| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * This file contains NUMA specific variables and functions which can |
| * be split away from DISCONTIGMEM and are used on NUMA machines with |
| * contiguous memory. |
| * 2002/08/07 Erich Focht <efocht@ess.nec.de> |
| * Populate cpu entries in sysfs for non-numa systems as well |
| * Intel Corporation - Ashok Raj |
| * 02/27/2006 Zhang, Yanmin |
| * Populate cpu cache entries in sysfs for cpu cache info |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/node.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/nodemask.h> |
| #include <linux/notifier.h> |
| #include <asm/mmzone.h> |
| #include <asm/numa.h> |
| #include <asm/cpu.h> |
| |
| static struct ia64_cpu *sysfs_cpus; |
| |
| int arch_register_cpu(int num) |
| { |
| #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU) |
| /* |
| * If CPEI cannot be re-targetted, and this is |
| * CPEI target, then dont create the control file |
| */ |
| if (!can_cpei_retarget() && is_cpu_cpei_target(num)) |
| sysfs_cpus[num].cpu.no_control = 1; |
| #ifdef CONFIG_NUMA |
| map_cpu_to_node(num, node_cpuid[num].nid); |
| #endif |
| #endif |
| |
| return register_cpu(&sysfs_cpus[num].cpu, num); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| void arch_unregister_cpu(int num) |
| { |
| unregister_cpu(&sysfs_cpus[num].cpu); |
| unmap_cpu_from_node(num, cpu_to_node(num)); |
| } |
| EXPORT_SYMBOL(arch_register_cpu); |
| EXPORT_SYMBOL(arch_unregister_cpu); |
| #endif /*CONFIG_HOTPLUG_CPU*/ |
| |
| |
| static int __init topology_init(void) |
| { |
| int i, err = 0; |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes? |
| */ |
| for_each_online_node(i) { |
| if ((err = register_one_node(i))) |
| goto out; |
| } |
| #endif |
| |
| sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL); |
| if (!sysfs_cpus) |
| panic("kzalloc in topology_init failed - NR_CPUS too big?"); |
| |
| for_each_present_cpu(i) { |
| if((err = arch_register_cpu(i))) |
| goto out; |
| } |
| out: |
| return err; |
| } |
| |
| subsys_initcall(topology_init); |
| |
| |
| /* |
| * Export cpu cache information through sysfs |
| */ |
| |
| /* |
| * A bunch of string array to get pretty printing |
| */ |
| static const char *cache_types[] = { |
| "", /* not used */ |
| "Instruction", |
| "Data", |
| "Unified" /* unified */ |
| }; |
| |
| static const char *cache_mattrib[]={ |
| "WriteThrough", |
| "WriteBack", |
| "", /* reserved */ |
| "" /* reserved */ |
| }; |
| |
| struct cache_info { |
| pal_cache_config_info_t cci; |
| cpumask_t shared_cpu_map; |
| int level; |
| int type; |
| struct kobject kobj; |
| }; |
| |
| struct cpu_cache_info { |
| struct cache_info *cache_leaves; |
| int num_cache_leaves; |
| struct kobject kobj; |
| }; |
| |
| static struct cpu_cache_info all_cpu_cache_info[NR_CPUS]; |
| #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y]) |
| |
| #ifdef CONFIG_SMP |
| static void cache_shared_cpu_map_setup( unsigned int cpu, |
| struct cache_info * this_leaf) |
| { |
| pal_cache_shared_info_t csi; |
| int num_shared, i = 0; |
| unsigned int j; |
| |
| if (cpu_data(cpu)->threads_per_core <= 1 && |
| cpu_data(cpu)->cores_per_socket <= 1) { |
| cpu_set(cpu, this_leaf->shared_cpu_map); |
| return; |
| } |
| |
| if (ia64_pal_cache_shared_info(this_leaf->level, |
| this_leaf->type, |
| 0, |
| &csi) != PAL_STATUS_SUCCESS) |
| return; |
| |
| num_shared = (int) csi.num_shared; |
| do { |
| for_each_possible_cpu(j) |
| if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id |
| && cpu_data(j)->core_id == csi.log1_cid |
| && cpu_data(j)->thread_id == csi.log1_tid) |
| cpu_set(j, this_leaf->shared_cpu_map); |
| |
| i++; |
| } while (i < num_shared && |
| ia64_pal_cache_shared_info(this_leaf->level, |
| this_leaf->type, |
| i, |
| &csi) == PAL_STATUS_SUCCESS); |
| } |
| #else |
| static void cache_shared_cpu_map_setup(unsigned int cpu, |
