| /* |
| * File: arch/blackfin/kernel/traps.c |
| * Based on: |
| * Author: Hamish Macdonald |
| * |
| * Created: |
| * Description: uses S/W interrupt 15 for the system calls |
| * |
| * Modified: |
| * Copyright 2004-2006 Analog Devices Inc. |
| * |
| * Bugs: Enter bugs at http://blackfin.uclinux.org/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see the file COPYING, or write |
| * to the Free Software Foundation, Inc., |
| * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <linux/uaccess.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/kallsyms.h> |
| #include <linux/fs.h> |
| #include <linux/rbtree.h> |
| #include <asm/traps.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cplb.h> |
| #include <asm/blackfin.h> |
| #include <asm/irq_handler.h> |
| #include <linux/irq.h> |
| #include <asm/trace.h> |
| #include <asm/fixed_code.h> |
| |
| #ifdef CONFIG_KGDB |
| # include <linux/kgdb.h> |
| |
| # define CHK_DEBUGGER_TRAP() \ |
| do { \ |
| kgdb_handle_exception(trapnr, sig, info.si_code, fp); \ |
| } while (0) |
| # define CHK_DEBUGGER_TRAP_MAYBE() \ |
| do { \ |
| if (kgdb_connected) \ |
| CHK_DEBUGGER_TRAP(); \ |
| } while (0) |
| #else |
| # define CHK_DEBUGGER_TRAP() do { } while (0) |
| # define CHK_DEBUGGER_TRAP_MAYBE() do { } while (0) |
| #endif |
| |
| |
| #ifdef CONFIG_DEBUG_VERBOSE |
| #define verbose_printk(fmt, arg...) \ |
| printk(fmt, ##arg) |
| #else |
| #define verbose_printk(fmt, arg...) \ |
| ({ if (0) printk(fmt, ##arg); 0; }) |
| #endif |
| |
| /* Initiate the event table handler */ |
| void __init trap_init(void) |
| { |
| CSYNC(); |
| bfin_write_EVT3(trap); |
| CSYNC(); |
| } |
| |
| static void decode_address(char *buf, unsigned long address) |
| { |
| #ifdef CONFIG_DEBUG_VERBOSE |
| struct vm_list_struct *vml; |
| struct task_struct *p; |
| struct mm_struct *mm; |
| unsigned long flags, offset; |
| unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic(); |
| struct rb_node *n; |
| |
| #ifdef CONFIG_KALLSYMS |
| unsigned long symsize; |
| const char *symname; |
| char *modname; |
| char *delim = ":"; |
| char namebuf[128]; |
| |
| /* look up the address and see if we are in kernel space */ |
| symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf); |
| |
| if (symname) { |
| /* yeah! kernel space! */ |
| if (!modname) |
| modname = delim = ""; |
| sprintf(buf, "<0x%p> { %s%s%s%s + 0x%lx }", |
| (void *)address, delim, modname, delim, symname, |
| (unsigned long)offset); |
| return; |
| |
| } |
| #endif |
| |
| /* Problem in fixed code section? */ |
| if (address >= FIXED_CODE_START && address < FIXED_CODE_END) { |
| sprintf(buf, "<0x%p> /* Maybe fixed code section */", (void *)address); |
| return; |
| } |
| |
| /* Problem somewhere before the kernel start address */ |
| if (address < CONFIG_BOOT_LOAD) { |
| sprintf(buf, "<0x%p> /* Maybe null pointer? */", (void *)address); |
| return; |
| } |
| |
| /* looks like we're off in user-land, so let's walk all the |
| * mappings of all our processes and see if we can't be a whee |
| * bit more specific |
| */ |
| write_lock_irqsave(&tasklist_lock, flags); |
| for_each_process(p) { |
| mm = (in_atomic ? p->mm : get_task_mm(p)); |
| if (!mm) |
| continue; |
| |
| for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { |
| struct vm_area_struct *vma; |
| |
| vma = rb_entry(n, struct vm_area_struct, vm_rb); |
| |
| if (address >= vma->vm_start && address < vma->vm_end) { |
| char _tmpbuf[256]; |
| char *name = p->comm; |
| struct file *file = vma->vm_file; |
| |
| if (file) { |
| char *d_name = d_path(&file->f_path, _tmpbuf, |
| sizeof(_tmpbuf)); |
| if (!IS_ERR(d_name)) |
| name = d_name; |
| } |
| |
| /* FLAT does not have its text aligned to the start of |
| * the map while FDPIC ELF does ... |
| */ |
| |
| /* before we can check flat/fdpic, we need to |
| * make sure current is valid |
| */ |
| if ((unsigned long)current >= FIXED_CODE_START && |
| !((unsigned long)current & 0x3)) { |
| if (current->mm && |
| (address > current->mm->start_code) && |
| (address < current->mm->end_code)) |
| offset = address - current->mm->start_code; |
| else |
| offset = (address - vma->vm_start) + |
| (vma->vm_pgoff << PAGE_SHIFT); |
| |
| sprintf(buf, "<0x%p> [ %s + 0x%lx ]", |
| (void *)address, name, offset); |
| } else |
| sprintf(buf, "<0x%p> [ %s vma:0x%lx-0x%lx]", |
| (void *)address, name, |
| vma->vm_start, vma->vm_end); |
| |
| if (!in_atomic) |
| mmput(mm); |
| |
| if (!strlen(buf)) |
| sprintf(buf, "<0x%p> [ %s ] dynamic memory", (void *)address, name); |
| |
| goto done; |
| } |
| } |
| if (!in_atomic) |
| mmput(mm); |
| } |
| |
| /* we were unable to find this address anywhere */ |
| sprintf(buf, "<0x%p> /* kernel dynamic memory */", (void *)address); |
| |
| done: |
| write_unlock_irqrestore(&tasklist_lock, flags); |
| #else |
| sprintf(buf, " "); |
| #endif |
| } |
| |
