blob: 97dd8f2796b75f3f07b523f2466c87df5c1d9dad [file] [log] [blame]
/*
* libata-sff.c - helper library for PCI IDE BMDMA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2006 Red Hat, Inc. All rights reserved.
* Copyright 2003-2006 Jeff Garzik
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available from http://www.t13.org/ and
* http://www.sata-io.org/
*
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/libata.h>
#include "libata.h"
/**
* ata_irq_on - Enable interrupts on a port.
* @ap: Port on which interrupts are enabled.
*
* Enable interrupts on a legacy IDE device using MMIO or PIO,
* wait for idle, clear any pending interrupts.
*
* LOCKING:
* Inherited from caller.
*/
u8 ata_irq_on(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 tmp;
ap->ctl &= ~ATA_NIEN;
ap->last_ctl = ap->ctl;
iowrite8(ap->ctl, ioaddr->ctl_addr);
tmp = ata_wait_idle(ap);
ap->ops->irq_clear(ap);
return tmp;
}
/**
* ata_tf_load - send taskfile registers to host controller
* @ap: Port to which output is sent
* @tf: ATA taskfile register set
*
* Outputs ATA taskfile to standard ATA host controller.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
if (tf->ctl != ap->last_ctl) {
iowrite8(tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
iowrite8(tf->hob_feature, ioaddr->feature_addr);
iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
tf->hob_feature,
tf->hob_nsect,
tf->hob_lbal,
tf->hob_lbam,
tf->hob_lbah);
}
if (is_addr) {
iowrite8(tf->feature, ioaddr->feature_addr);
iowrite8(tf->nsect, ioaddr->nsect_addr);
iowrite8(tf->lbal, ioaddr->lbal_addr);
iowrite8(tf->lbam, ioaddr->lbam_addr);
iowrite8(tf->lbah, ioaddr->lbah_addr);
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
tf->feature,
tf->nsect,
tf->lbal,
tf->lbam,
tf->lbah);
}
if (tf->flags & ATA_TFLAG_DEVICE) {
iowrite8(tf->device, ioaddr->device_addr);
VPRINTK("device 0x%X\n", tf->device);
}
ata_wait_idle(ap);
}
/**
* ata_exec_command - issue ATA command to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues ATA command, with proper synchronization with interrupt
* handler / other threads.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
{
DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
iowrite8(tf->command, ap->ioaddr.command_addr);
ata_pause(ap);
}
/**
* ata_tf_read - input device's ATA taskfile shadow registers
* @ap: Port from which input is read
* @tf: ATA taskfile register set for storing input
*
* Reads ATA taskfile registers for currently-selected device
* into @tf. Assumes the device has a fully SFF compliant task file
* layout and behaviour. If you device does not (eg has a different
* status method) then you will need to provide a replacement tf_read
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
tf->command = ata_check_status(ap);
tf->feature = ioread8(ioaddr->error_addr);
tf->nsect = ioread8(ioaddr->nsect_addr);
tf->lbal = ioread8(ioaddr->lbal_addr);
tf->lbam = ioread8(ioaddr->lbam_addr);
tf->lbah = ioread8(ioaddr->lbah_addr);
tf->device = ioread8(ioaddr->device_addr);
if (tf->flags & ATA_TFLAG_LBA48) {
iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
tf->hob_feature = ioread8(ioaddr->error_addr);
tf->hob_nsect = ioread8(ioaddr->nsect_addr);
tf->hob_lbal = ioread8(ioaddr->lbal_addr);
tf->hob_lbam = ioread8(ioaddr->lbam_addr);
tf->hob_lbah = ioread8(ioaddr->lbah_addr);
iowrite8(tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
}
}
/**
* ata_check_status - Read device status reg & clear interrupt
* @ap: port where the device is
*
* Reads ATA taskfile status register for currently-selected device
* and return its value. This also clears pending interrupts
* from this device
*
* LOCKING:
* Inherited from caller.
*/
u8 ata_check_status(struct ata_port *ap)
{
return ioread8(ap->ioaddr.status_addr);
}
/**
* ata_altstatus - Read device alternate status reg
* @ap: port where the device is
*
* Reads ATA taskfile alternate status register for
* currently-selected device and return its value.
