apart the CPU stuff... |
| */ |
| static void __cpuinit identify_cpu(struct cpuinfo_x86 *c) |
| { |
| int i; |
| |
| early_identify_cpu(c); |
| |
| init_scattered_cpuid_features(c); |
| |
| c->apicid = phys_pkg_id(0); |
| |
| /* |
| * Vendor-specific initialization. In this section we |
| * canonicalize the feature flags, meaning if there are |
| * features a certain CPU supports which CPUID doesn't |
| * tell us, CPUID claiming incorrect flags, or other bugs, |
| * we handle them here. |
| * |
| * At the end of this section, c->x86_capability better |
| * indicate the features this CPU genuinely supports! |
| */ |
| if (this_cpu->c_init) |
| this_cpu->c_init(c); |
| |
| detect_ht(c); |
| |
| /* |
| * On SMP, boot_cpu_data holds the common feature set between |
| * all CPUs; so make sure that we indicate which features are |
| * common between the CPUs. The first time this routine gets |
| * executed, c == &boot_cpu_data. |
| */ |
| if (c != &boot_cpu_data) { |
| /* AND the already accumulated flags with these */ |
| for (i = 0; i < NCAPINTS; i++) |
| boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; |
| } |
| |
| /* Clear all flags overriden by options */ |
| for (i = 0; i < NCAPINTS; i++) |
| c->x86_capability[i] &= ~cleared_cpu_caps[i]; |
| |
| #ifdef CONFIG_X86_MCE |
| mcheck_init(c); |
| #endif |
| select_idle_routine(c); |
| |
| #ifdef CONFIG_NUMA |
| numa_add_cpu(smp_processor_id()); |
| #endif |
| |
| } |
| |
| void __cpuinit identify_boot_cpu(void) |
| { |
| identify_cpu(&boot_cpu_data); |
| } |
| |
| void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c) |
| { |
| BUG_ON(c == &boot_cpu_data); |
| identify_cpu(c); |
| mtrr_ap_init(); |
| } |
| |
| static __init int setup_noclflush(char *arg) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_CLFLSH); |
| return 1; |
| } |
| __setup("noclflush", setup_noclflush); |
| |
| void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) |
| { |
| if (c->x86_model_id[0]) |
| printk(KERN_CONT "%s", c->x86_model_id); |
| |
| if (c->x86_mask || c->cpuid_level >= 0) |
| printk(KERN_CONT " stepping %02x\n", c->x86_mask); |
| else |
| printk(KERN_CONT "\n"); |
| } |
| |
| static __init int setup_disablecpuid(char *arg) |
| { |
| int bit; |
| if (get_option(&arg, &bit) && bit < NCAPINTS*32) |
| setup_clear_cpu_cap(bit); |
| else |
| return 0; |
| return 1; |
| } |
| __setup("clearcpuid=", setup_disablecpuid); |
| |
| cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE; |
| |
| struct x8664_pda **_cpu_pda __read_mostly; |
| EXPORT_SYMBOL(_cpu_pda); |
| |
| struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table }; |
| |
| char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss; |
| |
| unsigned long __supported_pte_mask __read_mostly = ~0UL; |
| EXPORT_SYMBOL_GPL(__supported_pte_mask); |
| |
| static int do_not_nx __cpuinitdata; |
| |
| /* noexec=on|off |
| Control non executable mappings for 64bit processes. |
| |
| on Enable(default) |
| off Disable |
| */ |
| static int __init nonx_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| if (!strncmp(str, "on", 2)) { |
| __supported_pte_mask |= _PAGE_NX; |
| do_not_nx = 0; |
| } else if (!strncmp(str, "off", 3)) { |
| do_not_nx = 1; |
| __supported_pte_mask &= ~_PAGE_NX; |
| } |
| return 0; |
| } |
| early_param("noexec", nonx_setup); |
| |
| int force_personality32; |
| |
| /* noexec32=on|off |
| Control non executable heap for 32bit processes. |
| To control the stack too use noexec=off |
| |
| on PROT_READ does not imply PROT_EXEC for 32bit processes (default) |
| off PROT_READ implies PROT_EXEC |
| */ |
| static int __init nonx32_setup(char *str) |
| { |
| if (!strcmp(str, "on")) |
| force_personality32 &= ~READ_IMPLIES_EXEC; |
| else if (!strcmp(str, "off")) |
| force_personality32 |= READ_IMPLIES_EXEC; |
| return 1; |
| } |
| __setup("noexec32=", nonx32_setup); |
| |
| void pda_init(int cpu) |
| { |
| struct x8664_pda *pda = cpu_pda(cpu); |
| |
| /* Setup up data that may be needed in __get_free_pages early */ |
| loadsegment(fs, 0); |
| loadsegment(gs, 0); |
| /* Memory clobbers used to order PDA accessed */ |
| mb(); |
| wrmsrl(MSR_GS_BASE, pda); |
| mb(); |
| |
| pda->cpunumber = cpu; |
| pda->irqcount = -1; |
| pda->kernelstack = (unsigned long)stack_thread_info() - |
| PDA_STACKOFFSET + THREAD_SIZE; |
| pda->active_mm = &init_mm; |
| pda->mmu_state = 0; |
| |
| if (cpu == 0) { |
| /* others are initialized in smpboot.c */ |
| pda->pcurrent = &init_task; |
| pda->irqstackptr = boot_cpu_stack; |
| pda->irqstackptr += IRQSTACKSIZE - 64; |
| } else { |
| if (!pda->irqstackptr) { |
| pda->irqstackptr = (char *) |
| __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER); |
| if (!pda->irqstackptr) |
| panic("cannot allocate irqstack for cpu %d", |