| asmlinkage void double_fault_c(struct pt_regs *fp) |
| { |
| console_verbose(); |
| oops_in_progress = 1; |
| #ifdef CONFIG_DEBUG_VERBOSE |
| printk(KERN_EMERG "\n" KERN_EMERG "Double Fault\n"); |
| #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT |
| if (((long)fp->seqstat & SEQSTAT_EXCAUSE) == VEC_UNCOV) { |
| unsigned int cpu = smp_processor_id(); |
| char buf[150]; |
| decode_address(buf, cpu_pda[cpu].retx); |
| printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n", |
| (unsigned int)cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE, buf); |
| decode_address(buf, cpu_pda[cpu].dcplb_fault_addr); |
| printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %s\n", buf); |
| decode_address(buf, cpu_pda[cpu].icplb_fault_addr); |
| printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %s\n", buf); |
| |
| decode_address(buf, fp->retx); |
| printk(KERN_NOTICE "The instruction at %s caused a double exception\n", buf); |
| } else |
| #endif |
| { |
| dump_bfin_process(fp); |
| dump_bfin_mem(fp); |
| show_regs(fp); |
| } |
| #endif |
| panic("Double Fault - unrecoverable event\n"); |
| |
| } |
| |
| asmlinkage void trap_c(struct pt_regs *fp) |
| { |
| #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON |
| int j; |
| #endif |
| #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO |
| unsigned int cpu = smp_processor_id(); |
| #endif |
| int sig = 0; |
| siginfo_t info; |
| unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE; |
| |
| trace_buffer_save(j); |
| |
| /* Important - be very careful dereferncing pointers - will lead to |
| * double faults if the stack has become corrupt |
| */ |
| |
| /* If the fault was caused by a kernel thread, or interrupt handler |
| * we will kernel panic, so the system reboots. |
| * If KGDB is enabled, don't set this for kernel breakpoints |
| */ |
| |
| /* TODO: check to see if we are in some sort of deferred HWERR |
| * that we should be able to recover from, not kernel panic |
| */ |
| if ((bfin_read_IPEND() & 0xFFC0) && (trapnr != VEC_STEP) |
| #ifdef CONFIG_KGDB |
| && (trapnr != VEC_EXCPT02) |
| #endif |
| ){ |
| console_verbose(); |
| oops_in_progress = 1; |
| } else if (current) { |
| if (current->mm == NULL) { |
| console_verbose(); |
| oops_in_progress = 1; |
| } |
| } |
| |
| /* trap_c() will be called for exceptions. During exceptions |
| * processing, the pc value should be set with retx value. |
| * With this change we can cleanup some code in signal.c- TODO |
| */ |
| fp->orig_pc = fp->retx; |
| /* printk("exception: 0x%x, ipend=%x, reti=%x, retx=%x\n", |
| trapnr, fp->ipend, fp->pc, fp->retx); */ |
| |
| /* send the appropriate signal to the user program */ |
| switch (trapnr) { |
| |
| /* This table works in conjuction with the one in ./mach-common/entry.S |
| * Some exceptions are handled there (in assembly, in exception space) |
| * Some are handled here, (in C, in interrupt space) |
| * Some, like CPLB, are handled in both, where the normal path is |
| * handled in assembly/exception space, and the error path is handled |
| * here |
| */ |
| |
| /* 0x00 - Linux Syscall, getting here is an error */ |
| /* 0x01 - userspace gdb breakpoint, handled here */ |
| case VEC_EXCPT01: |
| info.si_code = TRAP_ILLTRAP; |
| sig = SIGTRAP; |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| /* Check if this is a breakpoint in kernel space */ |
| if (fp->ipend & 0xffc0) |
| return; |
| else |
| break; |
| /* 0x03 - User Defined, userspace stack overflow */ |
| case VEC_EXCPT03: |
| info.si_code = SEGV_STACKFLOW; |
| sig = SIGSEGV; |
| verbose_printk(KERN_NOTICE EXC_0x03(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x02 - KGDB initial connection and break signal trap */ |
| case VEC_EXCPT02: |
| #ifdef CONFIG_KGDB |
| info.si_code = TRAP_ILLTRAP; |
| sig = SIGTRAP; |
| CHK_DEBUGGER_TRAP(); |
| return; |
| #endif |
| /* 0x04 - User Defined */ |
| /* 0x05 - User Defined */ |
| /* 0x06 - User Defined */ |
| /* 0x07 - User Defined */ |
| /* 0x08 - User Defined */ |
| /* 0x09 - User Defined */ |
| /* 0x0A - User Defined */ |
| /* 0x0B - User Defined */ |
| /* 0x0C - User Defined */ |
| /* 0x0D - User Defined */ |
| /* 0x0E - User Defined */ |
| /* 0x0F - User Defined */ |
| /* If we got here, it is most likely that someone was trying to use a |
| * custom exception handler, and it is not actually installed properly |
| */ |
| case VEC_EXCPT04 ... VEC_EXCPT15: |
| info.si_code = ILL_ILLPARAOP; |
| sig = SIGILL; |
| verbose_printk(KERN_NOTICE EXC_0x04(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x10 HW Single step, handled here */ |
| case VEC_STEP: |
| info.si_code = TRAP_STEP; |
| sig = SIGTRAP; |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| /* Check if this is a single step in kernel space */ |
| if (fp->ipend & 0xffc0) |
| return; |
| else |
| break; |
