| /* |
| * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * rpc_rdma.c |
| * |
| * This file contains the guts of the RPC RDMA protocol, and |
| * does marshaling/unmarshaling, etc. It is also where interfacing |
| * to the Linux RPC framework lives. |
| */ |
| |
| #include "xprt_rdma.h" |
| |
| #include <linux/highmem.h> |
| |
| #ifdef RPC_DEBUG |
| # define RPCDBG_FACILITY RPCDBG_TRANS |
| #endif |
| |
| enum rpcrdma_chunktype { |
| rpcrdma_noch = 0, |
| rpcrdma_readch, |
| rpcrdma_areadch, |
| rpcrdma_writech, |
| rpcrdma_replych |
| }; |
| |
| #ifdef RPC_DEBUG |
| static const char transfertypes[][12] = { |
| "pure inline", /* no chunks */ |
| " read chunk", /* some argument via rdma read */ |
| "*read chunk", /* entire request via rdma read */ |
| "write chunk", /* some result via rdma write */ |
| "reply chunk" /* entire reply via rdma write */ |
| }; |
| #endif |
| |
| /* |
| * Chunk assembly from upper layer xdr_buf. |
| * |
| * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk |
| * elements. Segments are then coalesced when registered, if possible |
| * within the selected memreg mode. |
| * |
| * Note, this routine is never called if the connection's memory |
| * registration strategy is 0 (bounce buffers). |
| */ |
| |
| static int |
| rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos, |
| enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs) |
| { |
| int len, n = 0, p; |
| int page_base; |
| struct page **ppages; |
| |
| if (pos == 0 && xdrbuf->head[0].iov_len) { |
| seg[n].mr_page = NULL; |
| seg[n].mr_offset = xdrbuf->head[0].iov_base; |
| seg[n].mr_len = xdrbuf->head[0].iov_len; |
| ++n; |
| } |
| |
| len = xdrbuf->page_len; |
| ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); |
| page_base = xdrbuf->page_base & ~PAGE_MASK; |
| p = 0; |
| while (len && n < nsegs) { |
| seg[n].mr_page = ppages[p]; |
| seg[n].mr_offset = (void *)(unsigned long) page_base; |
| seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len); |
| BUG_ON(seg[n].mr_len > PAGE_SIZE); |
| len -= seg[n].mr_len; |
| ++n; |
| ++p; |
| page_base = 0; /* page offset only applies to first page */ |
| } |
| |
| /* Message overflows the seg array */ |
| if (len && n == nsegs) |
| return 0; |
| |
| if (xdrbuf->tail[0].iov_len) { |
| /* the rpcrdma protocol allows us to omit any trailing |
| * xdr pad bytes, saving the server an RDMA operation. */ |
| if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize) |
| return n; |
| if (n == nsegs) |
| /* Tail remains, but we're out of segments */ |
| return 0; |
| seg[n].mr_page = NULL; |
| seg[n].mr_offset = xdrbuf->tail[0].iov_base; |
| seg[n].mr_len = xdrbuf->tail[0].iov_len; |
| ++n; |
| } |
| |
| return n; |
| } |
| |
| /* |
| * Create read/write chunk lists, and reply chunks, for RDMA |
| * |
| * Assume check against THRESHOLD has been done, and chunks are required. |
| * Assume only encoding one list entry for read|write chunks. The NFSv3 |
| * protocol is simple enough to allow this as it only has a single "bulk |
| * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The |
| * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.) |
| * |
| * When used for a single reply chunk (which is a special write |
| * chunk used for the entire reply, rather than just the data), it |
| * is used primarily for READDIR and READLINK which would otherwise |
| * be severely size-limited by a small rdma inline read max. The server |
| * response will come back as an RDMA Write, followed by a message |
