| /* |
| * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called COPYING. |
| */ |
| |
| /* |
| * This code implements the DMA subsystem. It provides a HW-neutral interface |
| * for other kernel code to use asynchronous memory copy capabilities, |
| * if present, and allows different HW DMA drivers to register as providing |
| * this capability. |
| * |
| * Due to the fact we are accelerating what is already a relatively fast |
| * operation, the code goes to great lengths to avoid additional overhead, |
| * such as locking. |
| * |
| * LOCKING: |
| * |
| * The subsystem keeps a global list of dma_device structs it is protected by a |
| * mutex, dma_list_mutex. |
| * |
| * A subsystem can get access to a channel by calling dmaengine_get() followed |
| * by dma_find_channel(), or if it has need for an exclusive channel it can call |
| * dma_request_channel(). Once a channel is allocated a reference is taken |
| * against its corresponding driver to disable removal. |
| * |
| * Each device has a channels list, which runs unlocked but is never modified |
| * once the device is registered, it's just setup by the driver. |
| * |
| * See Documentation/dmaengine.txt for more details |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/hardirq.h> |
| #include <linux/spinlock.h> |
| #include <linux/percpu.h> |
| #include <linux/rcupdate.h> |
| #include <linux/mutex.h> |
| #include <linux/jiffies.h> |
| #include <linux/rculist.h> |
| #include <linux/idr.h> |
| |
| static DEFINE_MUTEX(dma_list_mutex); |
| static LIST_HEAD(dma_device_list); |
| static long dmaengine_ref_count; |
| static struct idr dma_idr; |
| |
| /* --- sysfs implementation --- */ |
| |
| /** |
| * dev_to_dma_chan - convert a device pointer to the its sysfs container object |
| * @dev - device node |
| * |
| * Must be called under dma_list_mutex |
| */ |
| static struct dma_chan *dev_to_dma_chan(struct device *dev) |
| { |
| struct dma_chan_dev *chan_dev; |
| |
| chan_dev = container_of(dev, typeof(*chan_dev), device); |
| return chan_dev->chan; |
| } |
| |
| static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct dma_chan *chan; |
| unsigned long count = 0; |
| int i; |
| int err; |
| |
| mutex_lock(&dma_list_mutex); |
| chan = dev_to_dma_chan(dev); |
| if (chan) { |
| for_each_possible_cpu(i) |
| count += per_cpu_ptr(chan->local, i)->memcpy_count; |
| err = sprintf(buf, "%lu\n", count); |
| } else |
| err = -ENODEV; |
| mutex_unlock(&dma_list_mutex); |
| |
| return err; |
| } |
| |
| static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct dma_chan *chan; |
| unsigned long count = 0; |
| int i; |
| int err; |
| |
| mutex_lock(&dma_list_mutex); |
| chan = dev_to_dma_chan(dev); |
| if (chan) { |
| for_each_possible_cpu(i) |
| count += per_cpu_ptr(chan->local, i)->bytes_transferred; |
| err = sprintf(buf, "%lu\n", count); |
| } else |
| err = -ENODEV; |
| mutex_unlock(&dma_list_mutex); |
| |
| return err; |
| } |
| |
| static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct dma_chan *chan; |
| int err; |
| |
| mutex_lock(&dma_list_mutex); |
| chan = dev_to_dma_chan(dev); |
| if (chan) |
| err = sprintf(buf, "%d\n", chan->client_count); |
| else |
| err = -ENODEV; |
| mutex_unlock(&dma_list_mutex); |
| |
| return err; |
| } |
| |
| static struct device_attribute dma_attrs[] = { |
| __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL), |
| __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL), |
| __ATTR(in_use, S_IRUGO, show_in_use, NULL), |
| __ATTR_NULL |
| }; |
| |
| static void chan_dev_release(struct device *dev) |
| { |
| struct dma_chan_dev *chan_dev; |
| |
| chan_dev = container_of(dev, typeof(*chan_dev), device); |
| if (atomic_dec_and_test(chan_dev->idr_ref)) { |
| mutex_lock(&dma_list_mutex); |
| idr_remove(&dma_idr, chan_dev->dev_id); |
| mutex_unlock(&dma_list_mutex); |
| kfree(chan_dev->idr_ref); |
| } |
| kfree(chan_dev); |
| } |
| |
| static struct class dma_devclass = { |
| .name = "dma", |
| .dev_attrs = dma_attrs, |
| .dev_release = chan_dev_release, |
| }; |
| |
| /* --- client and device registration --- */ |
| |
| #define dma_device_satisfies_mask(device, mask) \ |
