| /* |
| * Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved. |
| * Copyright 2005 Stephane Marchesin |
| * |
| * The Weather Channel (TM) funded Tungsten Graphics to develop the |
| * initial release of the Radeon 8500 driver under the XFree86 license. |
| * This notice must be preserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: |
| * Ben Skeggs <bskeggs@redhat.com> |
| * Roy Spliet <r.spliet@student.tudelft.nl> |
| */ |
| |
| |
| #include "drmP.h" |
| #include "drm.h" |
| #include "drm_sarea.h" |
| |
| #include "nouveau_drv.h" |
| #include "nouveau_pm.h" |
| #include "nouveau_mm.h" |
| #include "nouveau_vm.h" |
| #include "nouveau_fifo.h" |
| #include "nouveau_fence.h" |
| |
| /* |
| * NV10-NV40 tiling helpers |
| */ |
| |
| static void |
| nv10_mem_update_tile_region(struct drm_device *dev, |
| struct nouveau_tile_reg *tile, uint32_t addr, |
| uint32_t size, uint32_t pitch, uint32_t flags) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; |
| int i = tile - dev_priv->tile.reg, j; |
| unsigned long save; |
| |
| nouveau_fence_unref(&tile->fence); |
| |
| if (tile->pitch) |
| pfb->free_tile_region(dev, i); |
| |
| if (pitch) |
| pfb->init_tile_region(dev, i, addr, size, pitch, flags); |
| |
| spin_lock_irqsave(&dev_priv->context_switch_lock, save); |
| nv_wr32(dev, NV03_PFIFO_CACHES, 0); |
| nv04_fifo_cache_pull(dev, false); |
| |
| nouveau_wait_for_idle(dev); |
| |
| pfb->set_tile_region(dev, i); |
| for (j = 0; j < NVOBJ_ENGINE_NR; j++) { |
| if (dev_priv->eng[j] && dev_priv->eng[j]->set_tile_region) |
| dev_priv->eng[j]->set_tile_region(dev, i); |
| } |
| |
| nv04_fifo_cache_pull(dev, true); |
| nv_wr32(dev, NV03_PFIFO_CACHES, 1); |
| spin_unlock_irqrestore(&dev_priv->context_switch_lock, save); |
| } |
| |
| static struct nouveau_tile_reg * |
| nv10_mem_get_tile_region(struct drm_device *dev, int i) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i]; |
| |
| spin_lock(&dev_priv->tile.lock); |
| |
| if (!tile->used && |
| (!tile->fence || nouveau_fence_done(tile->fence))) |
| tile->used = true; |
| else |
| tile = NULL; |
| |
| spin_unlock(&dev_priv->tile.lock); |
| return tile; |
| } |
| |
| void |
| nv10_mem_put_tile_region(struct drm_device *dev, struct nouveau_tile_reg *tile, |
| struct nouveau_fence *fence) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| |
| if (tile) { |
| spin_lock(&dev_priv->tile.lock); |
| if (fence) { |
| /* Mark it as pending. */ |
| tile->fence = fence; |
| nouveau_fence_ref(fence); |
| } |
| |
| tile->used = false; |
| spin_unlock(&dev_priv->tile.lock); |
| } |
| } |
| |
| struct nouveau_tile_reg * |
| nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size, |
| uint32_t pitch, uint32_t flags) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; |
| struct nouveau_tile_reg *tile, *found = NULL; |
| int i; |
| |
| for (i = 0; i < pfb->num_tiles; i++) { |
| tile = nv10_mem_get_tile_region(dev, i); |
| |
| if (pitch && !found) { |
| found = tile; |
| continue; |
| |
| } else if (tile && tile->pitch) { |
| /* Kill an unused tile region. */ |
| nv10_mem_update_tile_region(dev, tile, 0, 0, 0, 0); |
| } |
| |
| nv10_mem_put_tile_region(dev, tile, NULL); |
| } |
| |
| if (found) |
| nv10_mem_update_tile_region(dev, found, addr, size, |
| pitch, flags); |
| return found; |
| } |
| |
| /* |
| * Cleanup everything |
| */ |
| void |
| nouveau_mem_vram_fini(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| |
| ttm_bo_device_release(&dev_priv->ttm.bdev); |
| |
| nouveau_ttm_global_release(dev_priv); |
| |
| if (dev_priv->fb_mtrr >= 0) { |
| drm_mtrr_del(dev_priv->fb_mtrr, |
| pci_resource_start(dev->pdev, 1), |
| pci_resource_len(dev->pdev, 1), DRM_MTRR_WC); |
| dev_priv->fb_mtrr = -1; |
| } |
| } |
| |
| void |
| nouveau_mem_gart_fini(struct drm_device *dev) |
| { |
| nouveau_sgdma_takedown(dev); |
| |
| if (drm_core_has_AGP(dev) && dev->agp) { |
| struct drm_agp_mem *entry, *tempe; |
| |
| /* Remove AGP resources, but leave dev->agp |
| intact until drv_cleanup is called. */ |
| list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) { |