| /* 0x11 - Trace Buffer Full, handled here */ |
| case VEC_OVFLOW: |
| info.si_code = TRAP_TRACEFLOW; |
| sig = SIGTRAP; |
| verbose_printk(KERN_NOTICE EXC_0x11(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x12 - Reserved, Caught by default */ |
| /* 0x13 - Reserved, Caught by default */ |
| /* 0x14 - Reserved, Caught by default */ |
| /* 0x15 - Reserved, Caught by default */ |
| /* 0x16 - Reserved, Caught by default */ |
| /* 0x17 - Reserved, Caught by default */ |
| /* 0x18 - Reserved, Caught by default */ |
| /* 0x19 - Reserved, Caught by default */ |
| /* 0x1A - Reserved, Caught by default */ |
| /* 0x1B - Reserved, Caught by default */ |
| /* 0x1C - Reserved, Caught by default */ |
| /* 0x1D - Reserved, Caught by default */ |
| /* 0x1E - Reserved, Caught by default */ |
| /* 0x1F - Reserved, Caught by default */ |
| /* 0x20 - Reserved, Caught by default */ |
| /* 0x21 - Undefined Instruction, handled here */ |
| case VEC_UNDEF_I: |
| info.si_code = ILL_ILLOPC; |
| sig = SIGILL; |
| verbose_printk(KERN_NOTICE EXC_0x21(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x22 - Illegal Instruction Combination, handled here */ |
| case VEC_ILGAL_I: |
| info.si_code = ILL_ILLPARAOP; |
| sig = SIGILL; |
| verbose_printk(KERN_NOTICE EXC_0x22(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x23 - Data CPLB protection violation, handled here */ |
| case VEC_CPLB_VL: |
| info.si_code = ILL_CPLB_VI; |
| sig = SIGBUS; |
| verbose_printk(KERN_NOTICE EXC_0x23(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x24 - Data access misaligned, handled here */ |
| case VEC_MISALI_D: |
| info.si_code = BUS_ADRALN; |
| sig = SIGBUS; |
| verbose_printk(KERN_NOTICE EXC_0x24(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x25 - Unrecoverable Event, handled here */ |
| case VEC_UNCOV: |
| info.si_code = ILL_ILLEXCPT; |
| sig = SIGILL; |
| verbose_printk(KERN_NOTICE EXC_0x25(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr, |
| error case is handled here */ |
| case VEC_CPLB_M: |
| info.si_code = BUS_ADRALN; |
| sig = SIGBUS; |
| verbose_printk(KERN_NOTICE EXC_0x26(KERN_NOTICE)); |
| break; |
| /* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */ |
| case VEC_CPLB_MHIT: |
| info.si_code = ILL_CPLB_MULHIT; |
| sig = SIGSEGV; |
| #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO |
| if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START) |
| verbose_printk(KERN_NOTICE "NULL pointer access\n"); |
| else |
| #endif |
| verbose_printk(KERN_NOTICE EXC_0x27(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x28 - Emulation Watchpoint, handled here */ |
| case VEC_WATCH: |
| info.si_code = TRAP_WATCHPT; |
| sig = SIGTRAP; |
| pr_debug(EXC_0x28(KERN_DEBUG)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| /* Check if this is a watchpoint in kernel space */ |
| if (fp->ipend & 0xffc0) |
| return; |
| else |
| break; |
| #ifdef CONFIG_BF535 |
| /* 0x29 - Instruction fetch access error (535 only) */ |
| case VEC_ISTRU_VL: /* ADSP-BF535 only (MH) */ |
| info.si_code = BUS_OPFETCH; |
| sig = SIGBUS; |
| verbose_printk(KERN_NOTICE "BF535: VEC_ISTRU_VL\n"); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| #else |
| /* 0x29 - Reserved, Caught by default */ |
| #endif |
| /* 0x2A - Instruction fetch misaligned, handled here */ |
| case VEC_MISALI_I: |
| info.si_code = BUS_ADRALN; |
| sig = SIGBUS; |
| verbose_printk(KERN_NOTICE EXC_0x2A(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x2B - Instruction CPLB protection violation, handled here */ |
| case VEC_CPLB_I_VL: |
| info.si_code = ILL_CPLB_VI; |
| sig = SIGBUS; |
| verbose_printk(KERN_NOTICE EXC_0x2B(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */ |
| case VEC_CPLB_I_M: |
| info.si_code = ILL_CPLB_MISS; |
| sig = SIGBUS; |
| verbose_printk(KERN_NOTICE EXC_0x2C(KERN_NOTICE)); |
| break; |
| /* 0x2D - Instruction CPLB Multiple Hits, handled here */ |
| case VEC_CPLB_I_MHIT: |
| info.si_code = ILL_CPLB_MULHIT; |
| sig = SIGSEGV; |
| #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO |
| if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START) |
| verbose_printk(KERN_NOTICE "Jump to NULL address\n"); |
| else |
| #endif |
| verbose_printk(KERN_NOTICE EXC_0x2D(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x2E - Illegal use of Supervisor Resource, handled here */ |
| case VEC_ILL_RES: |
| info.si_code = ILL_PRVOPC; |
| sig = SIGILL; |
| verbose_printk(KERN_NOTICE EXC_0x2E(KERN_NOTICE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* 0x2F - Reserved, Caught by default */ |
| /* 0x30 - Reserved, Caught by default */ |
| /* 0x31 - Reserved, Caught by default */ |
| /* 0x32 - Reserved, Caught by default */ |
| /* 0x33 - Reserved, Caught by default */ |
| /* 0x34 - Reserved, Caught by default */ |
| /* 0x35 - Reserved, Caught by default */ |
| /* 0x36 - Reserved, Caught by default */ |