| __dma_device_satisfies_mask((device), &(mask)) |
| static int |
| __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want) |
| { |
| dma_cap_mask_t has; |
| |
| bitmap_and(has.bits, want->bits, device->cap_mask.bits, |
| DMA_TX_TYPE_END); |
| return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); |
| } |
| |
| static struct module *dma_chan_to_owner(struct dma_chan *chan) |
| { |
| return chan->device->dev->driver->owner; |
| } |
| |
| /** |
| * balance_ref_count - catch up the channel reference count |
| * @chan - channel to balance ->client_count versus dmaengine_ref_count |
| * |
| * balance_ref_count must be called under dma_list_mutex |
| */ |
| static void balance_ref_count(struct dma_chan *chan) |
| { |
| struct module *owner = dma_chan_to_owner(chan); |
| |
| while (chan->client_count < dmaengine_ref_count) { |
| __module_get(owner); |
| chan->client_count++; |
| } |
| } |
| |
| /** |
| * dma_chan_get - try to grab a dma channel's parent driver module |
| * @chan - channel to grab |
| * |
| * Must be called under dma_list_mutex |
| */ |
| static int dma_chan_get(struct dma_chan *chan) |
| { |
| int err = -ENODEV; |
| struct module *owner = dma_chan_to_owner(chan); |
| |
| if (chan->client_count) { |
| __module_get(owner); |
| err = 0; |
| } else if (try_module_get(owner)) |
| err = 0; |
| |
| if (err == 0) |
| chan->client_count++; |
| |
| /* allocate upon first client reference */ |
| if (chan->client_count == 1 && err == 0) { |
| int desc_cnt = chan->device->device_alloc_chan_resources(chan); |
| |
| if (desc_cnt < 0) { |
| err = desc_cnt; |
| chan->client_count = 0; |
| module_put(owner); |
| } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) |
| balance_ref_count(chan); |
| } |
| |
| return err; |
| } |
| |
| /** |
| * dma_chan_put - drop a reference to a dma channel's parent driver module |
| * @chan - channel to release |
| * |
| * Must be called under dma_list_mutex |
| */ |
| static void dma_chan_put(struct dma_chan *chan) |
| { |
| if (!chan->client_count) |
| return; /* this channel failed alloc_chan_resources */ |
| chan->client_count--; |
| module_put(dma_chan_to_owner(chan)); |
| if (chan->client_count == 0) |
| chan->device->device_free_chan_resources(chan); |
| } |
| |
| enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) |
| { |
| enum dma_status status; |
| unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); |
| |
| dma_async_issue_pending(chan); |
| do { |
| status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); |
| if (time_after_eq(jiffies, dma_sync_wait_timeout)) { |
| printk(KERN_ERR "dma_sync_wait_timeout!\n"); |
| return DMA_ERROR; |
| } |
| } while (status == DMA_IN_PROGRESS); |
| |
| return status; |
| } |
| EXPORT_SYMBOL(dma_sync_wait); |
| |
| /** |
| * dma_cap_mask_all - enable iteration over all operation types |
| */ |
| static dma_cap_mask_t dma_cap_mask_all; |
| |
| /** |
| * dma_chan_tbl_ent - tracks channel allocations per core/operation |
| * @chan - associated channel for this entry |
| */ |
| struct dma_chan_tbl_ent { |
| struct dma_chan *chan; |
| }; |
| |
| /** |
| * channel_table - percpu lookup table for memory-to-memory offload providers |
| */ |
| static struct dma_chan_tbl_ent *channel_table[DMA_TX_TYPE_END]; |
| |
| static int __init dma_channel_table_init(void) |
| { |
| enum dma_transaction_type cap; |
| int err = 0; |
| |
| bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); |
| |
| /* 'interrupt', 'private', and 'slave' are channel capabilities, |
| * but are not associated with an operation so they do not need |
| * an entry in the channel_table |
| */ |
| clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); |
| clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); |
| clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); |
| |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) { |
| channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); |
| if (!channel_table[cap]) { |
| err = -ENOMEM; |
| break; |
| } |
| } |
| |
| if (err) { |
| pr_err("dmaengine: initialization failure\n"); |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) |