| if (entry->bound) |
| drm_unbind_agp(entry->memory); |
| drm_free_agp(entry->memory, entry->pages); |
| kfree(entry); |
| } |
| INIT_LIST_HEAD(&dev->agp->memory); |
| |
| if (dev->agp->acquired) |
| drm_agp_release(dev); |
| |
| dev->agp->acquired = 0; |
| dev->agp->enabled = 0; |
| } |
| } |
| |
| bool |
| nouveau_mem_flags_valid(struct drm_device *dev, u32 tile_flags) |
| { |
| if (!(tile_flags & NOUVEAU_GEM_TILE_LAYOUT_MASK)) |
| return true; |
| |
| return false; |
| } |
| |
| #if __OS_HAS_AGP |
| static unsigned long |
| get_agp_mode(struct drm_device *dev, unsigned long mode) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| |
| /* |
| * FW seems to be broken on nv18, it makes the card lock up |
| * randomly. |
| */ |
| if (dev_priv->chipset == 0x18) |
| mode &= ~PCI_AGP_COMMAND_FW; |
| |
| /* |
| * AGP mode set in the command line. |
| */ |
| if (nouveau_agpmode > 0) { |
| bool agpv3 = mode & 0x8; |
| int rate = agpv3 ? nouveau_agpmode / 4 : nouveau_agpmode; |
| |
| mode = (mode & ~0x7) | (rate & 0x7); |
| } |
| |
| return mode; |
| } |
| #endif |
| |
| int |
| nouveau_mem_reset_agp(struct drm_device *dev) |
| { |
| #if __OS_HAS_AGP |
| uint32_t saved_pci_nv_1, pmc_enable; |
| int ret; |
| |
| /* First of all, disable fast writes, otherwise if it's |
| * already enabled in the AGP bridge and we disable the card's |
| * AGP controller we might be locking ourselves out of it. */ |
| if ((nv_rd32(dev, NV04_PBUS_PCI_NV_19) | |
| dev->agp->mode) & PCI_AGP_COMMAND_FW) { |
| struct drm_agp_info info; |
| struct drm_agp_mode mode; |
| |
| ret = drm_agp_info(dev, &info); |
| if (ret) |
| return ret; |
| |
| mode.mode = get_agp_mode(dev, info.mode) & ~PCI_AGP_COMMAND_FW; |
| ret = drm_agp_enable(dev, mode); |
| if (ret) |
| return ret; |
| } |
| |
| saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1); |
| |
| /* clear busmaster bit */ |
| nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4); |
| /* disable AGP */ |
| nv_wr32(dev, NV04_PBUS_PCI_NV_19, 0); |
| |
| /* power cycle pgraph, if enabled */ |
| pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE); |
| if (pmc_enable & NV_PMC_ENABLE_PGRAPH) { |
| nv_wr32(dev, NV03_PMC_ENABLE, |
| pmc_enable & ~NV_PMC_ENABLE_PGRAPH); |
| nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) | |
| NV_PMC_ENABLE_PGRAPH); |
| } |
| |
| /* and restore (gives effect of resetting AGP) */ |
| nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1); |
| #endif |
| |
| return 0; |
| } |
| |
| int |
| nouveau_mem_init_agp(struct drm_device *dev) |
| { |
| #if __OS_HAS_AGP |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct drm_agp_info info; |
| struct drm_agp_mode mode; |
| int ret; |
| |
| if (!dev->agp->acquired) { |
| ret = drm_agp_acquire(dev); |
| if (ret) { |
| NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret); |
| return ret; |
| } |
| } |
| |
| nouveau_mem_reset_agp(dev); |
| |
| ret = drm_agp_info(dev, &info); |
| if (ret) { |
| NV_ERROR(dev, "Unable to get AGP info: %d\n", ret); |
| return ret; |
| } |
| |
| /* see agp.h for the AGPSTAT_* modes available */ |
| mode.mode = get_agp_mode(dev, info.mode); |
| ret = drm_agp_enable(dev, mode); |
| if (ret) { |
| NV_ERROR(dev, "Unable to enable AGP: %d\n", ret); |
| return ret; |
| } |
| |
| dev_priv->gart_info.type = NOUVEAU_GART_AGP; |
| dev_priv->gart_info.aper_base = info.aperture_base; |
| dev_priv->gart_info.aper_size = info.aperture_size; |
| #endif |
| return 0; |
| } |
| |
| static const struct vram_types { |
| int value; |
| const char *name; |
| } vram_type_map[] = { |
| { NV_MEM_TYPE_STOLEN , "stolen system memory" }, |
| { NV_MEM_TYPE_SGRAM , "SGRAM" }, |
| { NV_MEM_TYPE_SDRAM , "SDRAM" }, |
| { NV_MEM_TYPE_DDR1 , "DDR1" }, |
| { NV_MEM_TYPE_DDR2 , "DDR2" }, |
| { NV_MEM_TYPE_DDR3 , "DDR3" }, |
| { NV_MEM_TYPE_GDDR2 , "GDDR2" }, |
| { NV_MEM_TYPE_GDDR3 , "GDDR3" }, |
| { NV_MEM_TYPE_GDDR4 , "GDDR4" }, |
| { NV_MEM_TYPE_GDDR5 , "GDDR5" }, |
| { NV_MEM_TYPE_UNKNOWN, "unknown type" } |
| }; |
| |
| int |
