| /* |
| * ioport.c: Simple io mapping allocator. |
| * |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) |
| * |
| * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. |
| * |
| * 2000/01/29 |
| * <rth> zait: as long as pci_alloc_consistent produces something addressable, |
| * things are ok. |
| * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a |
| * pointer into the big page mapping |
| * <rth> zait: so what? |
| * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) |
| * <zaitcev> Hmm |
| * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). |
| * So far so good. |
| * <zaitcev> Now, driver calls pci_free_consistent(with result of |
| * remap_it_my_way()). |
| * <zaitcev> How do you find the address to pass to free_pages()? |
| * <rth> zait: walk the page tables? It's only two or three level after all. |
| * <rth> zait: you have to walk them anyway to remove the mapping. |
| * <zaitcev> Hmm |
| * <zaitcev> Sounds reasonable |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/types.h> |
| #include <linux/ioport.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/pci.h> /* struct pci_dev */ |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/scatterlist.h> |
| #include <linux/of_device.h> |
| |
| #include <asm/io.h> |
| #include <asm/vaddrs.h> |
| #include <asm/oplib.h> |
| #include <asm/prom.h> |
| #include <asm/page.h> |
| #include <asm/pgalloc.h> |
| #include <asm/dma.h> |
| #include <asm/iommu.h> |
| #include <asm/io-unit.h> |
| #include <asm/leon.h> |
| |
| /* This function must make sure that caches and memory are coherent after DMA |
| * On LEON systems without cache snooping it flushes the entire D-CACHE. |
| */ |
| #ifndef CONFIG_SPARC_LEON |
| static inline void dma_make_coherent(unsigned long pa, unsigned long len) |
| { |
| } |
| #else |
| static inline void dma_make_coherent(unsigned long pa, unsigned long len) |
| { |
| if (!sparc_leon3_snooping_enabled()) |
| leon_flush_dcache_all(); |
| } |
| #endif |
| |
| static struct resource *_sparc_find_resource(struct resource *r, |
| unsigned long); |
| |
| static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); |
| static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, |
| unsigned long size, char *name); |
| static void _sparc_free_io(struct resource *res); |
| |
| static void register_proc_sparc_ioport(void); |
| |
| /* This points to the next to use virtual memory for DVMA mappings */ |
| static struct resource _sparc_dvma = { |
| .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 |
| }; |
| /* This points to the start of I/O mappings, cluable from outside. */ |
| /*ext*/ struct resource sparc_iomap = { |
| .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 |
| }; |
| |
| /* |
| * Our mini-allocator... |
| * Boy this is gross! We need it because we must map I/O for |
| * timers and interrupt controller before the kmalloc is available. |
| */ |
| |
| #define XNMLN 15 |
| #define XNRES 10 /* SS-10 uses 8 */ |
| |
| struct xresource { |
| struct resource xres; /* Must be first */ |
| int xflag; /* 1 == used */ |
| char xname[XNMLN+1]; |
| }; |
| |
| static struct xresource xresv[XNRES]; |
| |
| static struct xresource *xres_alloc(void) { |
| struct xresource *xrp; |
| int n; |
| |
| xrp = xresv; |
| for (n = 0; n < XNRES; n++) { |
| if (xrp->xflag == 0) { |
| xrp->xflag = 1; |
| return xrp; |
| } |
| xrp++; |
| } |
| return NULL; |
| } |
| |
| static void xres_free(struct xresource *xrp) { |
| xrp->xflag = 0; |
| } |
| |
| /* |
| * These are typically used in PCI drivers |
| * which are trying to be cross-platform. |
| * |
| * Bus type is always zero on IIep. |
| */ |
| void __iomem *ioremap(unsigned long offset, unsigned long size) |
| { |
| char name[14]; |
| |
| sprintf(name, "phys_%08x", (u32)offset); |
| return _sparc_alloc_io(0, offset, size, name); |
| } |
| EXPORT_SYMBOL(ioremap); |
| |
| /* |
| * Comlimentary to ioremap(). |
| */ |
| void iounmap(volatile void __iomem *virtual) |
| { |
| unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; |
| struct resource *res; |