*
* Note: may NOT be used as the check_altstatus() entry in
* ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
u8 ata_altstatus(struct ata_port *ap)
{
if (ap->ops->check_altstatus)
return ap->ops->check_altstatus(ap);
return ioread8(ap->ioaddr.altstatus_addr);
}
/**
* ata_bmdma_setup - Set up PCI IDE BMDMA transaction
* @qc: Info associated with this ATA transaction.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_bmdma_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
u8 dmactl;
/* load PRD table addr. */
mb(); /* make sure PRD table writes are visible to controller */
iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
/* specify data direction, triple-check start bit is clear */
dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
if (!rw)
dmactl |= ATA_DMA_WR;
iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
/* issue r/w command */
ap->ops->exec_command(ap, &qc->tf);
}
/**
* ata_bmdma_start - Start a PCI IDE BMDMA transaction
* @qc: Info associated with this ATA transaction.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_bmdma_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
u8 dmactl;
/* start host DMA transaction */
dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
/* Strictly, one may wish to issue an ioread8() here, to
* flush the mmio write. However, control also passes
* to the hardware at this point, and it will interrupt
* us when we are to resume control. So, in effect,
* we don't care when the mmio write flushes.
* Further, a read of the DMA status register _immediately_
* following the write may not be what certain flaky hardware
* is expected, so I think it is best to not add a readb()
* without first all the MMIO ATA cards/mobos.
* Or maybe I'm just being paranoid.
*
* FIXME: The posting of this write means I/O starts are
* unneccessarily delayed for MMIO
*/
}
/**
* ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
* @ap: Port associated with this ATA transaction.
*
* Clear interrupt and error flags in DMA status register.
*
* May be used as the irq_clear() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_bmdma_irq_clear(struct ata_port *ap)
{
void __iomem *mmio = ap->ioaddr.bmdma_addr;
if (!mmio)
return;
iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
}
/**
* ata_bmdma_status - Read PCI IDE BMDMA status
* @ap: Port associated with this ATA transaction.
*
* Read and return BMDMA status register.
*
* May be used as the bmdma_status() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
u8 ata_bmdma_status(struct ata_port *ap)
{
return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
}
/**
* ata_bmdma_stop - Stop PCI IDE BMDMA transfer
* @qc: Command we are ending DMA for
*
* Clears the ATA_DMA_START flag in the dma control register
*
* May be used as the bmdma_stop() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_bmdma_stop(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
void __iomem *mmio = ap->ioaddr.bmdma_addr;
/* clear start/stop bit */
iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
mmio + ATA_DMA_CMD);
/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
ata_altstatus(ap); /* dummy read */
}
/**
* ata_bmdma_freeze - Freeze BMDMA controller port
* @ap: port to freeze
*
* Freeze BMDMA controller port.
*
* LOCKING:
* Inherited from caller.
*/
void ata_bmdma_freeze(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
ap->ctl |= ATA_NIEN;
ap->last_ctl = ap->ctl;
iowrite8(ap->ctl, ioaddr->ctl_addr);
/* Under certain circumstances, some controllers raise IRQ on
* ATA_NIEN manipulation. Also, many controllers fail to mask
* previously pending IRQ on ATA_NIEN assertion. Clear it.
*/
ata_chk_status(ap);
ap->ops->irq_clear(ap);
}
/**
* ata_bmdma_thaw - Thaw BMDMA controller port
* @ap: port to thaw
*
* Thaw BMDMA controller port.
*
* LOCKING:
* Inherited from caller.
*/
void ata_bmdma_thaw(struct ata_port *ap)
{
/* clear & re-enable interrupts */
ata_chk_status(ap);
ap->ops->irq_clear(ap);
ap->ops->irq_on(ap);
}
/**
* ata_bmdma_drive_eh - Perform EH with given methods for BMDMA controller
* @ap: port to handle error for
* @prereset: prereset method (can be NULL)
* @softreset: softreset method (can be NULL)
* @hardreset: hardreset method (can be NULL)
* @postreset: postreset method (can be NULL)
*
* Handle error for ATA BMDMA controller. It can handle both
* PATA and SATA controllers. Many controllers should be able to
* use this EH as-is or with some added handling before and
* after.