| nouveau_mem_vram_init(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct ttm_bo_device *bdev = &dev_priv->ttm.bdev; |
| const struct vram_types *vram_type; |
| int ret, dma_bits; |
| |
| dma_bits = 32; |
| if (dev_priv->card_type >= NV_50) { |
| if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(40))) |
| dma_bits = 40; |
| } else |
| if (0 && pci_is_pcie(dev->pdev) && |
| dev_priv->chipset > 0x40 && |
| dev_priv->chipset != 0x45) { |
| if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(39))) |
| dma_bits = 39; |
| } |
| |
| ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits)); |
| if (ret) |
| return ret; |
| ret = pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits)); |
| if (ret) { |
| /* Reset to default value. */ |
| pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32)); |
| } |
| |
| |
| ret = nouveau_ttm_global_init(dev_priv); |
| if (ret) |
| return ret; |
| |
| ret = ttm_bo_device_init(&dev_priv->ttm.bdev, |
| dev_priv->ttm.bo_global_ref.ref.object, |
| &nouveau_bo_driver, DRM_FILE_PAGE_OFFSET, |
| dma_bits <= 32 ? true : false); |
| if (ret) { |
| NV_ERROR(dev, "Error initialising bo driver: %d\n", ret); |
| return ret; |
| } |
| |
| vram_type = vram_type_map; |
| while (vram_type->value != NV_MEM_TYPE_UNKNOWN) { |
| if (nouveau_vram_type) { |
| if (!strcasecmp(nouveau_vram_type, vram_type->name)) |
| break; |
| dev_priv->vram_type = vram_type->value; |
| } else { |
| if (vram_type->value == dev_priv->vram_type) |
| break; |
| } |
| vram_type++; |
| } |
| |
| NV_INFO(dev, "Detected %dMiB VRAM (%s)\n", |
| (int)(dev_priv->vram_size >> 20), vram_type->name); |
| if (dev_priv->vram_sys_base) { |
| NV_INFO(dev, "Stolen system memory at: 0x%010llx\n", |
| dev_priv->vram_sys_base); |
| } |
| |
| dev_priv->fb_available_size = dev_priv->vram_size; |
| dev_priv->fb_mappable_pages = dev_priv->fb_available_size; |
| if (dev_priv->fb_mappable_pages > pci_resource_len(dev->pdev, 1)) |
| dev_priv->fb_mappable_pages = pci_resource_len(dev->pdev, 1); |
| dev_priv->fb_mappable_pages >>= PAGE_SHIFT; |
| |
| dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram; |
| dev_priv->fb_aper_free = dev_priv->fb_available_size; |
| |
| /* mappable vram */ |
| ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM, |
| dev_priv->fb_available_size >> PAGE_SHIFT); |
| if (ret) { |
| NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret); |
| return ret; |
| } |
| |
| if (dev_priv->card_type < NV_50) { |
| ret = nouveau_bo_new(dev, 256*1024, 0, TTM_PL_FLAG_VRAM, |
| 0, 0, NULL, &dev_priv->vga_ram); |
| if (ret == 0) |
| ret = nouveau_bo_pin(dev_priv->vga_ram, |
| TTM_PL_FLAG_VRAM); |
| |
| if (ret) { |
| NV_WARN(dev, "failed to reserve VGA memory\n"); |
| nouveau_bo_ref(NULL, &dev_priv->vga_ram); |
| } |
| } |
| |
| dev_priv->fb_mtrr = drm_mtrr_add(pci_resource_start(dev->pdev, 1), |
| pci_resource_len(dev->pdev, 1), |
| DRM_MTRR_WC); |
| return 0; |
| } |
| |
| int |
| nouveau_mem_gart_init(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct ttm_bo_device *bdev = &dev_priv->ttm.bdev; |
| int ret; |
| |
| dev_priv->gart_info.type = NOUVEAU_GART_NONE; |
| |
| #if !defined(__powerpc__) && !defined(__ia64__) |
| if (drm_pci_device_is_agp(dev) && dev->agp && nouveau_agpmode) { |
| ret = nouveau_mem_init_agp(dev); |
| if (ret) |
| NV_ERROR(dev, "Error initialising AGP: %d\n", ret); |
| } |
| #endif |
| |
| if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) { |
| ret = nouveau_sgdma_init(dev); |
| if (ret) { |
| NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret); |
| return ret; |
| } |
| } |
| |
| NV_INFO(dev, "%d MiB GART (aperture)\n", |
| (int)(dev_priv->gart_info.aper_size >> 20)); |
| dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size; |
| |
| ret = ttm_bo_init_mm(bdev, TTM_PL_TT, |
| dev_priv->gart_info.aper_size >> PAGE_SHIFT); |
| if (ret) { |
| NV_ERROR(dev, "Failed TT mm init: %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| nv40_mem_timing_calc(struct drm_device *dev, u32 freq, |
| struct nouveau_pm_tbl_entry *e, u8 len, |
