| /* |
| * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README |
| */ |
| |
| #include <linux/string.h> |
| #include <linux/random.h> |
| #include <linux/time.h> |
| #include <linux/reiserfs_fs.h> |
| #include <linux/reiserfs_fs_sb.h> |
| |
| // find where objectid map starts |
| #define objectid_map(s,rs) (old_format_only (s) ? \ |
| (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\ |
| (__le32 *)((rs) + 1)) |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| |
| static void check_objectid_map(struct super_block *s, __le32 * map) |
| { |
| if (le32_to_cpu(map[0]) != 1) |
| reiserfs_panic(s, "vs-15010", "map corrupted: %lx", |
| (long unsigned int)le32_to_cpu(map[0])); |
| |
| // FIXME: add something else here |
| } |
| |
| #else |
| static void check_objectid_map(struct super_block *s, __le32 * map) |
| {; |
| } |
| #endif |
| |
| /* When we allocate objectids we allocate the first unused objectid. |
| Each sequence of objectids in use (the odd sequences) is followed |
| by a sequence of objectids not in use (the even sequences). We |
| only need to record the last objectid in each of these sequences |
| (both the odd and even sequences) in order to fully define the |
| boundaries of the sequences. A consequence of allocating the first |
| objectid not in use is that under most conditions this scheme is |
| extremely compact. The exception is immediately after a sequence |
| of operations which deletes a large number of objects of |
| non-sequential objectids, and even then it will become compact |
| again as soon as more objects are created. Note that many |
| interesting optimizations of layout could result from complicating |
| objectid assignment, but we have deferred making them for now. */ |
| |
| /* get unique object identifier */ |
| __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th) |
| { |
| struct super_block *s = th->t_super; |
| struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s); |
| __le32 *map = objectid_map(s, rs); |
| __u32 unused_objectid; |
| |
| BUG_ON(!th->t_trans_id); |
| |
| check_objectid_map(s, map); |
| |
| reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1); |
| /* comment needed -Hans */ |
| unused_objectid = le32_to_cpu(map[1]); |
| if (unused_objectid == U32_MAX) { |
| reiserfs_warning(s, "reiserfs-15100", "no more object ids"); |
| reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)); |
| return 0; |
| } |
| |
| /* This incrementation allocates the first unused objectid. That |
| is to say, the first entry on the objectid map is the first |
| unused objectid, and by incrementing it we use it. See below |
| where we check to see if we eliminated a sequence of unused |
| objectids.... */ |
| map[1] = cpu_to_le32(unused_objectid + 1); |
| |
| /* Now we check to see if we eliminated the last remaining member of |
| the first even sequence (and can eliminate the sequence by |
| eliminating its last objectid from oids), and can collapse the |
| first two odd sequences into one sequence. If so, then the net |
| result is to eliminate a pair of objectids from oids. We do this |
| by shifting the entire map to the left. */ |
| if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) { |
| memmove(map + 1, map + 3, |
| (sb_oid_cursize(rs) - 3) * sizeof(__u32)); |
| set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2); |
| } |
| |
| journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s)); |
| return unused_objectid; |
| } |
| |
| /* makes object identifier unused */ |
| void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, |
| __u32 objectid_to_release) |
| { |
| struct super_block *s = th->t_super; |
| struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s); |
| __le32 *map = objectid_map(s, rs); |
| int i = 0; |
| |
| BUG_ON(!th->t_trans_id); |
| //return; |
| check_objectid_map(s, map); |
| |
| reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1); |
| journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s)); |
| |
| /* start at the beginning of the objectid map (i = 0) and go to |
| the end of it (i = disk_sb->s_oid_cursize). Linear search is |
| what we use, though it is possible that binary search would be |
| more efficient after performing lots of deletions (which is |
| when oids is large.) We only check even i's. */ |
| while (i < sb_oid_cursize(rs)) { |
| if (objectid_to_release == le32_to_cpu(map[i])) { |
| /* This incrementation unallocates the objectid. */ |
| //map[i]++; |
| le32_add_cpu(&map[i], 1); |
| |
| /* Did we unallocate the last member of an odd sequence, and can shrink oids? */ |
| if (map[i] == map[i + 1]) { |
| /* shrink objectid map */ |
| memmove(map + i, map + i + 2, |
| (sb_oid_cursize(rs) - i - |
| 2) * sizeof(__u32)); |
| //disk_sb->s_oid_cursize -= 2; |
| set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2); |
| |
| RFALSE(sb_oid_cursize(rs) < 2 || |
| sb_oid_cursize(rs) > sb_oid_maxsize(rs), |
| "vs-15005: objectid map corrupted cur_size == %d (max == %d)", |
| sb_oid_cursize(rs), sb_oid_maxsize(rs)); |
| } |
| return; |
| } |
| |
| if (objectid_to_release > le32_to_cpu(map[i]) && |
| objectid_to_release < le32_to_cpu(map[i + 1])) { |
| /* size of objectid map is not changed */ |
| if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) { |
| //objectid_map[i+1]--; |
| le32_add_cpu(&map[i + 1], -1); |
| return; |
| } |
| |
| /* JDM comparing two little-endian values for equality -- safe */ |
| if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) { |
| /* objectid map must be expanded, but there is no space */ |
| PROC_INFO_INC(s, leaked_oid); |
| return; |
| } |
| |
| /* expand the objectid map */ |
| memmove(map + i + 3, map + i + 1, |
| (sb_oid_cursize(rs) - i - 1) * sizeof(__u32)); |
| map[i + 1] = cpu_to_le32(objectid_to_release); |
| map[i + 2] = cpu_to_le32(objectid_to_release + 1); |
| set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2); |
| return; |
| } |
| i += 2; |
| } |
| |
| reiserfs_warning(s, "vs-15011", "tried to free free object id (%lu)", |
| (long unsigned)objectid_to_release); |
| } |
| |
| int reiserfs_convert_objectid_map_v1(struct super_block *s) |
| { |
| struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s); |
| int cur_size = sb_oid_cursize(disk_sb); |
| int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2; |
| int old_max = sb_oid_maxsize(disk_sb); |
| struct reiserfs_super_block_v1 *disk_sb_v1; |
| __le32 *objectid_map, *new_objectid_map; |
| int i; |
| |
| disk_sb_v1 = |
| (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data); |
| objectid_map = (__le32 *) (disk_sb_v1 + 1); |
| new_objectid_map = (__le32 *) (disk_sb + 1); |
| |
| if (cur_size > new_size) { |
| /* mark everyone used that was listed as free at the end of the objectid |
| ** map |
| */ |
| objectid_map[new_size - 1] = objectid_map[cur_size - 1]; |
| set_sb_oid_cursize(disk_sb, new_size); |
| } |
| /* move the smaller objectid map past the end of the new super */ |
| for (i = new_size - 1; i >= 0; i--) { |
| objectid_map[i + (old_max - new_size)] = objectid_map[i]; |
| } |
| |
| /* set the max size so we don't overflow later */ |
| set_sb_oid_maxsize(disk_sb, new_size); |
| |
| /* Zero out label and generate random UUID */ |
| memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label)); |
| generate_random_uuid(disk_sb->s_uuid); |
| |
| /* finally, zero out the unused chunk of the new super */ |
| memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)); |
| return 0; |
| } |