*
* This function is intended to be used for constructing
* ->error_handler callback by low level drivers.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset,
ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
ata_postreset_fn_t postreset)
{
struct ata_queued_cmd *qc;
unsigned long flags;
int thaw = 0;
qc = __ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
qc = NULL;
/* reset PIO HSM and stop DMA engine */
spin_lock_irqsave(ap->lock, flags);
ap->hsm_task_state = HSM_ST_IDLE;
if (qc && (qc->tf.protocol == ATA_PROT_DMA ||
qc->tf.protocol == ATAPI_PROT_DMA)) {
u8 host_stat;
host_stat = ap->ops->bmdma_status(ap);
/* BMDMA controllers indicate host bus error by
* setting DMA_ERR bit and timing out. As it wasn't
* really a timeout event, adjust error mask and
* cancel frozen state.
*/
if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
qc->err_mask = AC_ERR_HOST_BUS;
thaw = 1;
}
ap->ops->bmdma_stop(qc);
}
ata_altstatus(ap);
ata_chk_status(ap);
ap->ops->irq_clear(ap);
spin_unlock_irqrestore(ap->lock, flags);
if (thaw)
ata_eh_thaw_port(ap);
/* PIO and DMA engines have been stopped, perform recovery */
ata_do_eh(ap, prereset, softreset, hardreset, postreset);
}
/**
* ata_bmdma_error_handler - Stock error handler for BMDMA controller
* @ap: port to handle error for
*
* Stock error handler for BMDMA controller.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_bmdma_error_handler(struct ata_port *ap)
{
ata_reset_fn_t hardreset;
hardreset = NULL;
if (sata_scr_valid(&ap->link))
hardreset = sata_std_hardreset;
ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, hardreset,
ata_std_postreset);
}
/**
* ata_bmdma_post_internal_cmd - Stock post_internal_cmd for
* BMDMA controller
* @qc: internal command to clean up
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
{
if (qc->ap->ioaddr.bmdma_addr)
ata_bmdma_stop(qc);
}
/**
* ata_sff_port_start - Set port up for dma.
* @ap: Port to initialize
*
* Called just after data structures for each port are
* initialized. Allocates space for PRD table if the device
* is DMA capable SFF.
*
* May be used as the port_start() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
int ata_sff_port_start(struct ata_port *ap)
{
if (ap->ioaddr.bmdma_addr)
return ata_port_start(ap);
return 0;
}
#ifdef CONFIG_PCI
static int ata_resources_present(struct pci_dev *pdev, int port)
{
int i;
/* Check the PCI resources for this channel are enabled */
port = port * 2;
for (i = 0; i < 2; i ++) {
if (pci_resource_start(pdev, port + i) == 0 ||
pci_resource_len(pdev, port + i) == 0)
return 0;
}
return 1;
}
/**
* ata_pci_init_bmdma - acquire PCI BMDMA resources and init ATA host
* @host: target ATA host
*
* Acquire PCI BMDMA resources and initialize @host accordingly.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_pci_init_bmdma(struct ata_host *host)
{
struct device *gdev = host->dev;
struct pci_dev *pdev = to_pci_dev(gdev);
int i, rc;
/* No BAR4 allocation: No DMA */
if (pci_resource_start(pdev, 4) == 0)
return 0;
/* TODO: If we get no DMA mask we should fall back to PIO */
rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
return rc;
rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
return rc;
/* request and iomap DMA region */
rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
if (rc) {
dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
return -ENOMEM;
}
host->iomap = pcim_iomap_table(pdev);
for (i = 0; i < 2; i++) {
struct ata_port *ap = host->ports[i];
void __iomem *bmdma = host->iomap[4] + 8 * i;
if (ata_port_is_dummy(ap))
continue;
ap->ioaddr.bmdma_addr = bmdma;
if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
(ioread8(bmdma + 2) & 0x80))
host->flags |= ATA_HOST_SIMPLEX;
ata_port_desc(ap, "bmdma 0x%llx",
(unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
}
return 0;
}
/**
* ata_pci_init_sff_host - acquire native PCI ATA resources and init host
* @host: target ATA host
*
* Acquire native PCI ATA resources for @host and initialize the
* first two ports of @host accordingly. Ports marked dummy are
* skipped and allocation failure makes the port dummy.