| * of type RDMA_NOMSG carrying the xid and length. As a result, reply |
| * chunks do not provide data alignment, however they do not require |
| * "fixup" (moving the response to the upper layer buffer) either. |
| * |
| * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): |
| * |
| * Read chunklist (a linked list): |
| * N elements, position P (same P for all chunks of same arg!): |
| * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 |
| * |
| * Write chunklist (a list of (one) counted array): |
| * N elements: |
| * 1 - N - HLOO - HLOO - ... - HLOO - 0 |
| * |
| * Reply chunk (a counted array): |
| * N elements: |
| * 1 - N - HLOO - HLOO - ... - HLOO |
| */ |
| |
| static unsigned int |
| rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target, |
| struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type) |
| { |
| struct rpcrdma_req *req = rpcr_to_rdmar(rqst); |
| struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt); |
| int nsegs, nchunks = 0; |
| unsigned int pos; |
| struct rpcrdma_mr_seg *seg = req->rl_segments; |
| struct rpcrdma_read_chunk *cur_rchunk = NULL; |
| struct rpcrdma_write_array *warray = NULL; |
| struct rpcrdma_write_chunk *cur_wchunk = NULL; |
| __be32 *iptr = headerp->rm_body.rm_chunks; |
| |
| if (type == rpcrdma_readch || type == rpcrdma_areadch) { |
| /* a read chunk - server will RDMA Read our memory */ |
| cur_rchunk = (struct rpcrdma_read_chunk *) iptr; |
| } else { |
| /* a write or reply chunk - server will RDMA Write our memory */ |
| *iptr++ = xdr_zero; /* encode a NULL read chunk list */ |
| if (type == rpcrdma_replych) |
| *iptr++ = xdr_zero; /* a NULL write chunk list */ |
| warray = (struct rpcrdma_write_array *) iptr; |
| cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1); |
| } |
| |
| if (type == rpcrdma_replych || type == rpcrdma_areadch) |
| pos = 0; |
| else |
| pos = target->head[0].iov_len; |
| |
| nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS); |
| if (nsegs == 0) |
| return 0; |
| |
| do { |
| /* bind/register the memory, then build chunk from result. */ |
| int n = rpcrdma_register_external(seg, nsegs, |
| cur_wchunk != NULL, r_xprt); |
| if (n <= 0) |
| goto out; |
| if (cur_rchunk) { /* read */ |
| cur_rchunk->rc_discrim = xdr_one; |
| /* all read chunks have the same "position" */ |
| cur_rchunk->rc_position = htonl(pos); |
| cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey); |
| cur_rchunk->rc_target.rs_length = htonl(seg->mr_len); |
| xdr_encode_hyper( |
| (__be32 *)&cur_rchunk->rc_target.rs_offset, |
| seg->mr_base); |
| dprintk("RPC: %s: read chunk " |
| "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__, |
| seg->mr_len, (unsigned long long)seg->mr_base, |
| seg->mr_rkey, pos, n < nsegs ? "more" : "last"); |
| cur_rchunk++; |
| r_xprt->rx_stats.read_chunk_count++; |
| } else { /* write/reply */ |
| cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey); |
| cur_wchunk->wc_target.rs_length = htonl(seg->mr_len); |
| xdr_encode_hyper( |
| (__be32 *)&cur_wchunk->wc_target.rs_offset, |
| seg->mr_base); |
| dprintk("RPC: %s: %s chunk " |
| "elem %d@0x%llx:0x%x (%s)\n", __func__, |
| (type == rpcrdma_replych) ? "reply" : "write", |
| seg->mr_len, (unsigned long long)seg->mr_base, |
| seg->mr_rkey, n < nsegs ? "more" : "last"); |
| cur_wchunk++; |
| if (type == rpcrdma_replych) |
| r_xprt->rx_stats.reply_chunk_count++; |
| else |
| r_xprt->rx_stats.write_chunk_count++; |
| r_xprt->rx_stats.total_rdma_request += seg->mr_len; |
| } |