| struct nouveau_pm_memtiming *boot, |
| struct nouveau_pm_memtiming *t) |
| { |
| t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC); |
| |
| /* XXX: I don't trust the -1's and +1's... they must come |
| * from somewhere! */ |
| t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 | |
| 1 << 16 | |
| (e->tWTR + 2 + (t->tCWL - 1)) << 8 | |
| (e->tCL + 2 - (t->tCWL - 1)); |
| |
| t->reg[2] = 0x20200000 | |
| ((t->tCWL - 1) << 24 | |
| e->tRRD << 16 | |
| e->tRCDWR << 8 | |
| e->tRCDRD); |
| |
| NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x\n", t->id, |
| t->reg[0], t->reg[1], t->reg[2]); |
| return 0; |
| } |
| |
| static int |
| nv50_mem_timing_calc(struct drm_device *dev, u32 freq, |
| struct nouveau_pm_tbl_entry *e, u8 len, |
| struct nouveau_pm_memtiming *boot, |
| struct nouveau_pm_memtiming *t) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct bit_entry P; |
| uint8_t unk18 = 1, unk20 = 0, unk21 = 0, tmp7_3; |
| |
| if (bit_table(dev, 'P', &P)) |
| return -EINVAL; |
| |
| switch (min(len, (u8) 22)) { |
| case 22: |
| unk21 = e->tUNK_21; |
| case 21: |
| unk20 = e->tUNK_20; |
| case 20: |
| if (e->tCWL > 0) |
| t->tCWL = e->tCWL; |
| case 19: |
| unk18 = e->tUNK_18; |
| break; |
| } |
| |
| t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC); |
| |
| t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 | |
| max(unk18, (u8) 1) << 16 | |
| (e->tWTR + 2 + (t->tCWL - 1)) << 8; |
| |
| t->reg[2] = ((t->tCWL - 1) << 24 | |
| e->tRRD << 16 | |
| e->tRCDWR << 8 | |
| e->tRCDRD); |
| |
| t->reg[4] = e->tUNK_13 << 8 | e->tUNK_13; |
| |
| t->reg[5] = (e->tRFC << 24 | max(e->tRCDRD, e->tRCDWR) << 16 | e->tRP); |
| |
| t->reg[8] = boot->reg[8] & 0xffffff00; |
| |
| if (P.version == 1) { |
| t->reg[1] |= (e->tCL + 2 - (t->tCWL - 1)); |
| |
| t->reg[3] = (0x14 + e->tCL) << 24 | |
| 0x16 << 16 | |
| (e->tCL - 1) << 8 | |
| (e->tCL - 1); |
| |
| t->reg[4] |= boot->reg[4] & 0xffff0000; |
| |
| t->reg[6] = (0x33 - t->tCWL) << 16 | |
| t->tCWL << 8 | |
| (0x2e + e->tCL - t->tCWL); |
| |
| t->reg[7] = 0x4000202 | (e->tCL - 1) << 16; |
| |
| /* XXX: P.version == 1 only has DDR2 and GDDR3? */ |
| if (dev_priv->vram_type == NV_MEM_TYPE_DDR2) { |
| t->reg[5] |= (e->tCL + 3) << 8; |
| t->reg[6] |= (t->tCWL - 2) << 8; |
| t->reg[8] |= (e->tCL - 4); |
| } else { |
| t->reg[5] |= (e->tCL + 2) << 8; |
| t->reg[6] |= t->tCWL << 8; |
| t->reg[8] |= (e->tCL - 2); |
| } |
| } else { |
| t->reg[1] |= (5 + e->tCL - (t->tCWL)); |
| |
| /* XXX: 0xb? 0x30? */ |
| t->reg[3] = (0x30 + e->tCL) << 24 | |
| (boot->reg[3] & 0x00ff0000)| |
| (0xb + e->tCL) << 8 | |
| (e->tCL - 1); |
| |
| t->reg[4] |= (unk20 << 24 | unk21 << 16); |
| |
| /* XXX: +6? */ |
| t->reg[5] |= (t->tCWL + 6) << 8; |
| |
| t->reg[6] = (0x5a + e->tCL) << 16 | |
| (6 - e->tCL + t->tCWL) << 8 | |
| (0x50 + e->tCL - t->tCWL); |
| |
| tmp7_3 = (boot->reg[7] & 0xff000000) >> 24; |
| t->reg[7] = (tmp7_3 << 24) | |
| ((tmp7_3 - 6 + e->tCL) << 16) | |
| 0x202; |
| } |
| |
| NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x %08x\n", t->id, |
| t->reg[0], t->reg[1], t->reg[2], t->reg[3]); |
| NV_DEBUG(dev, " 230: %08x %08x %08x %08x\n", |
| t->reg[4], t->reg[5], t->reg[6], t->reg[7]); |
| NV_DEBUG(dev, " 240: %08x\n", t->reg[8]); |
| return 0; |
| } |
| |
| static int |
| nvc0_mem_timing_calc(struct drm_device *dev, u32 freq, |
| struct nouveau_pm_tbl_entry *e, u8 len, |
| struct nouveau_pm_memtiming *boot, |
| struct nouveau_pm_memtiming *t) |
| { |
| if (e->tCWL > 0) |
| t->tCWL = e->tCWL; |
| |
| t->reg[0] = (e->tRP << 24 | (e->tRAS & 0x7f) << 17 | |
| e->tRFC << 8 | e->tRC); |
| |
| t->reg[1] = (boot->reg[1] & 0xff000000) | |
| (e->tRCDWR & 0x0f) << 20 | |
| (e->tRCDRD & 0x0f) << 14 | |
| (t->tCWL << 7) | |
| (e->tCL & 0x0f); |
| |
| t->reg[2] = (boot->reg[2] & 0xff0000ff) | |
| e->tWR << 16 | e->tWTR << 8; |
| |
| t->reg[3] = (e->tUNK_20 & 0x1f) << 9 | |
| (e->tUNK_21 & 0xf) << 5 | |
| (e->tUNK_13 & 0x1f); |
| |
| t->reg[4] = (boot->reg[4] & 0xfff00fff) | |
| (e->tRRD&0x1f) << 15; |
| |
