| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com) |
| * |
| * SMP support for BMIPS |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/delay.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/reboot.h> |
| #include <linux/io.h> |
| #include <linux/compiler.h> |
| #include <linux/linkage.h> |
| #include <linux/bug.h> |
| #include <linux/kernel.h> |
| |
| #include <asm/time.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/bootinfo.h> |
| #include <asm/pmon.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mipsregs.h> |
| #include <asm/bmips.h> |
| #include <asm/traps.h> |
| #include <asm/barrier.h> |
| #include <asm/cpu-features.h> |
| |
| static int __maybe_unused max_cpus = 1; |
| |
| /* these may be configured by the platform code */ |
| int bmips_smp_enabled = 1; |
| int bmips_cpu_offset; |
| cpumask_t bmips_booted_mask; |
| unsigned long bmips_tp1_irqs = IE_IRQ1; |
| |
| #define RESET_FROM_KSEG0 0x80080800 |
| #define RESET_FROM_KSEG1 0xa0080800 |
| |
| static void bmips_set_reset_vec(int cpu, u32 val); |
| |
| #ifdef CONFIG_SMP |
| |
| /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */ |
| unsigned long bmips_smp_boot_sp; |
| unsigned long bmips_smp_boot_gp; |
| |
| static void bmips43xx_send_ipi_single(int cpu, unsigned int action); |
| static void bmips5000_send_ipi_single(int cpu, unsigned int action); |
| static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id); |
| static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id); |
| |
| /* SW interrupts 0,1 are used for interprocessor signaling */ |
| #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0) |
| #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1) |
| |
| #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift)) |
| #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8)) |
| #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8)) |
| #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0)) |
| |
| static void __init bmips_smp_setup(void) |
| { |
| int i, cpu = 1, boot_cpu = 0; |
| int cpu_hw_intr; |
| |
| switch (current_cpu_type()) { |
| case CPU_BMIPS4350: |
| case CPU_BMIPS4380: |
| /* arbitration priority */ |
| clear_c0_brcm_cmt_ctrl(0x30); |
| |
| /* NBK and weak order flags */ |
| set_c0_brcm_config_0(0x30000); |
| |
| /* Find out if we are running on TP0 or TP1 */ |
| boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31)); |
| |
| /* |
| * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other |
| * thread |
| * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output |
| * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output |
| */ |
| if (boot_cpu == 0) |
| cpu_hw_intr = 0x02; |
| else |
| cpu_hw_intr = 0x1d; |
| |
| change_c0_brcm_cmt_intr(0xf8018000, |
| (cpu_hw_intr << 27) | (0x03 << 15)); |
| |
| /* single core, 2 threads (2 pipelines) */ |
| max_cpus = 2; |
| |
| break; |
| case CPU_BMIPS5000: |
| /* enable raceless SW interrupts */ |
| set_c0_brcm_config(0x03 << 22); |
| |
| /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */ |
| change_c0_brcm_mode(0x1f << 27, 0x02 << 27); |
| |
| /* N cores, 2 threads per core */ |
| max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1; |
| |
| /* clear any pending SW interrupts */ |
| for (i = 0; i < max_cpus; i++) { |
| write_c0_brcm_action(ACTION_CLR_IPI(i, 0)); |
| write_c0_brcm_action(ACTION_CLR_IPI(i, 1)); |
| } |
| |
| break; |
| default: |
| max_cpus = 1; |
| } |
| |
| if (!bmips_smp_enabled) |
| max_cpus = 1; |
| |
| /* this can be overridden by the BSP */ |
| if (!board_ebase_setup) |
| board_ebase_setup = &bmips_ebase_setup; |
| |
| __cpu_number_map[boot_cpu] = 0; |