| cpu); |
| pda->irqstackptr += IRQSTACKSIZE - 64; |
| } |
| |
| if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE) |
| pda->nodenumber = cpu_to_node(cpu); |
| } |
| } |
| |
| char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + |
| DEBUG_STKSZ] __page_aligned_bss; |
| |
| extern asmlinkage void ignore_sysret(void); |
| |
| /* May not be marked __init: used by software suspend */ |
| void syscall_init(void) |
| { |
| /* |
| * LSTAR and STAR live in a bit strange symbiosis. |
| * They both write to the same internal register. STAR allows to |
| * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip. |
| */ |
| wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32); |
| wrmsrl(MSR_LSTAR, system_call); |
| wrmsrl(MSR_CSTAR, ignore_sysret); |
| |
| #ifdef CONFIG_IA32_EMULATION |
| syscall32_cpu_init(); |
| #endif |
| |
| /* Flags to clear on syscall */ |
| wrmsrl(MSR_SYSCALL_MASK, |
| X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL); |
| } |
| |
| void __cpuinit check_efer(void) |
| { |
| unsigned long efer; |
| |
| rdmsrl(MSR_EFER, efer); |
| if (!(efer & EFER_NX) || do_not_nx) |
| __supported_pte_mask &= ~_PAGE_NX; |
| } |
| |
| unsigned long kernel_eflags; |
| |
| /* |
| * Copies of the original ist values from the tss are only accessed during |
| * debugging, no special alignment required. |
| */ |
| DEFINE_PER_CPU(struct orig_ist, orig_ist); |
| |
| /* |
| * cpu_init() initializes state that is per-CPU. Some data is already |
| * initialized (naturally) in the bootstrap process, such as the GDT |
| * and IDT. We reload them nevertheless, this function acts as a |
| * 'CPU state barrier', nothing should get across. |
| * A lot of state is already set up in PDA init. |
| */ |
| void __cpuinit cpu_init(void) |
| { |
| int cpu = stack_smp_processor_id(); |
| struct tss_struct *t = &per_cpu(init_tss, cpu); |
| struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu); |
| unsigned long v; |
| char *estacks = NULL; |
| struct task_struct *me; |
| int i; |
| |
| /* CPU 0 is initialised in head64.c */ |
| if (cpu != 0) |
| pda_init(cpu); |
| else |
| estacks = boot_exception_stacks; |
| |
| me = current; |
| |
| if (cpu_test_and_set(cpu, cpu_initialized)) |
| panic("CPU#%d already initialized!\n", cpu); |
| |
| printk(KERN_INFO "Initializing CPU#%d\n", cpu); |
| |
| clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); |
| |
| /* |
| * Initialize the per-CPU GDT with the boot GDT, |
| * and set up the GDT descriptor: |
| */ |
| |
| switch_to_new_gdt(); |
| load_idt((const struct desc_ptr *)&idt_descr); |
| |
| memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); |
| syscall_init(); |
| |
| wrmsrl(MSR_FS_BASE, 0); |
| wrmsrl(MSR_KERNEL_GS_BASE, 0); |
| barrier(); |
| |
| check_efer(); |
| |
| /* |
| * set up and load the per-CPU TSS |
| */ |
| if (!orig_ist->ist[0]) { |
| static const unsigned int order[N_EXCEPTION_STACKS] = { |
| [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER, |
| [DEBUG_STACK - 1] = DEBUG_STACK_ORDER |
| }; |
| for (v = 0; v < N_EXCEPTION_STACKS; v++) { |
| if (cpu) { |
| estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]); |
| if (!estacks) |
| panic("Cannot allocate exception " |
| "stack %ld %d\n", v, cpu); |
| } |
| estacks += PAGE_SIZE << order[v]; |
| orig_ist->ist[v] = t->x86_tss.ist[v] = |
| (unsigned long)estacks; |
| } |
| } |
| |
| t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); |
| /* |
| * <= is required because the CPU will access up to |
| * 8 bits beyond the end of the IO permission bitmap. |
| */ |
| for (i = 0; i <= IO_BITMAP_LONGS; i++) |
| t->io_bitmap[i] = ~0UL; |
| |
| atomic_inc(&init_mm.mm_count); |
| me->active_mm = &init_mm; |
| if (me->mm) |
| BUG(); |
| enter_lazy_tlb(&init_mm, me); |
| |
| load_sp0(t, ¤t->thread); |
| set_tss_desc(cpu, t); |
| load_TR_desc(); |
| load_LDT(&init_mm.context); |
| |
| #ifdef CONFIG_KGDB |
| /* |
| * If the kgdb is connected no debug regs should be altered. This |
| * is only applicable when KGDB and a KGDB I/O module are built |
| * into the kernel and you are using early debugging with |
| * kgdbwait. KGDB will control the kernel HW breakpoint registers. |
| */ |
| if (kgdb_connected && arch_kgdb_ops.correct_hw_break) |
| arch_kgdb_ops.correct_hw_break(); |
| else { |
| #endif |
| /* |
| * Clear all 6 debug registers: |
| */ |
| |
| set_debugreg(0UL, 0); |
| set_debugreg(0UL, 1); |
| set_debugreg(0UL, 2); |
| set_debugreg(0UL, 3); |
| set_debugreg(0UL, 6); |
| set_debugreg(0UL, 7); |
| #ifdef CONFIG_KGDB |
| /* If the kgdb is connected no debug regs should be altered. */ |
| } |
| #endif |
| |
| fpu_init(); |
| |
| raw_local_save_flags(kernel_eflags); |
| |
| if (is_uv_system()) |
| uv_cpu_init(); |
| } |