| NV_DEBUG(dev, "Entry %d: 290: %08x %08x %08x %08x\n", t->id, |
| t->reg[0], t->reg[1], t->reg[2], t->reg[3]); |
| NV_DEBUG(dev, " 2a0: %08x\n", t->reg[4]); |
| return 0; |
| } |
| |
| /** |
| * MR generation methods |
| */ |
| |
| static int |
| nouveau_mem_ddr2_mr(struct drm_device *dev, u32 freq, |
| struct nouveau_pm_tbl_entry *e, u8 len, |
| struct nouveau_pm_memtiming *boot, |
| struct nouveau_pm_memtiming *t) |
| { |
| t->drive_strength = 0; |
| if (len < 15) { |
| t->odt = boot->odt; |
| } else { |
| t->odt = e->RAM_FT1 & 0x07; |
| } |
| |
| if (e->tCL >= NV_MEM_CL_DDR2_MAX) { |
| NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL); |
| return -ERANGE; |
| } |
| |
| if (e->tWR >= NV_MEM_WR_DDR2_MAX) { |
| NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR); |
| return -ERANGE; |
| } |
| |
| if (t->odt > 3) { |
| NV_WARN(dev, "(%u) Invalid odt value, assuming disabled: %x", |
| t->id, t->odt); |
| t->odt = 0; |
| } |
| |
| t->mr[0] = (boot->mr[0] & 0x100f) | |
| (e->tCL) << 4 | |
| (e->tWR - 1) << 9; |
| t->mr[1] = (boot->mr[1] & 0x101fbb) | |
| (t->odt & 0x1) << 2 | |
| (t->odt & 0x2) << 5; |
| |
| NV_DEBUG(dev, "(%u) MR: %08x", t->id, t->mr[0]); |
| return 0; |
| } |
| |
| uint8_t nv_mem_wr_lut_ddr3[NV_MEM_WR_DDR3_MAX] = { |
| 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0}; |
| |
| static int |
| nouveau_mem_ddr3_mr(struct drm_device *dev, u32 freq, |
| struct nouveau_pm_tbl_entry *e, u8 len, |
| struct nouveau_pm_memtiming *boot, |
| struct nouveau_pm_memtiming *t) |
| { |
| u8 cl = e->tCL - 4; |
| |
| t->drive_strength = 0; |
| if (len < 15) { |
| t->odt = boot->odt; |
| } else { |
| t->odt = e->RAM_FT1 & 0x07; |
| } |
| |
| if (e->tCL >= NV_MEM_CL_DDR3_MAX || e->tCL < 4) { |
| NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL); |
| return -ERANGE; |
| } |
| |
| if (e->tWR >= NV_MEM_WR_DDR3_MAX || e->tWR < 4) { |
| NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR); |
| return -ERANGE; |
| } |
| |
| if (e->tCWL < 5) { |
| NV_WARN(dev, "(%u) Invalid tCWL: %u", t->id, e->tCWL); |
| return -ERANGE; |
| } |
| |
| t->mr[0] = (boot->mr[0] & 0x180b) | |
| /* CAS */ |
| (cl & 0x7) << 4 | |
| (cl & 0x8) >> 1 | |
| (nv_mem_wr_lut_ddr3[e->tWR]) << 9; |
| t->mr[1] = (boot->mr[1] & 0x101dbb) | |
| (t->odt & 0x1) << 2 | |
| (t->odt & 0x2) << 5 | |
| (t->odt & 0x4) << 7; |
| t->mr[2] = (boot->mr[2] & 0x20ffb7) | (e->tCWL - 5) << 3; |
| |
| NV_DEBUG(dev, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[2]); |
| return 0; |
| } |
| |
| uint8_t nv_mem_cl_lut_gddr3[NV_MEM_CL_GDDR3_MAX] = { |
| 0, 0, 0, 0, 4, 5, 6, 7, 0, 1, 2, 3, 8, 9, 10, 11}; |
| uint8_t nv_mem_wr_lut_gddr3[NV_MEM_WR_GDDR3_MAX] = { |
| 0, 0, 0, 0, 0, 2, 3, 8, 9, 10, 11, 0, 0, 1, 1, 0, 3}; |
| |
| static int |
| nouveau_mem_gddr3_mr(struct drm_device *dev, u32 freq, |
| struct nouveau_pm_tbl_entry *e, u8 len, |
| struct nouveau_pm_memtiming *boot, |
| struct nouveau_pm_memtiming *t) |
| { |
| if (len < 15) { |
| t->drive_strength = boot->drive_strength; |
| t->odt = boot->odt; |
| } else { |
| t->drive_strength = (e->RAM_FT1 & 0x30) >> 4; |
| t->odt = e->RAM_FT1 & 0x07; |
| } |
| |
| if (e->tCL >= NV_MEM_CL_GDDR3_MAX) { |
| NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL); |
| return -ERANGE; |
| } |
| |
| if (e->tWR >= NV_MEM_WR_GDDR3_MAX) { |
| NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR); |
| return -ERANGE; |
| } |
| |
| if (t->odt > 3) { |
| NV_WARN(dev, "(%u) Invalid odt value, assuming autocal: %x", |
| t->id, t->odt); |
| t->odt = 0; |
| } |
| |
| t->mr[0] = (boot->mr[0] & 0xe0b) | |
| /* CAS */ |
| ((nv_mem_cl_lut_gddr3[e->tCL] & 0x7) << 4) | |
| ((nv_mem_cl_lut_gddr3[e->tCL] & 0x8) >> 2); |
| t->mr[1] = (boot->mr[1] & 0x100f40) | t->drive_strength | |
| (t->odt << 2) | |
| (nv_mem_wr_lut_gddr3[e->tWR] & 0xf) << 4; |
| t->mr[2] = boot->mr[2]; |
| |
| NV_DEBUG(dev, "(%u) MR: %08x %08x %08x", t->id, |
| t->mr[0], t->mr[1], t->mr[2]); |
| return 0; |
| } |
| |
| static int |
| nouveau_mem_gddr5_mr(struct drm_device *dev, u32 freq, |
| struct nouveau_pm_tbl_entry *e, u8 len, |