| /* 0x37 - Reserved, Caught by default */ |
| /* 0x38 - Reserved, Caught by default */ |
| /* 0x39 - Reserved, Caught by default */ |
| /* 0x3A - Reserved, Caught by default */ |
| /* 0x3B - Reserved, Caught by default */ |
| /* 0x3C - Reserved, Caught by default */ |
| /* 0x3D - Reserved, Caught by default */ |
| /* 0x3E - Reserved, Caught by default */ |
| /* 0x3F - Reserved, Caught by default */ |
| case VEC_HWERR: |
| info.si_code = BUS_ADRALN; |
| sig = SIGBUS; |
| switch (fp->seqstat & SEQSTAT_HWERRCAUSE) { |
| /* System MMR Error */ |
| case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR): |
| info.si_code = BUS_ADRALN; |
| sig = SIGBUS; |
| verbose_printk(KERN_NOTICE HWC_x2(KERN_NOTICE)); |
| break; |
| /* External Memory Addressing Error */ |
| case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR): |
| info.si_code = BUS_ADRERR; |
| sig = SIGBUS; |
| verbose_printk(KERN_NOTICE HWC_x3(KERN_NOTICE)); |
| break; |
| /* Performance Monitor Overflow */ |
| case (SEQSTAT_HWERRCAUSE_PERF_FLOW): |
| verbose_printk(KERN_NOTICE HWC_x12(KERN_NOTICE)); |
| break; |
| /* RAISE 5 instruction */ |
| case (SEQSTAT_HWERRCAUSE_RAISE_5): |
| printk(KERN_NOTICE HWC_x18(KERN_NOTICE)); |
| break; |
| default: /* Reserved */ |
| printk(KERN_NOTICE HWC_default(KERN_NOTICE)); |
| break; |
| } |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| /* |
| * We should be handling all known exception types above, |
| * if we get here we hit a reserved one, so panic |
| */ |
| default: |
| oops_in_progress = 1; |
| info.si_code = ILL_ILLPARAOP; |
| sig = SIGILL; |
| verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n", |
| (fp->seqstat & SEQSTAT_EXCAUSE)); |
| CHK_DEBUGGER_TRAP_MAYBE(); |
| break; |
| } |
| |
| BUG_ON(sig == 0); |
| |
| if (sig != SIGTRAP) { |
| dump_bfin_process(fp); |
| dump_bfin_mem(fp); |
| show_regs(fp); |
| |
| /* Print out the trace buffer if it makes sense */ |
| #ifndef CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE |
| if (trapnr == VEC_CPLB_I_M || trapnr == VEC_CPLB_M) |
| verbose_printk(KERN_NOTICE "No trace since you do not have " |
| "CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE enabled\n" |
| KERN_NOTICE "\n"); |
| else |
| #endif |
| dump_bfin_trace_buffer(); |
| |
| if (oops_in_progress) { |
| /* Dump the current kernel stack */ |
| verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "Kernel Stack\n"); |
| show_stack(current, NULL); |
| print_modules(); |
| #ifndef CONFIG_ACCESS_CHECK |
| verbose_printk(KERN_EMERG "Please turn on " |
| "CONFIG_ACCESS_CHECK\n"); |
| #endif |
| panic("Kernel exception"); |
| } else { |
| #ifdef CONFIG_DEBUG_VERBOSE |
| unsigned long *stack; |
| /* Dump the user space stack */ |
| stack = (unsigned long *)rdusp(); |
| verbose_printk(KERN_NOTICE "Userspace Stack\n"); |
| show_stack(NULL, stack); |
| #endif |
| } |
| } |
| |
| #ifdef CONFIG_IPIPE |
| if (!ipipe_trap_notify(fp->seqstat & 0x3f, fp)) |
| #endif |
| { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_addr = (void __user *)fp->pc; |
| force_sig_info(sig, &info, current); |
| } |
| |
| trace_buffer_restore(j); |
| return; |
| } |
| |
| /* Typical exception handling routines */ |
| |
| #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1) |
| |
| /* |
| * Similar to get_user, do some address checking, then dereference |
| * Return true on sucess, false on bad address |
| */ |
| static bool get_instruction(unsigned short *val, unsigned short *address) |
| { |
| |
| unsigned long addr; |
| |
| addr = (unsigned long)address; |
| |
| /* Check for odd addresses */ |
| if (addr & 0x1) |
| return false; |
| |
| /* Check that things do not wrap around */ |
| if (addr > (addr + 2)) |
| return false; |
| |
| /* |
| * Since we are in exception context, we need to do a little address checking |
| * We need to make sure we are only accessing valid memory, and |
| * we don't read something in the async space that can hang forever |
| */ |
| if ((addr >= FIXED_CODE_START && (addr + 2) <= physical_mem_end) || |
| #if L2_LENGTH != 0 |
| (addr >= L2_START && (addr + 2) <= (L2_START + L2_LENGTH)) || |
| #endif |
| (addr >= BOOT_ROM_START && (addr + 2) <= (BOOT_ROM_START + BOOT_ROM_LENGTH)) || |
| #if L1_DATA_A_LENGTH != 0 |
| (addr >= L1_DATA_A_START && (addr + 2) <= (L1_DATA_A_START + L1_DATA_A_LENGTH)) || |
| #endif |
| #if L1_DATA_B_LENGTH != 0 |
| (addr >= L1_DATA_B_START && (addr + 2) <= (L1_DATA_B_START + L1_DATA_B_LENGTH)) || |
| #endif |
| (addr >= L1_SCRATCH_START && (addr + 2) <= (L1_SCRATCH_START + L1_SCRATCH_LENGTH)) || |
| (!(bfin_read_EBIU_AMBCTL0() & B0RDYEN) && |
| addr >= ASYNC_BANK0_BASE && (addr + 2) <= (ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)) || |
| (!(bfin_read_EBIU_AMBCTL0() & B1RDYEN) && |
| addr >= ASYNC_BANK1_BASE && (addr + 2) <= (ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)) || |