| __cpu_logical_map[0] = boot_cpu; |
| |
| for (i = 0; i < max_cpus; i++) { |
| if (i != boot_cpu) { |
| __cpu_number_map[i] = cpu; |
| __cpu_logical_map[cpu] = i; |
| cpu++; |
| } |
| set_cpu_possible(i, 1); |
| set_cpu_present(i, 1); |
| } |
| } |
| |
| /* |
| * IPI IRQ setup - runs on CPU0 |
| */ |
| static void bmips_prepare_cpus(unsigned int max_cpus) |
| { |
| irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id); |
| |
| switch (current_cpu_type()) { |
| case CPU_BMIPS4350: |
| case CPU_BMIPS4380: |
| bmips_ipi_interrupt = bmips43xx_ipi_interrupt; |
| break; |
| case CPU_BMIPS5000: |
| bmips_ipi_interrupt = bmips5000_ipi_interrupt; |
| break; |
| default: |
| return; |
| } |
| |
| if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU, |
| "smp_ipi0", NULL)) |
| panic("Can't request IPI0 interrupt"); |
| if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU, |
| "smp_ipi1", NULL)) |
| panic("Can't request IPI1 interrupt"); |
| } |
| |
| /* |
| * Tell the hardware to boot CPUx - runs on CPU0 |
| */ |
| static void bmips_boot_secondary(int cpu, struct task_struct *idle) |
| { |
| bmips_smp_boot_sp = __KSTK_TOS(idle); |
| bmips_smp_boot_gp = (unsigned long)task_thread_info(idle); |
| mb(); |
| |
| /* |
| * Initial boot sequence for secondary CPU: |
| * bmips_reset_nmi_vec @ a000_0000 -> |
| * bmips_smp_entry -> |
| * plat_wired_tlb_setup (cached function call; optional) -> |
| * start_secondary (cached jump) |
| * |
| * Warm restart sequence: |
| * play_dead WAIT loop -> |
| * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC -> |
| * eret to play_dead -> |
| * bmips_secondary_reentry -> |
| * start_secondary |
| */ |
| |
| pr_info("SMP: Booting CPU%d...\n", cpu); |
| |
| if (cpumask_test_cpu(cpu, &bmips_booted_mask)) { |
| /* kseg1 might not exist if this CPU enabled XKS01 */ |
| bmips_set_reset_vec(cpu, RESET_FROM_KSEG0); |
| |
| switch (current_cpu_type()) { |
| case CPU_BMIPS4350: |
| case CPU_BMIPS4380: |
| bmips43xx_send_ipi_single(cpu, 0); |
| break; |
| case CPU_BMIPS5000: |
| bmips5000_send_ipi_single(cpu, 0); |
| break; |
| } |
| } else { |
| bmips_set_reset_vec(cpu, RESET_FROM_KSEG1); |
| |
| switch (current_cpu_type()) { |
| case CPU_BMIPS4350: |
| case CPU_BMIPS4380: |
| /* Reset slave TP1 if booting from TP0 */ |
| if (cpu_logical_map(cpu) == 1) |
| set_c0_brcm_cmt_ctrl(0x01); |
| break; |
| case CPU_BMIPS5000: |
| write_c0_brcm_action(ACTION_BOOT_THREAD(cpu)); |
| break; |
| } |
| cpumask_set_cpu(cpu, &bmips_booted_mask); |
| } |
| } |
| |
| /* |
| * Early setup - runs on secondary CPU after cache probe |
| */ |
| static void bmips_init_secondary(void) |
| { |
| switch (current_cpu_type()) { |
| case CPU_BMIPS4350: |
| case CPU_BMIPS4380: |
| clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0); |
| break; |
| case CPU_BMIPS5000: |
| write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0)); |
| current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3; |
| break; |
| } |
| } |
| |
| /* |
| * Late setup - runs on secondary CPU before entering the idle loop |
| */ |
| static void bmips_smp_finish(void) |
| { |
| pr_info("SMP: CPU%d is running\n", smp_processor_id()); |
| |
| /* make sure there won't be a timer interrupt for a little while */ |
| write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ); |
| |
| irq_enable_hazard(); |
| set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE); |
| irq_enable_hazard(); |
| } |
| |
| /* |
| * BMIPS5000 raceless IPIs |
| * |
| * Each CPU has two inbound SW IRQs which are independent of all other CPUs. |
| * IPI0 is used for SMP_RESCHEDULE_YOURSELF |
| * IPI1 is used for SMP_CALL_FUNCTION |
| */ |
| |