| |
| if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) { |
| printk("free_io/iounmap: cannot free %lx\n", vaddr); |
| return; |
| } |
| _sparc_free_io(res); |
| |
| if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { |
| xres_free((struct xresource *)res); |
| } else { |
| kfree(res); |
| } |
| } |
| EXPORT_SYMBOL(iounmap); |
| |
| void __iomem *of_ioremap(struct resource *res, unsigned long offset, |
| unsigned long size, char *name) |
| { |
| return _sparc_alloc_io(res->flags & 0xF, |
| res->start + offset, |
| size, name); |
| } |
| EXPORT_SYMBOL(of_ioremap); |
| |
| void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) |
| { |
| iounmap(base); |
| } |
| EXPORT_SYMBOL(of_iounmap); |
| |
| /* |
| * Meat of mapping |
| */ |
| static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, |
| unsigned long size, char *name) |
| { |
| static int printed_full; |
| struct xresource *xres; |
| struct resource *res; |
| char *tack; |
| int tlen; |
| void __iomem *va; /* P3 diag */ |
| |
| if (name == NULL) name = "???"; |
| |
| if ((xres = xres_alloc()) != 0) { |
| tack = xres->xname; |
| res = &xres->xres; |
| } else { |
| if (!printed_full) { |
| printk("ioremap: done with statics, switching to malloc\n"); |
| printed_full = 1; |
| } |
| tlen = strlen(name); |
| tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); |
| if (tack == NULL) return NULL; |
| memset(tack, 0, sizeof(struct resource)); |
| res = (struct resource *) tack; |
| tack += sizeof (struct resource); |
| } |
| |
| strlcpy(tack, name, XNMLN+1); |
| res->name = tack; |
| |
| va = _sparc_ioremap(res, busno, phys, size); |
| /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ |
| return va; |
| } |
| |
| /* |
| */ |
| static void __iomem * |
| _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) |
| { |
| unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); |
| |
| if (allocate_resource(&sparc_iomap, res, |
| (offset + sz + PAGE_SIZE-1) & PAGE_MASK, |
| sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { |
| /* Usually we cannot see printks in this case. */ |
| prom_printf("alloc_io_res(%s): cannot occupy\n", |
| (res->name != NULL)? res->name: "???"); |
| prom_halt(); |
| } |
| |
| pa &= PAGE_MASK; |
| sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1); |
| |
| return (void __iomem *)(unsigned long)(res->start + offset); |
| } |
| |
| /* |
| * Comlimentary to _sparc_ioremap(). |
| */ |
| static void _sparc_free_io(struct resource *res) |
| { |
| unsigned long plen; |
| |
| plen = res->end - res->start + 1; |
| BUG_ON((plen & (PAGE_SIZE-1)) != 0); |
| sparc_unmapiorange(res->start, plen); |
| release_resource(res); |
| } |
| |
| #ifdef CONFIG_SBUS |
| |
| void sbus_set_sbus64(struct device *dev, int x) |
| { |
| printk("sbus_set_sbus64: unsupported\n"); |
| } |
| EXPORT_SYMBOL(sbus_set_sbus64); |
| |
| /* |
| * Allocate a chunk of memory suitable for DMA. |
| * Typically devices use them for control blocks. |
| * CPU may access them without any explicit flushing. |
| */ |
| static void *sbus_alloc_coherent(struct device *dev, size_t len, |
| dma_addr_t *dma_addrp, gfp_t gfp) |
| { |
| struct platform_device *op = to_platform_device(dev); |
| unsigned long len_total = PAGE_ALIGN(len); |
| unsigned long va; |
| struct resource *res; |
| int order; |
| |
| /* XXX why are some lengths signed, others unsigned? */ |
| if (len <= 0) { |
| return NULL; |
| } |
| /* XXX So what is maxphys for us and how do drivers know it? */ |
| if (len > 256*1024) { /* __get_free_pages() limit */ |
| return NULL; |
| } |
| |
| order = get_order(len_total); |
| if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0) |
| goto err_nopages; |
| |
| if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) |
| goto err_nomem; |
| |
| if (allocate_resource(&_sparc_dvma, res, len_total, |
| _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { |
| printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); |
| goto err_nova; |
| } |
| |
| // XXX The mmu_map_dma_area does this for us below, see comments. |
| // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); |
| /* |
| * XXX That's where sdev would be used. Currently we load |
| * all iommu tables with the same translations. |
| */ |
| if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0) |
| goto err_noiommu; |
| |
| res->name = op->dev.of_node->name; |
| |
| return (void *)(unsigned long)res->start; |
| |
| err_noiommu: |
| release_resource(res); |
| err_nova: |
| kfree(res); |
| err_nomem: |
| free_pages(va, order); |
| err_nopages: |
| return NULL; |
| } |
| |
| static void sbus_free_coherent(struct device *dev, size_t n, void *p, |
| dma_addr_t ba) |
| { |
| struct resource *res; |
| struct page *pgv; |
| |
| if ((res = _sparc_find_resource(&_sparc_dvma, |
| (unsigned long)p)) == NULL) { |
| printk("sbus_free_consistent: cannot free %p\n", p); |
| return; |
| } |
| |
| if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { |
| printk("sbus_free_consistent: unaligned va %p\n", p); |
| return; |
| } |
| |
| n = PAGE_ALIGN(n); |
| if ((res->end-res->start)+1 != n) { |
| printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n", |
| (long)((res->end-res->start)+1), n); |
| return; |
| } |
| |
| release_resource(res); |
| kfree(res); |
| |
| pgv = virt_to_page(p); |
| mmu_unmap_dma_area(dev, ba, n); |
| |
| __free_pages(pgv, get_order(n)); |
| } |
| |
| /* |
| * Map a chunk of memory so that devices can see it. |
| * CPU view of this memory may be inconsistent with |
| * a device view and explicit flushing is necessary. |
| */ |
| static dma_addr_t sbus_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t len, |
| enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| void *va = page_address(page) + offset; |
| |
| /* XXX why are some lengths signed, others unsigned? */ |
| if (len <= 0) { |
| return 0; |
| } |
| /* XXX So what is maxphys for us and how do drivers know it? */ |
| if (len > 256*1024) { /* __get_free_pages() limit */ |
| return 0; |
| } |
| return mmu_get_scsi_one(dev, va, len); |
| } |
| |
| static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| mmu_release_scsi_one(dev, ba, n); |
| } |
| |
| static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| mmu_get_scsi_sgl(dev, sg, n); |
| |
| /* |
| * XXX sparc64 can return a partial length here. sun4c should do this |
| * but it currently panics if it can't fulfill the request - Anton |
| */ |
| return n; |
| } |
| |
| static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| mmu_release_scsi_sgl(dev, sg, n); |
| } |
| |
| static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| int n, enum dma_data_direction dir) |
| { |
| BUG(); |
| } |
| |
| static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| int n, enum dma_data_direction dir) |
| { |
| BUG(); |
| } |
| |
| struct dma_map_ops sbus_dma_ops = { |
| .alloc_coherent = sbus_alloc_coherent, |
| .free_coherent = sbus_free_coherent, |
| .map_page = sbus_map_page, |
| .unmap_page = sbus_unmap_page, |
| .map_sg = sbus_map_sg, |
| .unmap_sg = sbus_unmap_sg, |
| .sync_sg_for_cpu = sbus_sync_sg_for_cpu, |
| .sync_sg_for_device = sbus_sync_sg_for_device, |
| }; |
| |
| static int __init sparc_register_ioport(void) |
| { |
| register_proc_sparc_ioport(); |
| |
| return 0; |
| } |
| |
| arch_initcall(sparc_register_ioport); |
| |
| #endif /* CONFIG_SBUS */ |
| |
| |
| /* LEON reuses PCI DMA ops */ |
| #if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON) |
| |
| /* Allocate and map kernel buffer using consistent mode DMA for a device. |
| * hwdev should be valid struct pci_dev pointer for PCI devices. |
| */ |
| static void *pci32_alloc_coherent(struct device *dev, size_t len, |
| dma_addr_t *pba, gfp_t gfp) |
| { |
| unsigned long len_total = PAGE_ALIGN(len); |
| void *va; |
| struct resource *res; |
| int order; |
| |
| if (len == 0) { |
| return NULL; |
| } |
| if (len > 256*1024) { /* __get_free_pages() limit */ |
| return NULL; |
| } |
| |
| order = get_order(len_total); |
| va = (void *) __get_free_pages(GFP_KERNEL, order); |
| if (va == NULL) { |
| printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); |