| if (channel_table[cap]) |
| free_percpu(channel_table[cap]); |
| } |
| |
| return err; |
| } |
| arch_initcall(dma_channel_table_init); |
| |
| /** |
| * dma_find_channel - find a channel to carry out the operation |
| * @tx_type: transaction type |
| */ |
| struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) |
| { |
| struct dma_chan *chan; |
| int cpu; |
| |
| cpu = get_cpu(); |
| chan = per_cpu_ptr(channel_table[tx_type], cpu)->chan; |
| put_cpu(); |
| |
| return chan; |
| } |
| EXPORT_SYMBOL(dma_find_channel); |
| |
| /** |
| * dma_issue_pending_all - flush all pending operations across all channels |
| */ |
| void dma_issue_pending_all(void) |
| { |
| struct dma_device *device; |
| struct dma_chan *chan; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(device, &dma_device_list, global_node) { |
| if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| continue; |
| list_for_each_entry(chan, &device->channels, device_node) |
| if (chan->client_count) |
| device->device_issue_pending(chan); |
| } |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL(dma_issue_pending_all); |
| |
| /** |
| * nth_chan - returns the nth channel of the given capability |
| * @cap: capability to match |
| * @n: nth channel desired |
| * |
| * Defaults to returning the channel with the desired capability and the |
| * lowest reference count when 'n' cannot be satisfied. Must be called |
| * under dma_list_mutex. |
| */ |
| static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n) |
| { |
| struct dma_device *device; |
| struct dma_chan *chan; |
| struct dma_chan *ret = NULL; |
| struct dma_chan *min = NULL; |
| |
| list_for_each_entry(device, &dma_device_list, global_node) { |
| if (!dma_has_cap(cap, device->cap_mask) || |
| dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| continue; |
| list_for_each_entry(chan, &device->channels, device_node) { |
| if (!chan->client_count) |
| continue; |
| if (!min) |
| min = chan; |
| else if (chan->table_count < min->table_count) |
| min = chan; |
| |
| if (n-- == 0) { |
| ret = chan; |
| break; /* done */ |
| } |
| } |
| if (ret) |
| break; /* done */ |
| } |
| |
| if (!ret) |
| ret = min; |
| |
| if (ret) |
| ret->table_count++; |
| |
| return ret; |
| } |
| |
| /** |
| * dma_channel_rebalance - redistribute the available channels |
| * |
| * Optimize for cpu isolation (each cpu gets a dedicated channel for an |
| * operation type) in the SMP case, and operation isolation (avoid |
| * multi-tasking channels) in the non-SMP case. Must be called under |
| * dma_list_mutex. |
| */ |
| static void dma_channel_rebalance(void) |
| { |
| struct dma_chan *chan; |
| struct dma_device *device; |
| int cpu; |
| int cap; |
| int n; |
| |
| /* undo the last distribution */ |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) |
| for_each_possible_cpu(cpu) |
| per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; |
| |
| list_for_each_entry(device, &dma_device_list, global_node) { |
| if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| continue; |
| list_for_each_entry(chan, &device->channels, device_node) |
| chan->table_count = 0; |
| } |
| |
| /* don't populate the channel_table if no clients are available */ |
| if (!dmaengine_ref_count) |
| return; |
| |
| /* redistribute available channels */ |
| n = 0; |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) |
| for_each_online_cpu(cpu) { |
| if (num_possible_cpus() > 1) |
| chan = nth_chan(cap, n++); |
| else |
| chan = nth_chan(cap, -1); |
| |
| per_cpu_ptr(channel_table[cap], cpu)->chan = chan; |
| } |
| } |
| |
| static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev, |
| dma_filter_fn fn, void *fn_param) |
| { |
| struct dma_chan *chan; |
| |
| if (!__dma_device_satisfies_mask(dev, mask)) { |
| pr_debug("%s: wrong capabilities\n", __func__); |
| return NULL; |
| } |
| /* devices with multiple channels need special handling as we need to |
| * ensure that all channels are either private or public. |
| */ |
| if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) |
| list_for_each_entry(chan, &dev->channels, device_node) { |
| /* some channels are already publicly allocated */ |