| (!(bfin_read_EBIU_AMBCTL1() & B2RDYEN) && |
| addr >= ASYNC_BANK2_BASE && (addr + 2) <= (ASYNC_BANK2_BASE + ASYNC_BANK1_SIZE)) || |
| (!(bfin_read_EBIU_AMBCTL1() & B3RDYEN) && |
| addr >= ASYNC_BANK3_BASE && (addr + 2) <= (ASYNC_BANK3_BASE + ASYNC_BANK1_SIZE))) { |
| *val = *address; |
| return true; |
| } |
| |
| #if L1_CODE_LENGTH != 0 |
| if (addr >= L1_CODE_START && (addr + 2) <= (L1_CODE_START + L1_CODE_LENGTH)) { |
| isram_memcpy(val, address, 2); |
| return true; |
| } |
| #endif |
| |
| |
| return false; |
| } |
| |
| /* |
| * decode the instruction if we are printing out the trace, as it |
| * makes things easier to follow, without running it through objdump |
| * These are the normal instructions which cause change of flow, which |
| * would be at the source of the trace buffer |
| */ |
| #if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON) |
| static void decode_instruction(unsigned short *address) |
| { |
| unsigned short opcode; |
| |
| if (get_instruction(&opcode, address)) { |
| if (opcode == 0x0010) |
| verbose_printk("RTS"); |
| else if (opcode == 0x0011) |
| verbose_printk("RTI"); |
| else if (opcode == 0x0012) |
| verbose_printk("RTX"); |
| else if (opcode == 0x0013) |
| verbose_printk("RTN"); |
| else if (opcode == 0x0014) |
| verbose_printk("RTE"); |
| else if (opcode == 0x0025) |
| verbose_printk("EMUEXCPT"); |
| else if (opcode == 0x0040 && opcode <= 0x0047) |
| verbose_printk("STI R%i", opcode & 7); |
| else if (opcode >= 0x0050 && opcode <= 0x0057) |
| verbose_printk("JUMP (P%i)", opcode & 7); |
| else if (opcode >= 0x0060 && opcode <= 0x0067) |
| verbose_printk("CALL (P%i)", opcode & 7); |
| else if (opcode >= 0x0070 && opcode <= 0x0077) |
| verbose_printk("CALL (PC+P%i)", opcode & 7); |
| else if (opcode >= 0x0080 && opcode <= 0x0087) |
| verbose_printk("JUMP (PC+P%i)", opcode & 7); |
| else if (opcode >= 0x0090 && opcode <= 0x009F) |
| verbose_printk("RAISE 0x%x", opcode & 0xF); |
| else if (opcode >= 0x00A0 && opcode <= 0x00AF) |
| verbose_printk("EXCPT 0x%x", opcode & 0xF); |
| else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF)) |
| verbose_printk("IF !CC JUMP"); |
| else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff)) |
| verbose_printk("IF CC JUMP"); |
| else if (opcode >= 0x2000 && opcode <= 0x2fff) |
| verbose_printk("JUMP.S"); |
| else if (opcode >= 0xe080 && opcode <= 0xe0ff) |
| verbose_printk("LSETUP"); |
| else if (opcode >= 0xe200 && opcode <= 0xe2ff) |
| verbose_printk("JUMP.L"); |
| else if (opcode >= 0xe300 && opcode <= 0xe3ff) |
| verbose_printk("CALL pcrel"); |
| else |
| verbose_printk("0x%04x", opcode); |
| } |
| |
| } |
| #endif |
| |
| void dump_bfin_trace_buffer(void) |
| { |
| #ifdef CONFIG_DEBUG_VERBOSE |
| #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON |
| int tflags, i = 0; |
| char buf[150]; |
| unsigned short *addr; |
| #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND |
| int j, index; |
| #endif |
| |
| trace_buffer_save(tflags); |
| |
| printk(KERN_NOTICE "Hardware Trace:\n"); |
| |
| #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND |
| printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n"); |
| #endif |
| |
| if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) { |
| for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) { |
| decode_address(buf, (unsigned long)bfin_read_TBUF()); |
| printk(KERN_NOTICE "%4i Target : %s\n", i, buf); |
| addr = (unsigned short *)bfin_read_TBUF(); |
| decode_address(buf, (unsigned long)addr); |
| printk(KERN_NOTICE " Source : %s ", buf); |
| decode_instruction(addr); |
| printk("\n"); |
| } |
| } |
| |
| #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND |
| if (trace_buff_offset) |
| index = trace_buff_offset / 4; |
| else |
| index = EXPAND_LEN; |
| |
| j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128; |
| while (j) { |
| decode_address(buf, software_trace_buff[index]); |
| printk(KERN_NOTICE "%4i Target : %s\n", i, buf); |
| index -= 1; |
| if (index < 0 ) |
| index = EXPAND_LEN; |
| decode_address(buf, software_trace_buff[index]); |
| printk(KERN_NOTICE " Source : %s ", buf); |
| decode_instruction((unsigned short *)software_trace_buff[index]); |
| printk("\n"); |
| index -= 1; |
| if (index < 0) |
| index = EXPAND_LEN; |
| j--; |
| i++; |
| } |
| #endif |
| |
| trace_buffer_restore(tflags); |
| #endif |
| #endif |
| } |
| EXPORT_SYMBOL(dump_bfin_trace_buffer); |
| |
| /* |
| * Checks to see if the address pointed to is either a |
| * 16-bit CALL instruction, or a 32-bit CALL instruction |
| */ |
| static bool is_bfin_call(unsigned short *addr) |
| { |
| unsigned short opcode = 0, *ins_addr; |
| ins_addr = (unsigned short *)addr; |
| |
| if (!get_instruction(&opcode, ins_addr)) |
| return false; |
| |
| if ((opcode >= 0x0060 && opcode <= 0x0067) || |
| (opcode >= 0x0070 && opcode <= 0x0077)) |