| struct cache_info * this_leaf) |
| { |
| cpu_set(cpu, this_leaf->shared_cpu_map); |
| return; |
| } |
| #endif |
| |
| static ssize_t show_coherency_line_size(struct cache_info *this_leaf, |
| char *buf) |
| { |
| return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size); |
| } |
| |
| static ssize_t show_ways_of_associativity(struct cache_info *this_leaf, |
| char *buf) |
| { |
| return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc); |
| } |
| |
| static ssize_t show_attributes(struct cache_info *this_leaf, char *buf) |
| { |
| return sprintf(buf, |
| "%s\n", |
| cache_mattrib[this_leaf->cci.pcci_cache_attr]); |
| } |
| |
| static ssize_t show_size(struct cache_info *this_leaf, char *buf) |
| { |
| return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024); |
| } |
| |
| static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf) |
| { |
| unsigned number_of_sets = this_leaf->cci.pcci_cache_size; |
| number_of_sets /= this_leaf->cci.pcci_assoc; |
| number_of_sets /= 1 << this_leaf->cci.pcci_line_size; |
| |
| return sprintf(buf, "%u\n", number_of_sets); |
| } |
| |
| static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf) |
| { |
| ssize_t len; |
| cpumask_t shared_cpu_map; |
| |
| cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map); |
| len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map); |
| len += sprintf(buf+len, "\n"); |
| return len; |
| } |
| |
| static ssize_t show_type(struct cache_info *this_leaf, char *buf) |
| { |
| int type = this_leaf->type + this_leaf->cci.pcci_unified; |
| return sprintf(buf, "%s\n", cache_types[type]); |
| } |
| |
| static ssize_t show_level(struct cache_info *this_leaf, char *buf) |
| { |
| return sprintf(buf, "%u\n", this_leaf->level); |
| } |
| |
| struct cache_attr { |
| struct attribute attr; |
| ssize_t (*show)(struct cache_info *, char *); |
| ssize_t (*store)(struct cache_info *, const char *, size_t count); |
| }; |
| |
| #ifdef define_one_ro |
| #undef define_one_ro |
| #endif |
| #define define_one_ro(_name) \ |
| static struct cache_attr _name = \ |
| __ATTR(_name, 0444, show_##_name, NULL) |
| |
| define_one_ro(level); |
| define_one_ro(type); |
| define_one_ro(coherency_line_size); |
| define_one_ro(ways_of_associativity); |
| define_one_ro(size); |
| define_one_ro(number_of_sets); |
| define_one_ro(shared_cpu_map); |
| define_one_ro(attributes); |
| |
| static struct attribute * cache_default_attrs[] = { |
| &type.attr, |
| &level.attr, |
| &coherency_line_size.attr, |
| &ways_of_associativity.attr, |
| &attributes.attr, |
| &size.attr, |
| &number_of_sets.attr, |
| &shared_cpu_map.attr, |
| NULL |
| }; |
| |
| #define to_object(k) container_of(k, struct cache_info, kobj) |
| #define to_attr(a) container_of(a, struct cache_attr, attr) |
| |
| static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf) |
| { |
| struct cache_attr *fattr = to_attr(attr); |
| struct cache_info *this_leaf = to_object(kobj); |
| ssize_t ret; |
| |
| ret = fattr->show ? fattr->show(this_leaf, buf) : 0; |
| return ret; |
| } |
| |
| static struct sysfs_ops cache_sysfs_ops = { |
| .show = cache_show |
| }; |
| |
| static struct kobj_type cache_ktype = { |
| .sysfs_ops = &cache_sysfs_ops, |
| .default_attrs = cache_default_attrs, |
| }; |
| |
| static struct kobj_type cache_ktype_percpu_entry = { |
| .sysfs_ops = &cache_sysfs_ops, |
| }; |
| |
| static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu) |
| { |
| kfree(all_cpu_cache_info[cpu].cache_leaves); |
| all_cpu_cache_info[cpu].cache_leaves = NULL; |
| all_cpu_cache_info[cpu].num_cache_leaves = 0; |
| memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); |
| return; |
| } |
| |
| static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu) |
| { |
| u64 i, levels, unique_caches; |
| pal_cache_config_info_t cci; |
| int j; |
| s64 status; |