| if (chan->client_count) |
| return NULL; |
| } |
| |
| list_for_each_entry(chan, &dev->channels, device_node) { |
| if (chan->client_count) { |
| pr_debug("%s: %s busy\n", |
| __func__, dma_chan_name(chan)); |
| continue; |
| } |
| if (fn && !fn(chan, fn_param)) { |
| pr_debug("%s: %s filter said false\n", |
| __func__, dma_chan_name(chan)); |
| continue; |
| } |
| return chan; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * dma_request_channel - try to allocate an exclusive channel |
| * @mask: capabilities that the channel must satisfy |
| * @fn: optional callback to disposition available channels |
| * @fn_param: opaque parameter to pass to dma_filter_fn |
| */ |
| struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param) |
| { |
| struct dma_device *device, *_d; |
| struct dma_chan *chan = NULL; |
| int err; |
| |
| /* Find a channel */ |
| mutex_lock(&dma_list_mutex); |
| list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { |
| chan = private_candidate(mask, device, fn, fn_param); |
| if (chan) { |
| /* Found a suitable channel, try to grab, prep, and |
| * return it. We first set DMA_PRIVATE to disable |
| * balance_ref_count as this channel will not be |
| * published in the general-purpose allocator |
| */ |
| dma_cap_set(DMA_PRIVATE, device->cap_mask); |
| err = dma_chan_get(chan); |
| |
| if (err == -ENODEV) { |
| pr_debug("%s: %s module removed\n", __func__, |
| dma_chan_name(chan)); |
| list_del_rcu(&device->global_node); |
| } else if (err) |
| pr_err("dmaengine: failed to get %s: (%d)\n", |
| dma_chan_name(chan), err); |
| else |
| break; |
| chan->private = NULL; |
| chan = NULL; |
| } |
| } |
| mutex_unlock(&dma_list_mutex); |
| |
| pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail", |
| chan ? dma_chan_name(chan) : NULL); |
| |
| return chan; |
| } |
| EXPORT_SYMBOL_GPL(__dma_request_channel); |
| |
| void dma_release_channel(struct dma_chan *chan) |
| { |
| mutex_lock(&dma_list_mutex); |
| WARN_ONCE(chan->client_count != 1, |
| "chan reference count %d != 1\n", chan->client_count); |
| dma_chan_put(chan); |
| chan->private = NULL; |
| mutex_unlock(&dma_list_mutex); |
| } |
| EXPORT_SYMBOL_GPL(dma_release_channel); |
| |
| /** |
| * dmaengine_get - register interest in dma_channels |
| */ |
| void dmaengine_get(void) |
| { |
| struct dma_device *device, *_d; |
| struct dma_chan *chan; |
| int err; |
| |
| mutex_lock(&dma_list_mutex); |
| dmaengine_ref_count++; |
| |
| /* try to grab channels */ |
| list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { |
| if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| continue; |
| list_for_each_entry(chan, &device->channels, device_node) { |
| err = dma_chan_get(chan); |
| if (err == -ENODEV) { |
| /* module removed before we could use it */ |
| list_del_rcu(&device->global_node); |
| break; |
| } else if (err) |
| pr_err("dmaengine: failed to get %s: (%d)\n", |
| dma_chan_name(chan), err); |
| } |
| } |
| |
| /* if this is the first reference and there were channels |
| * waiting we need to rebalance to get those channels |
| * incorporated into the channel table |
| */ |
| if (dmaengine_ref_count == 1) |
| dma_channel_rebalance(); |
| mutex_unlock(&dma_list_mutex); |
| } |
| EXPORT_SYMBOL(dmaengine_get); |
| |
| /** |
| * dmaengine_put - let dma drivers be removed when ref_count == 0 |
| */ |
| void dmaengine_put(void) |
| { |
| struct dma_device *device; |
| struct dma_chan *chan; |
| |
| mutex_lock(&dma_list_mutex); |
| dmaengine_ref_count--; |
| BUG_ON(dmaengine_ref_count < 0); |
| /* drop channel references */ |
| list_for_each_entry(device, &dma_device_list, global_node) { |
| if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| continue; |
| list_for_each_entry(chan, &device->channels, device_node) |
| dma_chan_put(chan); |
| } |
| mutex_unlock(&dma_list_mutex); |
| } |
| EXPORT_SYMBOL(dmaengine_put); |
| |
| static int get_dma_id(struct dma_device *device) |
| { |
| int rc; |
| |
| idr_retry: |
| if (!idr_pre_get(&dma_idr, GFP_KERNEL)) |
| return -ENOMEM; |
| mutex_lock(&dma_list_mutex); |
| rc = idr_get_new(&dma_idr, NULL, &device->dev_id); |