| return true; |
| |
| ins_addr--; |
| if (!get_instruction(&opcode, ins_addr)) |
| return false; |
| |
| if (opcode >= 0xE300 && opcode <= 0xE3FF) |
| return true; |
| |
| return false; |
| |
| } |
| |
| void show_stack(struct task_struct *task, unsigned long *stack) |
| { |
| #ifdef CONFIG_PRINTK |
| unsigned int *addr, *endstack, *fp = 0, *frame; |
| unsigned short *ins_addr; |
| char buf[150]; |
| unsigned int i, j, ret_addr, frame_no = 0; |
| |
| /* |
| * If we have been passed a specific stack, use that one otherwise |
| * if we have been passed a task structure, use that, otherwise |
| * use the stack of where the variable "stack" exists |
| */ |
| |
| if (stack == NULL) { |
| if (task) { |
| /* We know this is a kernel stack, so this is the start/end */ |
| stack = (unsigned long *)task->thread.ksp; |
| endstack = (unsigned int *)(((unsigned int)(stack) & ~(THREAD_SIZE - 1)) + THREAD_SIZE); |
| } else { |
| /* print out the existing stack info */ |
| stack = (unsigned long *)&stack; |
| endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack); |
| } |
| } else |
| endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack); |
| |
| printk(KERN_NOTICE "Stack info:\n"); |
| decode_address(buf, (unsigned int)stack); |
| printk(KERN_NOTICE " SP: [0x%p] %s\n", stack, buf); |
| |
| /* First thing is to look for a frame pointer */ |
| for (addr = (unsigned int *)((unsigned int)stack & ~0xF); addr < endstack; addr++) { |
| if (*addr & 0x1) |
| continue; |
| ins_addr = (unsigned short *)*addr; |
| ins_addr--; |
| if (is_bfin_call(ins_addr)) |
| fp = addr - 1; |
| |
| if (fp) { |
| /* Let's check to see if it is a frame pointer */ |
| while (fp >= (addr - 1) && fp < endstack |
| && fp && ((unsigned int) fp & 0x3) == 0) |
| fp = (unsigned int *)*fp; |
| if (fp == 0 || fp == endstack) { |
| fp = addr - 1; |
| break; |
| } |
| fp = 0; |
| } |
| } |
| if (fp) { |
| frame = fp; |
| printk(KERN_NOTICE " FP: (0x%p)\n", fp); |
| } else |
| frame = 0; |
| |
| /* |
| * Now that we think we know where things are, we |
| * walk the stack again, this time printing things out |
| * incase there is no frame pointer, we still look for |
| * valid return addresses |
| */ |
| |
| /* First time print out data, next time, print out symbols */ |
| for (j = 0; j <= 1; j++) { |
| if (j) |
| printk(KERN_NOTICE "Return addresses in stack:\n"); |
| else |
| printk(KERN_NOTICE " Memory from 0x%08lx to %p", ((long unsigned int)stack & ~0xF), endstack); |
| |
| fp = frame; |
| frame_no = 0; |
| |
| for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0; |
| addr <= endstack; addr++, i++) { |
| |
| ret_addr = 0; |
| if (!j && i % 8 == 0) |
| printk("\n" KERN_NOTICE "%p:",addr); |
| |
| /* if it is an odd address, or zero, just skip it */ |
| if (*addr & 0x1 || !*addr) |
| goto print; |
| |
| ins_addr = (unsigned short *)*addr; |
| |
| /* Go back one instruction, and see if it is a CALL */ |
| ins_addr--; |
| ret_addr = is_bfin_call(ins_addr); |
| print: |
| if (!j && stack == (unsigned long *)addr) |
| printk("[%08x]", *addr); |
| else if (ret_addr) |
| if (j) { |
| decode_address(buf, (unsigned int)*addr); |
| if (frame == addr) { |
| printk(KERN_NOTICE " frame %2i : %s\n", frame_no, buf); |
| continue; |
| } |
| printk(KERN_NOTICE " address : %s\n", buf); |
| } else |
| printk("<%08x>", *addr); |
| else if (fp == addr) { |
| if (j) |
| frame = addr+1; |
| else |
| printk("(%08x)", *addr); |
| |
| fp = (unsigned int *)*addr; |
| frame_no++; |
| |
| } else if (!j) |
| printk(" %08x ", *addr); |
| } |
| if (!j) |
| printk("\n"); |
| } |
| #endif |
| } |
| |
| void dump_stack(void) |
| { |
| unsigned long stack; |
| #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON |
| int tflags; |
| #endif |
| trace_buffer_save(tflags); |
| dump_bfin_trace_buffer(); |
| show_stack(current, &stack); |
| trace_buffer_restore(tflags); |
| } |
| EXPORT_SYMBOL(dump_stack); |
| |
| void dump_bfin_process(struct pt_regs *fp) |
| { |
| #ifdef CONFIG_DEBUG_VERBOSE |
| /* We should be able to look at fp->ipend, but we don't push it on the |
| * stack all the time, so do this until we fix that */ |
| unsigned int context = bfin_read_IPEND(); |
| |
| if (oops_in_progress) |
| verbose_printk(KERN_EMERG "Kernel OOPS in progress\n"); |
| |
| if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) |
| verbose_printk(KERN_NOTICE "HW Error context\n"); |
| else if (context & 0x0020) |
| verbose_printk(KERN_NOTICE "Deferred Exception context\n"); |
| else if (context & 0x3FC0) |
| verbose_printk(KERN_NOTICE "Interrupt context\n"); |
| else if (context & 0x4000) |
| verbose_printk(KERN_NOTICE "Deferred Interrupt context\n"); |
| else if (context & 0x8000) |
| verbose_printk(KERN_NOTICE "Kernel process context\n"); |
| |
| /* Because we are crashing, and pointers could be bad, we check things |
| * pretty closely before we use them |