| nchunks++; |
| seg += n; |
| nsegs -= n; |
| } while (nsegs); |
| |
| /* success. all failures return above */ |
| req->rl_nchunks = nchunks; |
| |
| BUG_ON(nchunks == 0); |
| BUG_ON((r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_FRMR) |
| && (nchunks > 3)); |
| |
| /* |
| * finish off header. If write, marshal discrim and nchunks. |
| */ |
| if (cur_rchunk) { |
| iptr = (__be32 *) cur_rchunk; |
| *iptr++ = xdr_zero; /* finish the read chunk list */ |
| *iptr++ = xdr_zero; /* encode a NULL write chunk list */ |
| *iptr++ = xdr_zero; /* encode a NULL reply chunk */ |
| } else { |
| warray->wc_discrim = xdr_one; |
| warray->wc_nchunks = htonl(nchunks); |
| iptr = (__be32 *) cur_wchunk; |
| if (type == rpcrdma_writech) { |
| *iptr++ = xdr_zero; /* finish the write chunk list */ |
| *iptr++ = xdr_zero; /* encode a NULL reply chunk */ |
| } |
| } |
| |
| /* |
| * Return header size. |
| */ |
| return (unsigned char *)iptr - (unsigned char *)headerp; |
| |
| out: |
| for (pos = 0; nchunks--;) |
| pos += rpcrdma_deregister_external( |
| &req->rl_segments[pos], r_xprt, NULL); |
| return 0; |
| } |
| |
| /* |
| * Copy write data inline. |
| * This function is used for "small" requests. Data which is passed |
| * to RPC via iovecs (or page list) is copied directly into the |
| * pre-registered memory buffer for this request. For small amounts |
| * of data, this is efficient. The cutoff value is tunable. |
| */ |
| static int |
| rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad) |
| { |
| int i, npages, curlen; |
| int copy_len; |
| unsigned char *srcp, *destp; |
| struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt); |
| int page_base; |
| struct page **ppages; |
| |
| destp = rqst->rq_svec[0].iov_base; |
| curlen = rqst->rq_svec[0].iov_len; |
| destp += curlen; |
| /* |
| * Do optional padding where it makes sense. Alignment of write |
| * payload can help the server, if our setting is accurate. |
| */ |
| pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/); |
| if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH) |
| pad = 0; /* don't pad this request */ |
| |
| dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n", |
| __func__, pad, destp, rqst->rq_slen, curlen); |
| |
| copy_len = rqst->rq_snd_buf.page_len; |
| |
| if (rqst->rq_snd_buf.tail[0].iov_len) { |
| curlen = rqst->rq_snd_buf.tail[0].iov_len; |
| if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) { |
| memmove(destp + copy_len, |
| rqst->rq_snd_buf.tail[0].iov_base, curlen); |
| r_xprt->rx_stats.pullup_copy_count += curlen; |
| } |
| dprintk("RPC: %s: tail destp 0x%p len %d\n", |
| __func__, destp + copy_len, curlen); |
| rqst->rq_svec[0].iov_len += curlen; |
| } |
| r_xprt->rx_stats.pullup_copy_count += copy_len; |
| |
| page_base = rqst->rq_snd_buf.page_base; |
| ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT); |
| page_base &= ~PAGE_MASK; |
| npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT; |
| for (i = 0; copy_len && i < npages; i++) { |
| curlen = PAGE_SIZE - page_base; |
| if (curlen > copy_len) |
| curlen = copy_len; |
| dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n", |
| __func__, i, destp, copy_len, curlen); |
| srcp = kmap_atomic(ppages[i]); |
| memcpy(destp, srcp+page_base, curlen); |
| kunmap_atomic(srcp); |
| rqst->rq_svec[0].iov_len += curlen; |
| destp += curlen; |
| copy_len -= curlen; |
| page_base = 0; |
| } |
| /* header now contains entire send message */ |
| return pad; |
| } |
| |
| /* |