| struct nouveau_pm_memtiming *boot, |
| struct nouveau_pm_memtiming *t) |
| { |
| if (len < 15) { |
| t->drive_strength = boot->drive_strength; |
| t->odt = boot->odt; |
| } else { |
| t->drive_strength = (e->RAM_FT1 & 0x30) >> 4; |
| t->odt = e->RAM_FT1 & 0x03; |
| } |
| |
| if (e->tCL >= NV_MEM_CL_GDDR5_MAX) { |
| NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL); |
| return -ERANGE; |
| } |
| |
| if (e->tWR >= NV_MEM_WR_GDDR5_MAX) { |
| NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR); |
| return -ERANGE; |
| } |
| |
| if (t->odt > 3) { |
| NV_WARN(dev, "(%u) Invalid odt value, assuming autocal: %x", |
| t->id, t->odt); |
| t->odt = 0; |
| } |
| |
| t->mr[0] = (boot->mr[0] & 0x007) | |
| ((e->tCL - 5) << 3) | |
| ((e->tWR - 4) << 8); |
| t->mr[1] = (boot->mr[1] & 0x1007f0) | |
| t->drive_strength | |
| (t->odt << 2); |
| |
| NV_DEBUG(dev, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[1]); |
| return 0; |
| } |
| |
| int |
| nouveau_mem_timing_calc(struct drm_device *dev, u32 freq, |
| struct nouveau_pm_memtiming *t) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_pm_engine *pm = &dev_priv->engine.pm; |
| struct nouveau_pm_memtiming *boot = &pm->boot.timing; |
| struct nouveau_pm_tbl_entry *e; |
| u8 ver, len, *ptr, *ramcfg; |
| int ret; |
| |
| ptr = nouveau_perf_timing(dev, freq, &ver, &len); |
| if (!ptr || ptr[0] == 0x00) { |
| *t = *boot; |
| return 0; |
| } |
| e = (struct nouveau_pm_tbl_entry *)ptr; |
| |
| t->tCWL = boot->tCWL; |
| |
| switch (dev_priv->card_type) { |
| case NV_40: |
| ret = nv40_mem_timing_calc(dev, freq, e, len, boot, t); |
| break; |
| case NV_50: |
| ret = nv50_mem_timing_calc(dev, freq, e, len, boot, t); |
| break; |
| case NV_C0: |
| case NV_D0: |
| ret = nvc0_mem_timing_calc(dev, freq, e, len, boot, t); |
| break; |
| default: |
| ret = -ENODEV; |
| break; |
| } |
| |
| switch (dev_priv->vram_type * !ret) { |
| case NV_MEM_TYPE_GDDR3: |
| ret = nouveau_mem_gddr3_mr(dev, freq, e, len, boot, t); |
| break; |
| case NV_MEM_TYPE_GDDR5: |
| ret = nouveau_mem_gddr5_mr(dev, freq, e, len, boot, t); |
| break; |
| case NV_MEM_TYPE_DDR2: |
| ret = nouveau_mem_ddr2_mr(dev, freq, e, len, boot, t); |
| break; |
| case NV_MEM_TYPE_DDR3: |
| ret = nouveau_mem_ddr3_mr(dev, freq, e, len, boot, t); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| ramcfg = nouveau_perf_ramcfg(dev, freq, &ver, &len); |
| if (ramcfg) { |
| int dll_off; |
| |
| if (ver == 0x00) |
| dll_off = !!(ramcfg[3] & 0x04); |
| else |
| dll_off = !!(ramcfg[2] & 0x40); |
| |
| switch (dev_priv->vram_type) { |
| case NV_MEM_TYPE_GDDR3: |
| t->mr[1] &= ~0x00000040; |
| t->mr[1] |= 0x00000040 * dll_off; |
| break; |
| default: |
| t->mr[1] &= ~0x00000001; |
| t->mr[1] |= 0x00000001 * dll_off; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| void |
| nouveau_mem_timing_read(struct drm_device *dev, struct nouveau_pm_memtiming *t) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| u32 timing_base, timing_regs, mr_base; |
| int i; |
| |
| if (dev_priv->card_type >= 0xC0) { |
| timing_base = 0x10f290; |
| mr_base = 0x10f300; |
| } else { |
| timing_base = 0x100220; |
| mr_base = 0x1002c0; |
| } |
| |
| t->id = -1; |
| |
| switch (dev_priv->card_type) { |
| case NV_50: |
| timing_regs = 9; |
| break; |
| case NV_C0: |
| case NV_D0: |
| timing_regs = 5; |
| break; |
| case NV_30: |
| case NV_40: |
| timing_regs = 3; |
| break; |
| default: |
| timing_regs = 0; |
| return; |
| } |
| for(i = 0; i < timing_regs; i++) |
| t->reg[i] = nv_rd32(dev, timing_base + (0x04 * i)); |
| |
| t->tCWL = 0; |
| if (dev_priv->card_type < NV_C0) { |
| t->tCWL = ((nv_rd32(dev, 0x100228) & 0x0f000000) >> 24) + 1; |
| } else if (dev_priv->card_type <= NV_D0) { |
| t->tCWL = ((nv_rd32(dev, 0x10f294) & 0x00000f80) >> 7); |
| } |
| |
| t->mr[0] = nv_rd32(dev, mr_base); |
| t->mr[1] = nv_rd32(dev, mr_base + 0x04); |
| t->mr[2] = nv_rd32(dev, mr_base + 0x20); |
| t->mr[3] = nv_rd32(dev, mr_base + 0x24); |
| |
| t->odt = 0; |
| t->drive_strength = 0; |
| |
| switch (dev_priv->vram_type) { |