| */ |
| if ((unsigned long)current >= FIXED_CODE_START && |
| !((unsigned long)current & 0x3) && current->pid) { |
| verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n"); |
| if (current->comm >= (char *)FIXED_CODE_START) |
| verbose_printk(KERN_NOTICE "COMM=%s PID=%d\n", |
| current->comm, current->pid); |
| else |
| verbose_printk(KERN_NOTICE "COMM= invalid\n"); |
| |
| printk(KERN_NOTICE "CPU = %d\n", current_thread_info()->cpu); |
| if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START) |
| verbose_printk(KERN_NOTICE "TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n" |
| KERN_NOTICE " BSS = 0x%p-0x%p USER-STACK = 0x%p\n" |
| KERN_NOTICE "\n", |
| (void *)current->mm->start_code, |
| (void *)current->mm->end_code, |
| (void *)current->mm->start_data, |
| (void *)current->mm->end_data, |
| (void *)current->mm->end_data, |
| (void *)current->mm->brk, |
| (void *)current->mm->start_stack); |
| else |
| verbose_printk(KERN_NOTICE "invalid mm\n"); |
| } else |
| verbose_printk(KERN_NOTICE "\n" KERN_NOTICE |
| "No Valid process in current context\n"); |
| #endif |
| } |
| |
| void dump_bfin_mem(struct pt_regs *fp) |
| { |
| #ifdef CONFIG_DEBUG_VERBOSE |
| unsigned short *addr, *erraddr, val = 0, err = 0; |
| char sti = 0, buf[6]; |
| |
| erraddr = (void *)fp->pc; |
| |
| verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr); |
| |
| for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10; |
| addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10; |
| addr++) { |
| if (!((unsigned long)addr & 0xF)) |
| verbose_printk("\n" KERN_NOTICE "0x%p: ", addr); |
| |
| if (!get_instruction(&val, addr)) { |
| val = 0; |
| sprintf(buf, "????"); |
| } else |
| sprintf(buf, "%04x", val); |
| |
| if (addr == erraddr) { |
| verbose_printk("[%s]", buf); |
| err = val; |
| } else |
| verbose_printk(" %s ", buf); |
| |
| /* Do any previous instructions turn on interrupts? */ |
| if (addr <= erraddr && /* in the past */ |
| ((val >= 0x0040 && val <= 0x0047) || /* STI instruction */ |
| val == 0x017b)) /* [SP++] = RETI */ |
| sti = 1; |
| } |
| |
| verbose_printk("\n"); |
| |
| /* Hardware error interrupts can be deferred */ |
| if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR && |
| oops_in_progress)){ |
| verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n"); |
| #ifndef CONFIG_DEBUG_HWERR |
| verbose_printk(KERN_NOTICE "The remaining message may be meaningless\n" |
| KERN_NOTICE "You should enable CONFIG_DEBUG_HWERR to get a" |
| " better idea where it came from\n"); |
| #else |
| /* If we are handling only one peripheral interrupt |
| * and current mm and pid are valid, and the last error |
| * was in that user space process's text area |
| * print it out - because that is where the problem exists |
| */ |
| if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) && |
| (current->pid && current->mm)) { |
| /* And the last RETI points to the current userspace context */ |
| if ((fp + 1)->pc >= current->mm->start_code && |
| (fp + 1)->pc <= current->mm->end_code) { |
| verbose_printk(KERN_NOTICE "It might be better to look around here : \n"); |
| verbose_printk(KERN_NOTICE "-------------------------------------------\n"); |
| show_regs(fp + 1); |
| verbose_printk(KERN_NOTICE "-------------------------------------------\n"); |
| } |
| } |
| #endif |
| } |
| #endif |
| } |
| |
| void show_regs(struct pt_regs *fp) |
| { |
| #ifdef CONFIG_DEBUG_VERBOSE |
| char buf [150]; |
| struct irqaction *action; |
| unsigned int i; |
| unsigned long flags = 0; |
| unsigned int cpu = smp_processor_id(); |
| unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic(); |
| |
| verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "SEQUENCER STATUS:\t\t%s\n", print_tainted()); |
| verbose_printk(KERN_NOTICE " SEQSTAT: %08lx IPEND: %04lx SYSCFG: %04lx\n", |
| (long)fp->seqstat, fp->ipend, fp->syscfg); |
| if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) { |
| verbose_printk(KERN_NOTICE " HWERRCAUSE: 0x%lx\n", |
| (fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14); |
| #ifdef EBIU_ERRMST |
| /* If the error was from the EBIU, print it out */ |
| if (bfin_read_EBIU_ERRMST() & CORE_ERROR) { |
| verbose_printk(KERN_NOTICE " EBIU Error Reason : 0x%04x\n", |
| bfin_read_EBIU_ERRMST()); |
| verbose_printk(KERN_NOTICE " EBIU Error Address : 0x%08x\n", |
| bfin_read_EBIU_ERRADD()); |
| } |
| #endif |
| } |
| verbose_printk(KERN_NOTICE " EXCAUSE : 0x%lx\n", |
| fp->seqstat & SEQSTAT_EXCAUSE); |
| for (i = 2; i <= 15 ; i++) { |
| if (fp->ipend & (1 << i)) { |
| if (i != 4) { |
| decode_address(buf, bfin_read32(EVT0 + 4*i)); |
| verbose_printk(KERN_NOTICE " physical IVG%i asserted : %s\n", i, buf); |
| } else |
| verbose_printk(KERN_NOTICE " interrupts disabled\n"); |
| } |
| } |
| |
| /* if no interrupts are going off, don't print this out */ |