| * Marshal a request: the primary job of this routine is to choose |
| * the transfer modes. See comments below. |
| * |
| * Uses multiple RDMA IOVs for a request: |
| * [0] -- RPC RDMA header, which uses memory from the *start* of the |
| * preregistered buffer that already holds the RPC data in |
| * its middle. |
| * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol. |
| * [2] -- optional padding. |
| * [3] -- if padded, header only in [1] and data here. |
| */ |
| |
| int |
| rpcrdma_marshal_req(struct rpc_rqst *rqst) |
| { |
| struct rpc_xprt *xprt = rqst->rq_task->tk_xprt; |
| struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| struct rpcrdma_req *req = rpcr_to_rdmar(rqst); |
| char *base; |
| size_t hdrlen, rpclen, padlen; |
| enum rpcrdma_chunktype rtype, wtype; |
| struct rpcrdma_msg *headerp; |
| |
| /* |
| * rpclen gets amount of data in first buffer, which is the |
| * pre-registered buffer. |
| */ |
| base = rqst->rq_svec[0].iov_base; |
| rpclen = rqst->rq_svec[0].iov_len; |
| |
| /* build RDMA header in private area at front */ |
| headerp = (struct rpcrdma_msg *) req->rl_base; |
| /* don't htonl XID, it's already done in request */ |
| headerp->rm_xid = rqst->rq_xid; |
| headerp->rm_vers = xdr_one; |
| headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests); |
| headerp->rm_type = htonl(RDMA_MSG); |
| |
| /* |
| * Chunks needed for results? |
| * |
| * o If the expected result is under the inline threshold, all ops |
| * return as inline (but see later). |
| * o Large non-read ops return as a single reply chunk. |
| * o Large read ops return data as write chunk(s), header as inline. |
| * |
| * Note: the NFS code sending down multiple result segments implies |
| * the op is one of read, readdir[plus], readlink or NFSv4 getacl. |
| */ |
| |
| /* |
| * This code can handle read chunks, write chunks OR reply |
| * chunks -- only one type. If the request is too big to fit |
| * inline, then we will choose read chunks. If the request is |
| * a READ, then use write chunks to separate the file data |
| * into pages; otherwise use reply chunks. |
| */ |
| if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst)) |
| wtype = rpcrdma_noch; |
| else if (rqst->rq_rcv_buf.page_len == 0) |
| wtype = rpcrdma_replych; |
| else if (rqst->rq_rcv_buf.flags & XDRBUF_READ) |
| wtype = rpcrdma_writech; |
| else |
| wtype = rpcrdma_replych; |
| |
| /* |
| * Chunks needed for arguments? |
| * |
| * o If the total request is under the inline threshold, all ops |
| * are sent as inline. |
| * o Large non-write ops are sent with the entire message as a |
| * single read chunk (protocol 0-position special case). |
| * o Large write ops transmit data as read chunk(s), header as |
| * inline. |
| * |
| * Note: the NFS code sending down multiple argument segments |
| * implies the op is a write. |
| * TBD check NFSv4 setacl |
| */ |
| if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst)) |
| rtype = rpcrdma_noch; |
| else if (rqst->rq_snd_buf.page_len == 0) |
| rtype = rpcrdma_areadch; |
| else |
| rtype = rpcrdma_readch; |
| |
| /* The following simplification is not true forever */ |
| if (rtype != rpcrdma_noch && wtype == rpcrdma_replych) |
| wtype = rpcrdma_noch; |
| BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch); |
| |
| if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS && |
| (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) { |
| /* forced to "pure inline"? */ |
| dprintk("RPC: %s: too much data (%d/%d) for inline\n", |