*
* Note that native PCI resources are valid even for legacy hosts
* as we fix up pdev resources array early in boot, so this
* function can be used for both native and legacy SFF hosts.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*
* RETURNS:
* 0 if at least one port is initialized, -ENODEV if no port is
* available.
*/
int ata_pci_init_sff_host(struct ata_host *host)
{
struct device *gdev = host->dev;
struct pci_dev *pdev = to_pci_dev(gdev);
unsigned int mask = 0;
int i, rc;
/* request, iomap BARs and init port addresses accordingly */
for (i = 0; i < 2; i++) {
struct ata_port *ap = host->ports[i];
int base = i * 2;
void __iomem * const *iomap;
if (ata_port_is_dummy(ap))
continue;
/* Discard disabled ports. Some controllers show
* their unused channels this way. Disabled ports are
* made dummy.
*/
if (!ata_resources_present(pdev, i)) {
ap->ops = &ata_dummy_port_ops;
continue;
}
rc = pcim_iomap_regions(pdev, 0x3 << base,
dev_driver_string(gdev));
if (rc) {
dev_printk(KERN_WARNING, gdev,
"failed to request/iomap BARs for port %d "
"(errno=%d)\n", i, rc);
if (rc == -EBUSY)
pcim_pin_device(pdev);
ap->ops = &ata_dummy_port_ops;
continue;
}
host->iomap = iomap = pcim_iomap_table(pdev);
ap->ioaddr.cmd_addr = iomap[base];
ap->ioaddr.altstatus_addr =
ap->ioaddr.ctl_addr = (void __iomem *)
((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
ata_std_ports(&ap->ioaddr);
ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
(unsigned long long)pci_resource_start(pdev, base),
(unsigned long long)pci_resource_start(pdev, base + 1));
mask |= 1 << i;
}
if (!mask) {
dev_printk(KERN_ERR, gdev, "no available native port\n");
return -ENODEV;
}
return 0;
}
/**
* ata_pci_prepare_sff_host - helper to prepare native PCI ATA host
* @pdev: target PCI device
* @ppi: array of port_info, must be enough for two ports
* @r_host: out argument for the initialized ATA host
*
* Helper to allocate ATA host for @pdev, acquire all native PCI
* resources and initialize it accordingly in one go.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_pci_prepare_sff_host(struct pci_dev *pdev,
const struct ata_port_info * const * ppi,
struct ata_host **r_host)
{
struct ata_host *host;
int rc;
if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
return -ENOMEM;
host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
if (!host) {
dev_printk(KERN_ERR, &pdev->dev,
"failed to allocate ATA host\n");
rc = -ENOMEM;
goto err_out;
}
rc = ata_pci_init_sff_host(host);
if (rc)
goto err_out;
/* init DMA related stuff */
rc = ata_pci_init_bmdma(host);
if (rc)
goto err_bmdma;
devres_remove_group(&pdev->dev, NULL);
*r_host = host;
return 0;
err_bmdma:
/* This is necessary because PCI and iomap resources are
* merged and releasing the top group won't release the
* acquired resources if some of those have been acquired
* before entering this function.
*/
pcim_iounmap_regions(pdev, 0xf);
err_out:
devres_release_group(&pdev->dev, NULL);
return rc;
}
/**
* ata_pci_init_one - Initialize/register PCI IDE host controller
* @pdev: Controller to be initialized
* @ppi: array of port_info, must be enough for two ports
*
* This is a helper function which can be called from a driver's
* xxx_init_one() probe function if the hardware uses traditional
* IDE taskfile registers.
*
* This function calls pci_enable_device(), reserves its register
* regions, sets the dma mask, enables bus master mode, and calls
* ata_device_add()
*
* ASSUMPTION:
* Nobody makes a single channel controller that appears solely as
* the secondary legacy port on PCI.
*
* LOCKING:
* Inherited from PCI layer (may sleep).
*
* RETURNS:
* Zero on success, negative on errno-based value on error.