| goto err_nopages; |
| } |
| |
| if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { |
| printk("pci_alloc_consistent: no core\n"); |
| goto err_nomem; |
| } |
| |
| if (allocate_resource(&_sparc_dvma, res, len_total, |
| _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { |
| printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); |
| goto err_nova; |
| } |
| sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); |
| |
| *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ |
| return (void *) res->start; |
| |
| err_nova: |
| kfree(res); |
| err_nomem: |
| free_pages((unsigned long)va, order); |
| err_nopages: |
| return NULL; |
| } |
| |
| /* Free and unmap a consistent DMA buffer. |
| * cpu_addr is what was returned from pci_alloc_consistent, |
| * size must be the same as what as passed into pci_alloc_consistent, |
| * and likewise dma_addr must be the same as what *dma_addrp was set to. |
| * |
| * References to the memory and mappings associated with cpu_addr/dma_addr |
| * past this call are illegal. |
| */ |
| static void pci32_free_coherent(struct device *dev, size_t n, void *p, |
| dma_addr_t ba) |
| { |
| struct resource *res; |
| |
| if ((res = _sparc_find_resource(&_sparc_dvma, |
| (unsigned long)p)) == NULL) { |
| printk("pci_free_consistent: cannot free %p\n", p); |
| return; |
| } |
| |
| if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { |
| printk("pci_free_consistent: unaligned va %p\n", p); |
| return; |
| } |
| |
| n = PAGE_ALIGN(n); |
| if ((res->end-res->start)+1 != n) { |
| printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", |
| (long)((res->end-res->start)+1), (long)n); |
| return; |
| } |
| |
| dma_make_coherent(ba, n); |
| sparc_unmapiorange((unsigned long)p, n); |
| |
| release_resource(res); |
| kfree(res); |
| free_pages((unsigned long)phys_to_virt(ba), get_order(n)); |
| } |
| |
| /* |
| * Same as pci_map_single, but with pages. |
| */ |
| static dma_addr_t pci32_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| /* IIep is write-through, not flushing. */ |
| return page_to_phys(page) + offset; |
| } |
| |
| static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| if (dir != PCI_DMA_TODEVICE) |
| dma_make_coherent(ba, PAGE_ALIGN(size)); |
| } |
| |
| /* Map a set of buffers described by scatterlist in streaming |
| * mode for DMA. This is the scather-gather version of the |
| * above pci_map_single interface. Here the scatter gather list |
| * elements are each tagged with the appropriate dma address |
| * and length. They are obtained via sg_dma_{address,length}(SG). |
| * |
| * NOTE: An implementation may be able to use a smaller number of |
| * DMA address/length pairs than there are SG table elements. |
| * (for example via virtual mapping capabilities) |
| * The routine returns the number of addr/length pairs actually |
| * used, at most nents. |
| * |
| * Device ownership issues as mentioned above for pci_map_single are |
| * the same here. |
| */ |
| static int pci32_map_sg(struct device *device, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| struct scatterlist *sg; |
| int n; |
| |
| /* IIep is write-through, not flushing. */ |
| for_each_sg(sgl, sg, nents, n) { |
| sg->dma_address = sg_phys(sg); |
| sg->dma_length = sg->length; |
| } |
| return nents; |
| } |
| |
| /* Unmap a set of streaming mode DMA translations. |
| * Again, cpu read rules concerning calls here are the same as for |
| * pci_unmap_single() above. |
| */ |
| static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| struct scatterlist *sg; |
| int n; |
| |
| if (dir != PCI_DMA_TODEVICE) { |
| for_each_sg(sgl, sg, nents, n) { |
| dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); |
| } |
| } |
| } |
| |
| /* Make physical memory consistent for a single |
| * streaming mode DMA translation before or after a transfer. |
| * |
| * If you perform a pci_map_single() but wish to interrogate the |
| * buffer using the cpu, yet do not wish to teardown the PCI dma |
| * mapping, you must call this function before doing so. At the |