| struct cache_info *this_cache; |
| int num_cache_leaves = 0; |
| |
| if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) { |
| printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status); |
| return -1; |
| } |
| |
| this_cache=kzalloc(sizeof(struct cache_info)*unique_caches, |
| GFP_KERNEL); |
| if (this_cache == NULL) |
| return -ENOMEM; |
| |
| for (i=0; i < levels; i++) { |
| for (j=2; j >0 ; j--) { |
| if ((status=ia64_pal_cache_config_info(i,j, &cci)) != |
| PAL_STATUS_SUCCESS) |
| continue; |
| |
| this_cache[num_cache_leaves].cci = cci; |
| this_cache[num_cache_leaves].level = i + 1; |
| this_cache[num_cache_leaves].type = j; |
| |
| cache_shared_cpu_map_setup(cpu, |
| &this_cache[num_cache_leaves]); |
| num_cache_leaves ++; |
| } |
| } |
| |
| all_cpu_cache_info[cpu].cache_leaves = this_cache; |
| all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves; |
| |
| memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); |
| |
| return 0; |
| } |
| |
| /* Add cache interface for CPU device */ |
| static int __cpuinit cache_add_dev(struct sys_device * sys_dev) |
| { |
| unsigned int cpu = sys_dev->id; |
| unsigned long i, j; |
| struct cache_info *this_object; |
| int retval = 0; |
| cpumask_t oldmask; |
| |
| if (all_cpu_cache_info[cpu].kobj.parent) |
| return 0; |
| |
| oldmask = current->cpus_allowed; |
| retval = set_cpus_allowed(current, cpumask_of_cpu(cpu)); |
| if (unlikely(retval)) |
| return retval; |
| |
| retval = cpu_cache_sysfs_init(cpu); |
| set_cpus_allowed(current, oldmask); |
| if (unlikely(retval < 0)) |
| return retval; |
| |
| all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj; |
| kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache"); |
| all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry; |
| retval = kobject_register(&all_cpu_cache_info[cpu].kobj); |
| |
| for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) { |
| this_object = LEAF_KOBJECT_PTR(cpu,i); |
| this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj; |
| kobject_set_name(&(this_object->kobj), "index%1lu", i); |
| this_object->kobj.ktype = &cache_ktype; |
| retval = kobject_register(&(this_object->kobj)); |
| if (unlikely(retval)) { |
| for (j = 0; j < i; j++) { |
| kobject_unregister( |
| &(LEAF_KOBJECT_PTR(cpu,j)->kobj)); |
| } |
| kobject_unregister(&all_cpu_cache_info[cpu].kobj); |
| cpu_cache_sysfs_exit(cpu); |
| break; |
| } |
| } |
| return retval; |
| } |
| |
| /* Remove cache interface for CPU device */ |
| static int __cpuinit cache_remove_dev(struct sys_device * sys_dev) |
| { |
| unsigned int cpu = sys_dev->id; |
| unsigned long i; |
| |
| for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) |
| kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj)); |
| |
| if (all_cpu_cache_info[cpu].kobj.parent) { |
| kobject_unregister(&all_cpu_cache_info[cpu].kobj); |
| memset(&all_cpu_cache_info[cpu].kobj, |
| 0, |
| sizeof(struct kobject)); |
| } |
| |
| cpu_cache_sysfs_exit(cpu); |
| |
| return 0; |
| } |
| |
| /* |
| * When a cpu is hot-plugged, do a check and initiate |
| * cache kobject if necessary |
| */ |
| static int __cpuinit cache_cpu_callback(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (unsigned long)hcpu; |
| struct sys_device *sys_dev; |
| |
| sys_dev = get_cpu_sysdev(cpu); |
| switch (action) { |
| case CPU_ONLINE: |
| cache_add_dev(sys_dev); |
| break; |
| case CPU_DEAD: |
| cache_remove_dev(sys_dev); |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __cpuinitdata cache_cpu_notifier = |
| { |
| .notifier_call = cache_cpu_callback |
| }; |
| |
| static int __cpuinit cache_sysfs_init(void) |
| { |
| int i; |
| |
| for_each_online_cpu(i) { |
| cache_cpu_callback(&cache_cpu_notifier, CPU_ONLINE, |
| (void *)(long)i); |
| } |
| |
| register_hotcpu_notifier(&cache_cpu_notifier); |
| |
| return 0; |
| } |
| |
| device_initcall(cache_sysfs_init); |
| |