| __func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len); |
| return -1; |
| } |
| |
| hdrlen = 28; /*sizeof *headerp;*/ |
| padlen = 0; |
| |
| /* |
| * Pull up any extra send data into the preregistered buffer. |
| * When padding is in use and applies to the transfer, insert |
| * it and change the message type. |
| */ |
| if (rtype == rpcrdma_noch) { |
| |
| padlen = rpcrdma_inline_pullup(rqst, |
| RPCRDMA_INLINE_PAD_VALUE(rqst)); |
| |
| if (padlen) { |
| headerp->rm_type = htonl(RDMA_MSGP); |
| headerp->rm_body.rm_padded.rm_align = |
| htonl(RPCRDMA_INLINE_PAD_VALUE(rqst)); |
| headerp->rm_body.rm_padded.rm_thresh = |
| htonl(RPCRDMA_INLINE_PAD_THRESH); |
| headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero; |
| headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero; |
| headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero; |
| hdrlen += 2 * sizeof(u32); /* extra words in padhdr */ |
| BUG_ON(wtype != rpcrdma_noch); |
| |
| } else { |
| headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero; |
| headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero; |
| headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero; |
| /* new length after pullup */ |
| rpclen = rqst->rq_svec[0].iov_len; |
| /* |
| * Currently we try to not actually use read inline. |
| * Reply chunks have the desirable property that |
| * they land, packed, directly in the target buffers |
| * without headers, so they require no fixup. The |
| * additional RDMA Write op sends the same amount |
| * of data, streams on-the-wire and adds no overhead |
| * on receive. Therefore, we request a reply chunk |
| * for non-writes wherever feasible and efficient. |
| */ |
| if (wtype == rpcrdma_noch && |
| r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER) |
| wtype = rpcrdma_replych; |
| } |
| } |
| |
| /* |
| * Marshal chunks. This routine will return the header length |
| * consumed by marshaling. |
| */ |
| if (rtype != rpcrdma_noch) { |
| hdrlen = rpcrdma_create_chunks(rqst, |
| &rqst->rq_snd_buf, headerp, rtype); |
| wtype = rtype; /* simplify dprintk */ |
| |
| } else if (wtype != rpcrdma_noch) { |
| hdrlen = rpcrdma_create_chunks(rqst, |
| &rqst->rq_rcv_buf, headerp, wtype); |
| } |
| |
| if (hdrlen == 0) |
| return -1; |
| |
| dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd" |
| " headerp 0x%p base 0x%p lkey 0x%x\n", |
| __func__, transfertypes[wtype], hdrlen, rpclen, padlen, |
| headerp, base, req->rl_iov.lkey); |
| |
| /* |
| * initialize send_iov's - normally only two: rdma chunk header and |
| * single preregistered RPC header buffer, but if padding is present, |
| * then use a preregistered (and zeroed) pad buffer between the RPC |
| * header and any write data. In all non-rdma cases, any following |
| * data has been copied into the RPC header buffer. |
| */ |
| req->rl_send_iov[0].addr = req->rl_iov.addr; |
| req->rl_send_iov[0].length = hdrlen; |
| req->rl_send_iov[0].lkey = req->rl_iov.lkey; |
| |
| req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base); |
| req->rl_send_iov[1].length = rpclen; |
| req->rl_send_iov[1].lkey = req->rl_iov.lkey; |
| |
| req->rl_niovs = 2; |
| |
| if (padlen) { |
| struct rpcrdma_ep *ep = &r_xprt->rx_ep; |
| |
| req->rl_send_iov[2].addr = ep->rep_pad.addr; |
| req->rl_send_iov[2].length = padlen; |
| req->rl_send_iov[2].lkey = ep->rep_pad.lkey; |
| |
| req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen; |
| req->rl_send_iov[3].length = rqst->rq_slen - rpclen; |