| if (fp->ipend & ~0x3F) { |
| for (i = 0; i < (NR_IRQS - 1); i++) { |
| if (!in_atomic) |
| spin_lock_irqsave(&irq_desc[i].lock, flags); |
| |
| action = irq_desc[i].action; |
| if (!action) |
| goto unlock; |
| |
| decode_address(buf, (unsigned int)action->handler); |
| verbose_printk(KERN_NOTICE " logical irq %3d mapped : %s", i, buf); |
| for (action = action->next; action; action = action->next) { |
| decode_address(buf, (unsigned int)action->handler); |
| verbose_printk(", %s", buf); |
| } |
| verbose_printk("\n"); |
| unlock: |
| if (!in_atomic) |
| spin_unlock_irqrestore(&irq_desc[i].lock, flags); |
| } |
| } |
| |
| decode_address(buf, fp->rete); |
| verbose_printk(KERN_NOTICE " RETE: %s\n", buf); |
| decode_address(buf, fp->retn); |
| verbose_printk(KERN_NOTICE " RETN: %s\n", buf); |
| decode_address(buf, fp->retx); |
| verbose_printk(KERN_NOTICE " RETX: %s\n", buf); |
| decode_address(buf, fp->rets); |
| verbose_printk(KERN_NOTICE " RETS: %s\n", buf); |
| decode_address(buf, fp->pc); |
| verbose_printk(KERN_NOTICE " PC : %s\n", buf); |
| |
| if (((long)fp->seqstat & SEQSTAT_EXCAUSE) && |
| (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) { |
| decode_address(buf, cpu_pda[cpu].dcplb_fault_addr); |
| verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf); |
| decode_address(buf, cpu_pda[cpu].icplb_fault_addr); |
| verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf); |
| } |
| |
| verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "PROCESSOR STATE:\n"); |
| verbose_printk(KERN_NOTICE " R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n", |
| fp->r0, fp->r1, fp->r2, fp->r3); |
| verbose_printk(KERN_NOTICE " R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n", |
| fp->r4, fp->r5, fp->r6, fp->r7); |
| verbose_printk(KERN_NOTICE " P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n", |
| fp->p0, fp->p1, fp->p2, fp->p3); |
| verbose_printk(KERN_NOTICE " P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n", |
| fp->p4, fp->p5, fp->fp, (long)fp); |
| verbose_printk(KERN_NOTICE " LB0: %08lx LT0: %08lx LC0: %08lx\n", |
| fp->lb0, fp->lt0, fp->lc0); |
| verbose_printk(KERN_NOTICE " LB1: %08lx LT1: %08lx LC1: %08lx\n", |
| fp->lb1, fp->lt1, fp->lc1); |
| verbose_printk(KERN_NOTICE " B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n", |
| fp->b0, fp->l0, fp->m0, fp->i0); |
| verbose_printk(KERN_NOTICE " B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n", |
| fp->b1, fp->l1, fp->m1, fp->i1); |
| verbose_printk(KERN_NOTICE " B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n", |
| fp->b2, fp->l2, fp->m2, fp->i2); |
| verbose_printk(KERN_NOTICE " B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n", |
| fp->b3, fp->l3, fp->m3, fp->i3); |
| verbose_printk(KERN_NOTICE "A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n", |
| fp->a0w, fp->a0x, fp->a1w, fp->a1x); |
| |
| verbose_printk(KERN_NOTICE "USP : %08lx ASTAT: %08lx\n", |
| rdusp(), fp->astat); |
| |
| verbose_printk(KERN_NOTICE "\n"); |
| #endif |
| } |
| |
| #ifdef CONFIG_SYS_BFIN_SPINLOCK_L1 |
| asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text)); |
| #endif |
| |
| static DEFINE_SPINLOCK(bfin_spinlock_lock); |
| |
| asmlinkage int sys_bfin_spinlock(int *p) |
| { |
| int ret, tmp = 0; |
| |
| spin_lock(&bfin_spinlock_lock); /* This would also hold kernel preemption. */ |
| ret = get_user(tmp, p); |
| if (likely(ret == 0)) { |
| if (unlikely(tmp)) |
| ret = 1; |
| else |
| put_user(1, p); |
| } |
| spin_unlock(&bfin_spinlock_lock); |
| return ret; |
| } |
| |
| int bfin_request_exception(unsigned int exception, void (*handler)(void)) |
| { |
| void (*curr_handler)(void); |
| |
| if (exception > 0x3F) |
| return -EINVAL; |
| |
| curr_handler = ex_table[exception]; |
| |
| if (curr_handler != ex_replaceable) |
| return -EBUSY; |
| |
| ex_table[exception] = handler; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(bfin_request_exception); |
| |
| int bfin_free_exception(unsigned int exception, void (*handler)(void)) |
| { |
| void (*curr_handler)(void); |
| |
| if (exception > 0x3F) |
| return -EINVAL; |
| |
| curr_handler = ex_table[exception]; |
| |
| if (curr_handler != handler) |
| return -EBUSY; |
| |
| ex_table[exception] = ex_replaceable; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(bfin_free_exception); |
| |
| void panic_cplb_error(int cplb_panic, struct pt_regs *fp) |
| { |
| switch (cplb_panic) { |
| case CPLB_NO_UNLOCKED: |
| printk(KERN_EMERG "All CPLBs are locked\n"); |
| break; |
| case CPLB_PROT_VIOL: |
| return; |
| case CPLB_NO_ADDR_MATCH: |
| return; |
| case CPLB_UNKNOWN_ERR: |
| printk(KERN_EMERG "Unknown CPLB Exception\n"); |
| break; |
| } |
| |
| oops_in_progress = 1; |
| |
| dump_bfin_process(fp); |
| dump_bfin_mem(fp); |
| show_regs(fp); |
| dump_stack(); |
| panic("Unrecoverable event\n"); |
| } |