| * next point you give the PCI dma address back to the card, you |
| * must first perform a pci_dma_sync_for_device, and then the |
| * device again owns the buffer. |
| */ |
| static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba, |
| size_t size, enum dma_data_direction dir) |
| { |
| if (dir != PCI_DMA_TODEVICE) { |
| dma_make_coherent(ba, PAGE_ALIGN(size)); |
| } |
| } |
| |
| static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba, |
| size_t size, enum dma_data_direction dir) |
| { |
| if (dir != PCI_DMA_TODEVICE) { |
| dma_make_coherent(ba, PAGE_ALIGN(size)); |
| } |
| } |
| |
| /* Make physical memory consistent for a set of streaming |
| * mode DMA translations after a transfer. |
| * |
| * The same as pci_dma_sync_single_* but for a scatter-gather list, |
| * same rules and usage. |
| */ |
| static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int n; |
| |
| if (dir != PCI_DMA_TODEVICE) { |
| for_each_sg(sgl, sg, nents, n) { |
| dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); |
| } |
| } |
| } |
| |
| static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int n; |
| |
| if (dir != PCI_DMA_TODEVICE) { |
| for_each_sg(sgl, sg, nents, n) { |
| dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); |
| } |
| } |
| } |
| |
| struct dma_map_ops pci32_dma_ops = { |
| .alloc_coherent = pci32_alloc_coherent, |
| .free_coherent = pci32_free_coherent, |
| .map_page = pci32_map_page, |
| .unmap_page = pci32_unmap_page, |
| .map_sg = pci32_map_sg, |
| .unmap_sg = pci32_unmap_sg, |
| .sync_single_for_cpu = pci32_sync_single_for_cpu, |
| .sync_single_for_device = pci32_sync_single_for_device, |
| .sync_sg_for_cpu = pci32_sync_sg_for_cpu, |
| .sync_sg_for_device = pci32_sync_sg_for_device, |
| }; |
| EXPORT_SYMBOL(pci32_dma_ops); |
| |
| #endif /* CONFIG_PCI || CONFIG_SPARC_LEON */ |
| |
| #ifdef CONFIG_SPARC_LEON |
| struct dma_map_ops *dma_ops = &pci32_dma_ops; |
| #elif defined(CONFIG_SBUS) |
| struct dma_map_ops *dma_ops = &sbus_dma_ops; |
| #endif |
| |
| EXPORT_SYMBOL(dma_ops); |
| |
| |
| /* |
| * Return whether the given PCI device DMA address mask can be |
| * supported properly. For example, if your device can only drive the |
| * low 24-bits during PCI bus mastering, then you would pass |
| * 0x00ffffff as the mask to this function. |
| */ |
| int dma_supported(struct device *dev, u64 mask) |
| { |
| #ifdef CONFIG_PCI |
| if (dev->bus == &pci_bus_type) |
| return 1; |
| #endif |
| return 0; |
| } |
| EXPORT_SYMBOL(dma_supported); |
| |
| #ifdef CONFIG_PROC_FS |
| |
| static int sparc_io_proc_show(struct seq_file *m, void *v) |
| { |
| struct resource *root = m->private, *r; |
| const char *nm; |
| |
| for (r = root->child; r != NULL; r = r->sibling) { |
| if ((nm = r->name) == 0) nm = "???"; |
| seq_printf(m, "%016llx-%016llx: %s\n", |
| (unsigned long long)r->start, |
| (unsigned long long)r->end, nm); |
| } |
| |
| return 0; |
| } |
| |
| static int sparc_io_proc_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, sparc_io_proc_show, PDE(inode)->data); |
| } |
| |
| static const struct file_operations sparc_io_proc_fops = { |
| .owner = THIS_MODULE, |
| .open = sparc_io_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| #endif /* CONFIG_PROC_FS */ |
| |
| /* |
| * This is a version of find_resource and it belongs to kernel/resource.c. |
| * Until we have agreement with Linus and Martin, it lingers here. |
| * |
| * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. |
| * This probably warrants some sort of hashing. |
| */ |
| static struct resource *_sparc_find_resource(struct resource *root, |
| unsigned long hit) |
| { |
| struct resource *tmp; |
| |
| for (tmp = root->child; tmp != 0; tmp = tmp->sibling) { |
| if (tmp->start <= hit && tmp->end >= hit) |
| return tmp; |
| } |
| return NULL; |
| } |
| |
| static void register_proc_sparc_ioport(void) |
| { |
| #ifdef CONFIG_PROC_FS |
| proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap); |
| proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma); |
| #endif |
| } |