| case NV_MEM_TYPE_DDR3: |
| t->odt |= (t->mr[1] & 0x200) >> 7; |
| case NV_MEM_TYPE_DDR2: |
| t->odt |= (t->mr[1] & 0x04) >> 2 | |
| (t->mr[1] & 0x40) >> 5; |
| break; |
| case NV_MEM_TYPE_GDDR3: |
| case NV_MEM_TYPE_GDDR5: |
| t->drive_strength = t->mr[1] & 0x03; |
| t->odt = (t->mr[1] & 0x0c) >> 2; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| int |
| nouveau_mem_exec(struct nouveau_mem_exec_func *exec, |
| struct nouveau_pm_level *perflvl) |
| { |
| struct drm_nouveau_private *dev_priv = exec->dev->dev_private; |
| struct nouveau_pm_memtiming *info = &perflvl->timing; |
| u32 tMRD = 1000, tCKSRE = 0, tCKSRX = 0, tXS = 0, tDLLK = 0; |
| u32 mr[3] = { info->mr[0], info->mr[1], info->mr[2] }; |
| u32 mr1_dlloff; |
| |
| switch (dev_priv->vram_type) { |
| case NV_MEM_TYPE_DDR2: |
| tDLLK = 2000; |
| mr1_dlloff = 0x00000001; |
| break; |
| case NV_MEM_TYPE_DDR3: |
| tDLLK = 12000; |
| tCKSRE = 2000; |
| tXS = 1000; |
| mr1_dlloff = 0x00000001; |
| break; |
| case NV_MEM_TYPE_GDDR3: |
| tDLLK = 40000; |
| mr1_dlloff = 0x00000040; |
| break; |
| default: |
| NV_ERROR(exec->dev, "cannot reclock unsupported memtype\n"); |
| return -ENODEV; |
| } |
| |
| /* fetch current MRs */ |
| switch (dev_priv->vram_type) { |
| case NV_MEM_TYPE_GDDR3: |
| case NV_MEM_TYPE_DDR3: |
| mr[2] = exec->mrg(exec, 2); |
| default: |
| mr[1] = exec->mrg(exec, 1); |
| mr[0] = exec->mrg(exec, 0); |
| break; |
| } |
| |
| /* DLL 'on' -> DLL 'off' mode, disable before entering self-refresh */ |
| if (!(mr[1] & mr1_dlloff) && (info->mr[1] & mr1_dlloff)) { |
| exec->precharge(exec); |
| exec->mrs (exec, 1, mr[1] | mr1_dlloff); |
| exec->wait(exec, tMRD); |
| } |
| |
| /* enter self-refresh mode */ |
| exec->precharge(exec); |
| exec->refresh(exec); |
| exec->refresh(exec); |
| exec->refresh_auto(exec, false); |
| exec->refresh_self(exec, true); |
| exec->wait(exec, tCKSRE); |
| |
| /* modify input clock frequency */ |
| exec->clock_set(exec); |
| |
| /* exit self-refresh mode */ |
| exec->wait(exec, tCKSRX); |
| exec->precharge(exec); |
| exec->refresh_self(exec, false); |
| exec->refresh_auto(exec, true); |
| exec->wait(exec, tXS); |
| exec->wait(exec, tXS); |
| |
| /* update MRs */ |
| if (mr[2] != info->mr[2]) { |
| exec->mrs (exec, 2, info->mr[2]); |
| exec->wait(exec, tMRD); |
| } |
| |
| if (mr[1] != info->mr[1]) { |
| /* need to keep DLL off until later, at least on GDDR3 */ |
| exec->mrs (exec, 1, info->mr[1] | (mr[1] & mr1_dlloff)); |
| exec->wait(exec, tMRD); |
| } |
| |
| if (mr[0] != info->mr[0]) { |
| exec->mrs (exec, 0, info->mr[0]); |
| exec->wait(exec, tMRD); |
| } |
| |
| /* update PFB timing registers */ |
| exec->timing_set(exec); |
| |
| /* DLL (enable + ) reset */ |
| if (!(info->mr[1] & mr1_dlloff)) { |
| if (mr[1] & mr1_dlloff) { |
| exec->mrs (exec, 1, info->mr[1]); |
| exec->wait(exec, tMRD); |
| } |
| exec->mrs (exec, 0, info->mr[0] | 0x00000100); |
| exec->wait(exec, tMRD); |
| exec->mrs (exec, 0, info->mr[0] | 0x00000000); |
| exec->wait(exec, tMRD); |
| exec->wait(exec, tDLLK); |
| if (dev_priv->vram_type == NV_MEM_TYPE_GDDR3) |
| exec->precharge(exec); |
| } |
| |
| return 0; |
| } |
| |
| int |
| nouveau_mem_vbios_type(struct drm_device *dev) |
| { |
| struct bit_entry M; |
| u8 ramcfg = (nv_rd32(dev, 0x101000) & 0x0000003c) >> 2; |
| if (!bit_table(dev, 'M', &M) || M.version != 2 || M.length < 5) { |
| u8 *table = ROMPTR(dev, M.data[3]); |
| if (table && table[0] == 0x10 && ramcfg < table[3]) { |
| u8 *entry = table + table[1] + (ramcfg * table[2]); |
| switch (entry[0] & 0x0f) { |
| case 0: return NV_MEM_TYPE_DDR2; |
| case 1: return NV_MEM_TYPE_DDR3; |
| case 2: return NV_MEM_TYPE_GDDR3; |
| case 3: return NV_MEM_TYPE_GDDR5; |
| default: |
| break; |
| } |
| |
| } |
| } |
| return NV_MEM_TYPE_UNKNOWN; |
| } |
| |
| static int |
| nouveau_vram_manager_init(struct ttm_mem_type_manager *man, unsigned long psize) |
| { |
| /* nothing to do */ |
| return 0; |
| } |
| |
| static int |
| nouveau_vram_manager_fini(struct ttm_mem_type_manager *man) |
| { |