*/
int ata_pci_init_one(struct pci_dev *pdev,
const struct ata_port_info * const * ppi)
{
struct device *dev = &pdev->dev;
const struct ata_port_info *pi = NULL;
struct ata_host *host = NULL;
const char *drv_name = dev_driver_string(&pdev->dev);
u8 mask;
int legacy_mode = 0;
int i, rc;
DPRINTK("ENTER\n");
/* look up the first valid port_info */
for (i = 0; i < 2 && ppi[i]; i++) {
if (ppi[i]->port_ops != &ata_dummy_port_ops) {
pi = ppi[i];
break;
}
}
if (!pi) {
dev_printk(KERN_ERR, &pdev->dev,
"no valid port_info specified\n");
return -EINVAL;
}
if (!devres_open_group(dev, NULL, GFP_KERNEL))
return -ENOMEM;
/* FIXME: Really for ATA it isn't safe because the device may be
multi-purpose and we want to leave it alone if it was already
enabled. Secondly for shared use as Arjan says we want refcounting
Checking dev->is_enabled is insufficient as this is not set at
boot for the primary video which is BIOS enabled
*/
rc = pcim_enable_device(pdev);
if (rc)
goto err_out;
if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
u8 tmp8;
/* TODO: What if one channel is in native mode ... */
pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
mask = (1 << 2) | (1 << 0);
if ((tmp8 & mask) != mask)
legacy_mode = 1;
#if defined(CONFIG_NO_ATA_LEGACY)
/* Some platforms with PCI limits cannot address compat
port space. In that case we punt if their firmware has
left a device in compatibility mode */
if (legacy_mode) {
printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
rc = -EOPNOTSUPP;
goto err_out;
}
#endif
}
/* prepare host */
rc = ata_pci_prepare_sff_host(pdev, ppi, &host);
if (rc)
goto err_out;
pci_set_master(pdev);
/* start host and request IRQ */
rc = ata_host_start(host);
if (rc)
goto err_out;
if (!legacy_mode && pdev->irq) {
/* We may have no IRQ assigned in which case we can poll. This
shouldn't happen on a sane system but robustness is cheap
in this case */
rc = devm_request_irq(dev, pdev->irq, pi->port_ops->irq_handler,
IRQF_SHARED, drv_name, host);
if (rc)
goto err_out;
ata_port_desc(host->ports[0], "irq %d", pdev->irq);
ata_port_desc(host->ports[1], "irq %d", pdev->irq);
} else if (legacy_mode) {
if (!ata_port_is_dummy(host->ports[0])) {
rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
pi->port_ops->irq_handler,
IRQF_SHARED, drv_name, host);
if (rc)
goto err_out;
ata_port_desc(host->ports[0], "irq %d",
ATA_PRIMARY_IRQ(pdev));
}
if (!ata_port_is_dummy(host->ports[1])) {
rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
pi->port_ops->irq_handler,
IRQF_SHARED, drv_name, host);
if (rc)
goto err_out;
ata_port_desc(host->ports[1], "irq %d",
ATA_SECONDARY_IRQ(pdev));
}
}
/* register */
rc = ata_host_register(host, pi->sht);
if (rc)
goto err_out;
devres_remove_group(dev, NULL);
return 0;
err_out:
devres_release_group(dev, NULL);
return rc;
}
/**
* ata_pci_clear_simplex - attempt to kick device out of simplex
* @pdev: PCI device
*
* Some PCI ATA devices report simplex mode but in fact can be told to
* enter non simplex mode. This implements the necessary logic to
* perform the task on such devices. Calling it on other devices will
* have -undefined- behaviour.
*/
int ata_pci_clear_simplex(struct pci_dev *pdev)
{
unsigned long bmdma = pci_resource_start(pdev, 4);
u8 simplex;
if (bmdma == 0)
return -ENOENT;
simplex = inb(bmdma + 0x02);
outb(simplex & 0x60, bmdma + 0x02);
simplex = inb(bmdma + 0x02);
if (simplex & 0x80)
return -EOPNOTSUPP;
return 0;
}
unsigned long ata_pci_default_filter(struct ata_device *adev, unsigned long xfer_mask)
{
/* Filter out DMA modes if the device has been configured by
the BIOS as PIO only */
if (adev->link->ap->ioaddr.bmdma_addr == NULL)
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
return xfer_mask;
}
#endif /* CONFIG_PCI */