| req->rl_send_iov[3].lkey = req->rl_iov.lkey; |
| |
| req->rl_niovs = 4; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Chase down a received write or reply chunklist to get length |
| * RDMA'd by server. See map at rpcrdma_create_chunks()! :-) |
| */ |
| static int |
| rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp) |
| { |
| unsigned int i, total_len; |
| struct rpcrdma_write_chunk *cur_wchunk; |
| |
| i = ntohl(**iptrp); /* get array count */ |
| if (i > max) |
| return -1; |
| cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1); |
| total_len = 0; |
| while (i--) { |
| struct rpcrdma_segment *seg = &cur_wchunk->wc_target; |
| ifdebug(FACILITY) { |
| u64 off; |
| xdr_decode_hyper((__be32 *)&seg->rs_offset, &off); |
| dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n", |
| __func__, |
| ntohl(seg->rs_length), |
| (unsigned long long)off, |
| ntohl(seg->rs_handle)); |
| } |
| total_len += ntohl(seg->rs_length); |
| ++cur_wchunk; |
| } |
| /* check and adjust for properly terminated write chunk */ |
| if (wrchunk) { |
| __be32 *w = (__be32 *) cur_wchunk; |
| if (*w++ != xdr_zero) |
| return -1; |
| cur_wchunk = (struct rpcrdma_write_chunk *) w; |
| } |
| if ((char *) cur_wchunk > rep->rr_base + rep->rr_len) |
| return -1; |
| |
| *iptrp = (__be32 *) cur_wchunk; |
| return total_len; |
| } |
| |
| /* |
| * Scatter inline received data back into provided iov's. |
| */ |
| static void |
| rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) |
| { |
| int i, npages, curlen, olen; |
| char *destp; |
| struct page **ppages; |
| int page_base; |
| |
| curlen = rqst->rq_rcv_buf.head[0].iov_len; |
| if (curlen > copy_len) { /* write chunk header fixup */ |
| curlen = copy_len; |
| rqst->rq_rcv_buf.head[0].iov_len = curlen; |
| } |
| |
| dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n", |
| __func__, srcp, copy_len, curlen); |
| |
| /* Shift pointer for first receive segment only */ |
| rqst->rq_rcv_buf.head[0].iov_base = srcp; |
| srcp += curlen; |
| copy_len -= curlen; |
| |
| olen = copy_len; |
| i = 0; |
| rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen; |
| page_base = rqst->rq_rcv_buf.page_base; |
| ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT); |
| page_base &= ~PAGE_MASK; |
| |
| if (copy_len && rqst->rq_rcv_buf.page_len) { |
| npages = PAGE_ALIGN(page_base + |
| rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT; |
| for (; i < npages; i++) { |
| curlen = PAGE_SIZE - page_base; |
| if (curlen > copy_len) |
| curlen = copy_len; |
| dprintk("RPC: %s: page %d" |
| " srcp 0x%p len %d curlen %d\n", |
| __func__, i, srcp, copy_len, curlen); |
| destp = kmap_atomic(ppages[i]); |
| memcpy(destp + page_base, srcp, curlen); |
| flush_dcache_page(ppages[i]); |
| kunmap_atomic(destp); |
| srcp += curlen; |
| copy_len -= curlen; |
| if (copy_len == 0) |
| break; |
| page_base = 0; |
| } |
| rqst->rq_rcv_buf.page_len = olen - copy_len; |
| } else |
| rqst->rq_rcv_buf.page_len = 0; |
| |
| if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) { |
| curlen = copy_len; |
| if (curlen > rqst->rq_rcv_buf.tail[0].iov_len) |
| curlen = rqst->rq_rcv_buf.tail[0].iov_len; |
| if (rqst->rq_rcv_buf.tail[0].iov_base != srcp) |
| memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen); |
| dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n", |
| __func__, srcp, copy_len, curlen); |
| rqst->rq_rcv_buf.tail[0].iov_len = curlen; |
| copy_len -= curlen; ++i; |
| } else |