| /* nothing to do */ |
| return 0; |
| } |
| |
| static inline void |
| nouveau_mem_node_cleanup(struct nouveau_mem *node) |
| { |
| if (node->vma[0].node) { |
| nouveau_vm_unmap(&node->vma[0]); |
| nouveau_vm_put(&node->vma[0]); |
| } |
| |
| if (node->vma[1].node) { |
| nouveau_vm_unmap(&node->vma[1]); |
| nouveau_vm_put(&node->vma[1]); |
| } |
| } |
| |
| static void |
| nouveau_vram_manager_del(struct ttm_mem_type_manager *man, |
| struct ttm_mem_reg *mem) |
| { |
| struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev); |
| struct nouveau_vram_engine *vram = &dev_priv->engine.vram; |
| struct drm_device *dev = dev_priv->dev; |
| |
| nouveau_mem_node_cleanup(mem->mm_node); |
| vram->put(dev, (struct nouveau_mem **)&mem->mm_node); |
| } |
| |
| static int |
| nouveau_vram_manager_new(struct ttm_mem_type_manager *man, |
| struct ttm_buffer_object *bo, |
| struct ttm_placement *placement, |
| struct ttm_mem_reg *mem) |
| { |
| struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev); |
| struct nouveau_vram_engine *vram = &dev_priv->engine.vram; |
| struct drm_device *dev = dev_priv->dev; |
| struct nouveau_bo *nvbo = nouveau_bo(bo); |
| struct nouveau_mem *node; |
| u32 size_nc = 0; |
| int ret; |
| |
| if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) |
| size_nc = 1 << nvbo->page_shift; |
| |
| ret = vram->get(dev, mem->num_pages << PAGE_SHIFT, |
| mem->page_alignment << PAGE_SHIFT, size_nc, |
| (nvbo->tile_flags >> 8) & 0x3ff, &node); |
| if (ret) { |
| mem->mm_node = NULL; |
| return (ret == -ENOSPC) ? 0 : ret; |
| } |
| |
| node->page_shift = nvbo->page_shift; |
| |
| mem->mm_node = node; |
| mem->start = node->offset >> PAGE_SHIFT; |
| return 0; |
| } |
| |
| void |
| nouveau_vram_manager_debug(struct ttm_mem_type_manager *man, const char *prefix) |
| { |
| struct nouveau_mm *mm = man->priv; |
| struct nouveau_mm_node *r; |
| u32 total = 0, free = 0; |
| |
| mutex_lock(&mm->mutex); |
| list_for_each_entry(r, &mm->nodes, nl_entry) { |
| printk(KERN_DEBUG "%s %d: 0x%010llx 0x%010llx\n", |
| prefix, r->type, ((u64)r->offset << 12), |
| (((u64)r->offset + r->length) << 12)); |
| |
| total += r->length; |
| if (!r->type) |
| free += r->length; |
| } |
| mutex_unlock(&mm->mutex); |
| |
| printk(KERN_DEBUG "%s total: 0x%010llx free: 0x%010llx\n", |
| prefix, (u64)total << 12, (u64)free << 12); |
| printk(KERN_DEBUG "%s block: 0x%08x\n", |
| prefix, mm->block_size << 12); |
| } |
| |
| const struct ttm_mem_type_manager_func nouveau_vram_manager = { |
| nouveau_vram_manager_init, |
| nouveau_vram_manager_fini, |
| nouveau_vram_manager_new, |
| nouveau_vram_manager_del, |
| nouveau_vram_manager_debug |
| }; |
| |
| static int |
| nouveau_gart_manager_init(struct ttm_mem_type_manager *man, unsigned long psize) |
| { |
| return 0; |
| } |
| |
| static int |
| nouveau_gart_manager_fini(struct ttm_mem_type_manager *man) |
| { |
| return 0; |
| } |
| |
| static void |
| nouveau_gart_manager_del(struct ttm_mem_type_manager *man, |
| struct ttm_mem_reg *mem) |
| { |
| nouveau_mem_node_cleanup(mem->mm_node); |
| kfree(mem->mm_node); |
| mem->mm_node = NULL; |
| } |
| |
| static int |
| nouveau_gart_manager_new(struct ttm_mem_type_manager *man, |
| struct ttm_buffer_object *bo, |
| struct ttm_placement *placement, |
| struct ttm_mem_reg *mem) |
| { |
| struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev); |
| struct nouveau_mem *node; |
| |
| if (unlikely((mem->num_pages << PAGE_SHIFT) >= |
| dev_priv->gart_info.aper_size)) |
| return -ENOMEM; |
| |
| node = kzalloc(sizeof(*node), GFP_KERNEL); |
| if (!node) |
| return -ENOMEM; |
| node->page_shift = 12; |
| |
| mem->mm_node = node; |
| mem->start = 0; |
| return 0; |
| } |
| |
| void |
| nouveau_gart_manager_debug(struct ttm_mem_type_manager *man, const char *prefix) |
| { |
| } |
| |
| const struct ttm_mem_type_manager_func nouveau_gart_manager = { |
| nouveau_gart_manager_init, |
| nouveau_gart_manager_fini, |
| nouveau_gart_manager_new, |
| nouveau_gart_manager_del, |
| nouveau_gart_manager_debug |
| }; |