| static void bmips5000_send_ipi_single(int cpu, unsigned int action) |
| { |
| write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION)); |
| } |
| |
| static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id) |
| { |
| int action = irq - IPI0_IRQ; |
| |
| write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action)); |
| |
| if (action == 0) |
| scheduler_ipi(); |
| else |
| generic_smp_call_function_interrupt(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void bmips5000_send_ipi_mask(const struct cpumask *mask, |
| unsigned int action) |
| { |
| unsigned int i; |
| |
| for_each_cpu(i, mask) |
| bmips5000_send_ipi_single(i, action); |
| } |
| |
| /* |
| * BMIPS43xx racey IPIs |
| * |
| * We use one inbound SW IRQ for each CPU. |
| * |
| * A spinlock must be held in order to keep CPUx from accidentally clearing |
| * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The |
| * same spinlock is used to protect the action masks. |
| */ |
| |
| static DEFINE_SPINLOCK(ipi_lock); |
| static DEFINE_PER_CPU(int, ipi_action_mask); |
| |
| static void bmips43xx_send_ipi_single(int cpu, unsigned int action) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ipi_lock, flags); |
| set_c0_cause(cpu ? C_SW1 : C_SW0); |
| per_cpu(ipi_action_mask, cpu) |= action; |
| irq_enable_hazard(); |
| spin_unlock_irqrestore(&ipi_lock, flags); |
| } |
| |
| static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id) |
| { |
| unsigned long flags; |
| int action, cpu = irq - IPI0_IRQ; |
| |
| spin_lock_irqsave(&ipi_lock, flags); |
| action = __this_cpu_read(ipi_action_mask); |
| per_cpu(ipi_action_mask, cpu) = 0; |
| clear_c0_cause(cpu ? C_SW1 : C_SW0); |
| spin_unlock_irqrestore(&ipi_lock, flags); |
| |
| if (action & SMP_RESCHEDULE_YOURSELF) |
| scheduler_ipi(); |
| if (action & SMP_CALL_FUNCTION) |
| generic_smp_call_function_interrupt(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void bmips43xx_send_ipi_mask(const struct cpumask *mask, |
| unsigned int action) |
| { |
| unsigned int i; |
| |
| for_each_cpu(i, mask) |
| bmips43xx_send_ipi_single(i, action); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static int bmips_cpu_disable(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| if (cpu == 0) |
| return -EBUSY; |
| |
| pr_info("SMP: CPU%d is offline\n", cpu); |
| |
| set_cpu_online(cpu, false); |
| calculate_cpu_foreign_map(); |
| cpumask_clear_cpu(cpu, &cpu_callin_map); |
| clear_c0_status(IE_IRQ5); |
| |
| local_flush_tlb_all(); |
| local_flush_icache_range(0, ~0); |
| |
| return 0; |
| } |
| |
| static void bmips_cpu_die(unsigned int cpu) |
| { |
| } |
| |
| void __ref play_dead(void) |
| { |
| idle_task_exit(); |
| |
| /* flush data cache */ |
| _dma_cache_wback_inv(0, ~0); |
| |
| /* |
| * Wakeup is on SW0 or SW1; disable everything else |
| * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux |
| * IRQ handlers; this clears ST0_IE and returns immediately. |
| */ |
| clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1); |
| change_c0_status( |
| IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV, |
| IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV); |
| irq_disable_hazard(); |
| |
| /* |
| * wait for SW interrupt from bmips_boot_secondary(), then jump |
| * back to start_secondary() |
| */ |
| __asm__ __volatile__( |
| " wait\n" |
| " j bmips_secondary_reentry\n" |
| : : : "memory"); |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| struct plat_smp_ops bmips43xx_smp_ops = { |
| .smp_setup = bmips_smp_setup, |
| .prepare_cpus = bmips_prepare_cpus, |
| .boot_secondary = bmips_boot_secondary, |
| .smp_finish = bmips_smp_finish, |