| rqst->rq_rcv_buf.tail[0].iov_len = 0; |
| |
| if (pad) { |
| /* implicit padding on terminal chunk */ |
| unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base; |
| while (pad--) |
| p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0; |
| } |
| |
| if (copy_len) |
| dprintk("RPC: %s: %d bytes in" |
| " %d extra segments (%d lost)\n", |
| __func__, olen, i, copy_len); |
| |
| /* TBD avoid a warning from call_decode() */ |
| rqst->rq_private_buf = rqst->rq_rcv_buf; |
| } |
| |
| /* |
| * This function is called when an async event is posted to |
| * the connection which changes the connection state. All it |
| * does at this point is mark the connection up/down, the rpc |
| * timers do the rest. |
| */ |
| void |
| rpcrdma_conn_func(struct rpcrdma_ep *ep) |
| { |
| struct rpc_xprt *xprt = ep->rep_xprt; |
| |
| spin_lock_bh(&xprt->transport_lock); |
| if (++xprt->connect_cookie == 0) /* maintain a reserved value */ |
| ++xprt->connect_cookie; |
| if (ep->rep_connected > 0) { |
| if (!xprt_test_and_set_connected(xprt)) |
| xprt_wake_pending_tasks(xprt, 0); |
| } else { |
| if (xprt_test_and_clear_connected(xprt)) |
| xprt_wake_pending_tasks(xprt, -ENOTCONN); |
| } |
| spin_unlock_bh(&xprt->transport_lock); |
| } |
| |
| /* |
| * This function is called when memory window unbind which we are waiting |
| * for completes. Just use rr_func (zeroed by upcall) to signal completion. |
| */ |
| static void |
| rpcrdma_unbind_func(struct rpcrdma_rep *rep) |
| { |
| wake_up(&rep->rr_unbind); |
| } |
| |
| /* |
| * Called as a tasklet to do req/reply match and complete a request |
| * Errors must result in the RPC task either being awakened, or |
| * allowed to timeout, to discover the errors at that time. |
| */ |
| void |
| rpcrdma_reply_handler(struct rpcrdma_rep *rep) |
| { |
| struct rpcrdma_msg *headerp; |
| struct rpcrdma_req *req; |
| struct rpc_rqst *rqst; |
| struct rpc_xprt *xprt = rep->rr_xprt; |
| struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| __be32 *iptr; |
| int i, rdmalen, status; |
| |
| /* Check status. If bad, signal disconnect and return rep to pool */ |
| if (rep->rr_len == ~0U) { |
| rpcrdma_recv_buffer_put(rep); |
| if (r_xprt->rx_ep.rep_connected == 1) { |
| r_xprt->rx_ep.rep_connected = -EIO; |
| rpcrdma_conn_func(&r_xprt->rx_ep); |
| } |
| return; |
| } |
| if (rep->rr_len < 28) { |
| dprintk("RPC: %s: short/invalid reply\n", __func__); |
| goto repost; |
| } |
| headerp = (struct rpcrdma_msg *) rep->rr_base; |
| if (headerp->rm_vers != xdr_one) { |
| dprintk("RPC: %s: invalid version %d\n", |
| __func__, ntohl(headerp->rm_vers)); |
| goto repost; |
| } |
| |
| /* Get XID and try for a match. */ |
| spin_lock(&xprt->transport_lock); |
| rqst = xprt_lookup_rqst(xprt, headerp->rm_xid); |
| if (rqst == NULL) { |
| spin_unlock(&xprt->transport_lock); |
| dprintk("RPC: %s: reply 0x%p failed " |
| "to match any request xid 0x%08x len %d\n", |
| __func__, rep, headerp->rm_xid, rep->rr_len); |
| repost: |
| r_xprt->rx_stats.bad_reply_count++; |
| rep->rr_func = rpcrdma_reply_handler; |
| if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep)) |
| rpcrdma_recv_buffer_put(rep); |
| |
| return; |
| } |
| |
| /* get request object */ |
| req = rpcr_to_rdmar(rqst); |
| |
| dprintk("RPC: %s: reply 0x%p completes request 0x%p\n" |
| " RPC request 0x%p xid 0x%08x\n", |
| __func__, rep, req, rqst, headerp->rm_xid); |
| |
| BUG_ON(!req || req->rl_reply); |
| |
| /* from here on, the reply is no longer an orphan */ |
| req->rl_reply = rep; |