| mutex_unlock(&dma_list_mutex); |
| if (rc == -EAGAIN) |
| goto idr_retry; |
| else if (rc != 0) |
| return rc; |
| |
| return 0; |
| } |
| |
| /** |
| * dma_async_device_register - registers DMA devices found |
| * @device: &dma_device |
| */ |
| int dma_async_device_register(struct dma_device *device) |
| { |
| int chancnt = 0, rc; |
| struct dma_chan* chan; |
| atomic_t *idr_ref; |
| |
| if (!device) |
| return -ENODEV; |
| |
| /* validate device routines */ |
| BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) && |
| !device->device_prep_dma_memcpy); |
| BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) && |
| !device->device_prep_dma_xor); |
| BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) && |
| !device->device_prep_dma_zero_sum); |
| BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) && |
| !device->device_prep_dma_memset); |
| BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) && |
| !device->device_prep_dma_interrupt); |
| BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && |
| !device->device_prep_slave_sg); |
| BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && |
| !device->device_terminate_all); |
| |
| BUG_ON(!device->device_alloc_chan_resources); |
| BUG_ON(!device->device_free_chan_resources); |
| BUG_ON(!device->device_is_tx_complete); |
| BUG_ON(!device->device_issue_pending); |
| BUG_ON(!device->dev); |
| |
| idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); |
| if (!idr_ref) |
| return -ENOMEM; |
| rc = get_dma_id(device); |
| if (rc != 0) { |
| kfree(idr_ref); |
| return rc; |
| } |
| |
| atomic_set(idr_ref, 0); |
| |
| /* represent channels in sysfs. Probably want devs too */ |
| list_for_each_entry(chan, &device->channels, device_node) { |
| rc = -ENOMEM; |
| chan->local = alloc_percpu(typeof(*chan->local)); |
| if (chan->local == NULL) |
| goto err_out; |
| chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); |
| if (chan->dev == NULL) { |
| free_percpu(chan->local); |
| chan->local = NULL; |
| goto err_out; |
| } |
| |
| chan->chan_id = chancnt++; |
| chan->dev->device.class = &dma_devclass; |
| chan->dev->device.parent = device->dev; |
| chan->dev->chan = chan; |
| chan->dev->idr_ref = idr_ref; |
| chan->dev->dev_id = device->dev_id; |
| atomic_inc(idr_ref); |
| dev_set_name(&chan->dev->device, "dma%dchan%d", |
| device->dev_id, chan->chan_id); |
| |
| rc = device_register(&chan->dev->device); |
| if (rc) { |
| free_percpu(chan->local); |
| chan->local = NULL; |
| kfree(chan->dev); |
| atomic_dec(idr_ref); |
| goto err_out; |
| } |
| chan->client_count = 0; |
| } |
| device->chancnt = chancnt; |
| |
| mutex_lock(&dma_list_mutex); |
| /* take references on public channels */ |
| if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| list_for_each_entry(chan, &device->channels, device_node) { |
| /* if clients are already waiting for channels we need |
| * to take references on their behalf |
| */ |
| if (dma_chan_get(chan) == -ENODEV) { |
| /* note we can only get here for the first |
| * channel as the remaining channels are |
| * guaranteed to get a reference |
| */ |
| rc = -ENODEV; |
| mutex_unlock(&dma_list_mutex); |
| goto err_out; |
| } |
| } |
| list_add_tail_rcu(&device->global_node, &dma_device_list); |
| dma_channel_rebalance(); |
| mutex_unlock(&dma_list_mutex); |
| |
| return 0; |
| |
| err_out: |
| /* if we never registered a channel just release the idr */ |
| if (atomic_read(idr_ref) == 0) { |
| mutex_lock(&dma_list_mutex); |
| idr_remove(&dma_idr, device->dev_id); |
| mutex_unlock(&dma_list_mutex); |
| kfree(idr_ref); |
| return rc; |
| } |
| |
| list_for_each_entry(chan, &device->channels, device_node) { |
| if (chan->local == NULL) |
| continue; |
| mutex_lock(&dma_list_mutex); |
| chan->dev->chan = NULL; |
| mutex_unlock(&dma_list_mutex); |
| device_unregister(&chan->dev->device); |
| free_percpu(chan->local); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(dma_async_device_register); |
| |
| /** |
| * dma_async_device_unregister - unregister a DMA device |
| * @device: &dma_device |
| * |
| * This routine is called by dma driver exit routines, dmaengine holds module |
| * references to prevent it being called while channels are in use. |
| */ |
| void dma_async_device_unregister(struct dma_device *device) |
| { |
| struct dma_chan *chan; |
| |
| mutex_lock(&dma_list_mutex); |
| list_del_rcu(&device->global_node); |
| dma_channel_rebalance(); |
| mutex_unlock(&dma_list_mutex); |
| |
| list_for_each_entry(chan, &device->channels, device_node) { |
| WARN_ONCE(chan->client_count, |
| "%s called while %d clients hold a reference\n", |
| __func__, chan->client_count); |
| mutex_lock(&dma_list_mutex); |
| chan->dev->chan = NULL; |
| mutex_unlock(&dma_list_mutex); |
| device_unregister(&chan->dev->device); |
| } |
| } |
| EXPORT_SYMBOL(dma_async_device_unregister); |
| |
| /** |
| * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses |
| * @chan: DMA channel to offload copy to |
| * @dest: destination address (virtual) |
| * @src: source address (virtual) |
| * @len: length |
| * |
| * Both @dest and @src must be mappable to a bus address according to the |
| * DMA mapping API rules for streaming mappings. |
| * Both @dest and @src must stay memory resident (kernel memory or locked |
| * user space pages). |
| */ |
| dma_cookie_t |
| dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest, |
| void *src, size_t len) |
| { |
| struct dma_device *dev = chan->device; |
| struct dma_async_tx_descriptor *tx; |
| dma_addr_t dma_dest, dma_src; |
| dma_cookie_t cookie; |
| int cpu; |
| |
| dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE); |
| dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE); |
| tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, |
| DMA_CTRL_ACK); |
| |
| if (!tx) { |
| dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); |
| dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE); |
| return -ENOMEM; |
| } |
| |
| tx->callback = NULL; |
| cookie = tx->tx_submit(tx); |
| |
| cpu = get_cpu(); |
| per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; |
| per_cpu_ptr(chan->local, cpu)->memcpy_count++; |
| put_cpu(); |
| |
| return cookie; |
| } |
| EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf); |
| |
| /** |
| * dma_async_memcpy_buf_to_pg - offloaded copy from address to page |
| * @chan: DMA channel to offload copy to |
| * @page: destination page |
| * @offset: offset in page to copy to |
| * @kdata: source address (virtual) |
| * @len: length |
| * |
| * Both @page/@offset and @kdata must be mappable to a bus address according |
| * to the DMA mapping API rules for streaming mappings. |
| * Both @page/@offset and @kdata must stay memory resident (kernel memory or |
| * locked user space pages) |
| */ |
| dma_cookie_t |
| dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page, |
| unsigned int offset, void *kdata, size_t len) |
| { |
| struct dma_device *dev = chan->device; |
| struct dma_async_tx_descriptor *tx; |
| dma_addr_t dma_dest, dma_src; |
| dma_cookie_t cookie; |
| int cpu; |
| |
| dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE); |
| dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE); |
| tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, |
| DMA_CTRL_ACK); |
| |
| if (!tx) { |
| dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); |
| dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); |
| return -ENOMEM; |
| } |
| |
| tx->callback = NULL; |
| cookie = tx->tx_submit(tx); |
| |
| cpu = get_cpu(); |
| per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; |
| per_cpu_ptr(chan->local, cpu)->memcpy_count++; |
| put_cpu(); |
| |
| return cookie; |
| } |
| EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg); |
| |
| /** |
| * dma_async_memcpy_pg_to_pg - offloaded copy from page to page |
| * @chan: DMA channel to offload copy to |
| * @dest_pg: destination page |
| * @dest_off: offset in page to copy to |
| * @src_pg: source page |
| * @src_off: offset in page to copy from |
| * @len: length |
| * |
| * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus |
| * address according to the DMA mapping API rules for streaming mappings. |
| * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident |
| * (kernel memory or locked user space pages). |
| */ |
| dma_cookie_t |
| dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg, |
| unsigned int dest_off, struct page *src_pg, unsigned int src_off, |
| size_t len) |
| { |
| struct dma_device *dev = chan->device; |
| struct dma_async_tx_descriptor *tx; |
| dma_addr_t dma_dest, dma_src; |
| dma_cookie_t cookie; |
| int cpu; |
| |
| dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE); |
| dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len, |
| DMA_FROM_DEVICE); |
| tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, |
| DMA_CTRL_ACK); |
| |
| if (!tx) { |
| dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE); |
| dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); |
| return -ENOMEM; |
| } |
| |
| tx->callback = NULL; |
| cookie = tx->tx_submit(tx); |
| |
| cpu = get_cpu(); |
| per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; |
| per_cpu_ptr(chan->local, cpu)->memcpy_count++; |
| put_cpu(); |
| |
| return cookie; |
| } |
| EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg); |
| |
| void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, |
| struct dma_chan *chan) |
| { |
| tx->chan = chan; |
| spin_lock_init(&tx->lock); |
| INIT_LIST_HEAD(&tx->tx_list); |
| } |
| EXPORT_SYMBOL(dma_async_tx_descriptor_init); |
| |
| /* dma_wait_for_async_tx - spin wait for a transaction to complete |
| * @tx: in-flight transaction to wait on |
| * |
| * This routine assumes that tx was obtained from a call to async_memcpy, |
| * async_xor, async_memset, etc which ensures that tx is "in-flight" (prepped |
| * and submitted). Walking the parent chain is only meant to cover for DMA |
| * drivers that do not implement the DMA_INTERRUPT capability and may race with |
| * the driver's descriptor cleanup routine. |
| */ |
| enum dma_status |
| dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) |
| { |
| enum dma_status status; |
| struct dma_async_tx_descriptor *iter; |
| struct dma_async_tx_descriptor *parent; |
| |
| if (!tx) |
| return DMA_SUCCESS; |
| |
| WARN_ONCE(tx->parent, "%s: speculatively walking dependency chain for" |
| " %s\n", __func__, dma_chan_name(tx->chan)); |
| |
| /* poll through the dependency chain, return when tx is complete */ |
| do { |
| iter = tx; |
| |
| /* find the root of the unsubmitted dependency chain */ |
| do { |
| parent = iter->parent; |
| if (!parent) |
| break; |
| else |
| iter = parent; |
| } while (parent); |
| |
| /* there is a small window for ->parent == NULL and |
| * ->cookie == -EBUSY |
| */ |
| while (iter->cookie == -EBUSY) |
| cpu_relax(); |
| |
| status = dma_sync_wait(iter->chan, iter->cookie); |
| } while (status == DMA_IN_PROGRESS || (iter != tx)); |
| |
| return status; |
| } |
| EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); |
| |
| /* dma_run_dependencies - helper routine for dma drivers to process |
| * (start) dependent operations on their target channel |
| * @tx: transaction with dependencies |
| */ |
| void dma_run_dependencies(struct dma_async_tx_descriptor *tx) |
| { |
| struct dma_async_tx_descriptor *dep = tx->next; |
| struct dma_async_tx_descriptor *dep_next; |
| struct dma_chan *chan; |
| |
| if (!dep) |
| return; |
| |
| /* we'll submit tx->next now, so clear the link */ |
| tx->next = NULL; |
| chan = dep->chan; |
| |
| /* keep submitting up until a channel switch is detected |
| * in that case we will be called again as a result of |
| * processing the interrupt from async_tx_channel_switch |
| */ |
| for (; dep; dep = dep_next) { |
| spin_lock_bh(&dep->lock); |
| dep->parent = NULL; |
| dep_next = dep->next; |
| if (dep_next && dep_next->chan == chan) |
| dep->next = NULL; /* ->next will be submitted */ |
| else |
| dep_next = NULL; /* submit current dep and terminate */ |
| spin_unlock_bh(&dep->lock); |
| |
| dep->tx_submit(dep); |
| } |
| |
| chan->device->device_issue_pending(chan); |
| } |
| EXPORT_SYMBOL_GPL(dma_run_dependencies); |
| |
| static int __init dma_bus_init(void) |
| { |
| idr_init(&dma_idr); |
| mutex_init(&dma_list_mutex); |
| return class_register(&dma_devclass); |
| } |
| arch_initcall(dma_bus_init); |
| |
| |