| |
| /* check for expected message types */ |
| /* The order of some of these tests is important. */ |
| switch (headerp->rm_type) { |
| case htonl(RDMA_MSG): |
| /* never expect read chunks */ |
| /* never expect reply chunks (two ways to check) */ |
| /* never expect write chunks without having offered RDMA */ |
| if (headerp->rm_body.rm_chunks[0] != xdr_zero || |
| (headerp->rm_body.rm_chunks[1] == xdr_zero && |
| headerp->rm_body.rm_chunks[2] != xdr_zero) || |
| (headerp->rm_body.rm_chunks[1] != xdr_zero && |
| req->rl_nchunks == 0)) |
| goto badheader; |
| if (headerp->rm_body.rm_chunks[1] != xdr_zero) { |
| /* count any expected write chunks in read reply */ |
| /* start at write chunk array count */ |
| iptr = &headerp->rm_body.rm_chunks[2]; |
| rdmalen = rpcrdma_count_chunks(rep, |
| req->rl_nchunks, 1, &iptr); |
| /* check for validity, and no reply chunk after */ |
| if (rdmalen < 0 || *iptr++ != xdr_zero) |
| goto badheader; |
| rep->rr_len -= |
| ((unsigned char *)iptr - (unsigned char *)headerp); |
| status = rep->rr_len + rdmalen; |
| r_xprt->rx_stats.total_rdma_reply += rdmalen; |
| /* special case - last chunk may omit padding */ |
| if (rdmalen &= 3) { |
| rdmalen = 4 - rdmalen; |
| status += rdmalen; |
| } |
| } else { |
| /* else ordinary inline */ |
| rdmalen = 0; |
| iptr = (__be32 *)((unsigned char *)headerp + 28); |
| rep->rr_len -= 28; /*sizeof *headerp;*/ |
| status = rep->rr_len; |
| } |
| /* Fix up the rpc results for upper layer */ |
| rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen); |
| break; |
| |
| case htonl(RDMA_NOMSG): |
| /* never expect read or write chunks, always reply chunks */ |
| if (headerp->rm_body.rm_chunks[0] != xdr_zero || |
| headerp->rm_body.rm_chunks[1] != xdr_zero || |
| headerp->rm_body.rm_chunks[2] != xdr_one || |
| req->rl_nchunks == 0) |
| goto badheader; |
| iptr = (__be32 *)((unsigned char *)headerp + 28); |
| rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr); |
| if (rdmalen < 0) |
| goto badheader; |
| r_xprt->rx_stats.total_rdma_reply += rdmalen; |
| /* Reply chunk buffer already is the reply vector - no fixup. */ |
| status = rdmalen; |
| break; |
| |
| badheader: |
| default: |
| dprintk("%s: invalid rpcrdma reply header (type %d):" |
| " chunks[012] == %d %d %d" |
| " expected chunks <= %d\n", |
| __func__, ntohl(headerp->rm_type), |
| headerp->rm_body.rm_chunks[0], |
| headerp->rm_body.rm_chunks[1], |
| headerp->rm_body.rm_chunks[2], |
| req->rl_nchunks); |
| status = -EIO; |
| r_xprt->rx_stats.bad_reply_count++; |
| break; |
| } |
| |
| /* If using mw bind, start the deregister process now. */ |
| /* (Note: if mr_free(), cannot perform it here, in tasklet context) */ |
| if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) { |
| case RPCRDMA_MEMWINDOWS: |
| for (i = 0; req->rl_nchunks-- > 1;) |
| i += rpcrdma_deregister_external( |
| &req->rl_segments[i], r_xprt, NULL); |
| /* Optionally wait (not here) for unbinds to complete */ |
| rep->rr_func = rpcrdma_unbind_func; |
| (void) rpcrdma_deregister_external(&req->rl_segments[i], |
| r_xprt, rep); |
| break; |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| for (i = 0; req->rl_nchunks--;) |
| i += rpcrdma_deregister_external(&req->rl_segments[i], |
| r_xprt, NULL); |
| break; |
| default: |
| break; |
| } |
| |
| dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n", |
| __func__, xprt, rqst, status); |
| xprt_complete_rqst(rqst->rq_task, status); |
| spin_unlock(&xprt->transport_lock); |
| } |