| .init_secondary = bmips_init_secondary, |
| .send_ipi_single = bmips43xx_send_ipi_single, |
| .send_ipi_mask = bmips43xx_send_ipi_mask, |
| #ifdef CONFIG_HOTPLUG_CPU |
| .cpu_disable = bmips_cpu_disable, |
| .cpu_die = bmips_cpu_die, |
| #endif |
| }; |
| |
| struct plat_smp_ops bmips5000_smp_ops = { |
| .smp_setup = bmips_smp_setup, |
| .prepare_cpus = bmips_prepare_cpus, |
| .boot_secondary = bmips_boot_secondary, |
| .smp_finish = bmips_smp_finish, |
| .init_secondary = bmips_init_secondary, |
| .send_ipi_single = bmips5000_send_ipi_single, |
| .send_ipi_mask = bmips5000_send_ipi_mask, |
| #ifdef CONFIG_HOTPLUG_CPU |
| .cpu_disable = bmips_cpu_disable, |
| .cpu_die = bmips_cpu_die, |
| #endif |
| }; |
| |
| #endif /* CONFIG_SMP */ |
| |
| /*********************************************************************** |
| * BMIPS vector relocation |
| * This is primarily used for SMP boot, but it is applicable to some |
| * UP BMIPS systems as well. |
| ***********************************************************************/ |
| |
| static void bmips_wr_vec(unsigned long dst, char *start, char *end) |
| { |
| memcpy((void *)dst, start, end - start); |
| dma_cache_wback(dst, end - start); |
| local_flush_icache_range(dst, dst + (end - start)); |
| instruction_hazard(); |
| } |
| |
| static inline void bmips_nmi_handler_setup(void) |
| { |
| bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec, |
| &bmips_reset_nmi_vec_end); |
| bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec, |
| &bmips_smp_int_vec_end); |
| } |
| |
| struct reset_vec_info { |
| int cpu; |
| u32 val; |
| }; |
| |
| static void bmips_set_reset_vec_remote(void *vinfo) |
| { |
| struct reset_vec_info *info = vinfo; |
| int shift = info->cpu & 0x01 ? 16 : 0; |
| u32 mask = ~(0xffff << shift), val = info->val >> 16; |
| |
| preempt_disable(); |
| if (smp_processor_id() > 0) { |
| smp_call_function_single(0, &bmips_set_reset_vec_remote, |
| info, 1); |
| } else { |
| if (info->cpu & 0x02) { |
| /* BMIPS5200 "should" use mask/shift, but it's buggy */ |
| bmips_write_zscm_reg(0xa0, (val << 16) | val); |
| bmips_read_zscm_reg(0xa0); |
| } else { |
| write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) | |
| (val << shift)); |
| } |
| } |
| preempt_enable(); |
| } |
| |
| static void bmips_set_reset_vec(int cpu, u32 val) |
| { |
| struct reset_vec_info info; |
| |
| if (current_cpu_type() == CPU_BMIPS5000) { |
| /* this needs to run from CPU0 (which is always online) */ |
| info.cpu = cpu; |
| info.val = val; |
| bmips_set_reset_vec_remote(&info); |
| } else { |
| void __iomem *cbr = BMIPS_GET_CBR(); |
| |
| if (cpu == 0) |
| __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0); |
| else { |
| if (current_cpu_type() != CPU_BMIPS4380) |
| return; |
| __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1); |
| } |
| } |
| __sync(); |
| back_to_back_c0_hazard(); |
| } |
| |
| void bmips_ebase_setup(void) |
| { |
| unsigned long new_ebase = ebase; |
| |
| BUG_ON(ebase != CKSEG0); |
| |
| switch (current_cpu_type()) { |
| case CPU_BMIPS4350: |
| /* |
| * BMIPS4350 cannot relocate the normal vectors, but it |
| * can relocate the BEV=1 vectors. So CPU1 starts up at |
| * the relocated BEV=1, IV=0 general exception vector @ |
| * 0xa000_0380. |
| * |
| * set_uncached_handler() is used here because: |
| * - CPU1 will run this from uncached space |
| * - None of the cacheflush functions are set up yet |
| */ |
| set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0, |
| &bmips_smp_int_vec, 0x80); |
| __sync(); |
| return; |
| case CPU_BMIPS3300: |
| case CPU_BMIPS4380: |
| /* |
| * 0x8000_0000: reset/NMI (initially in kseg1) |
| * 0x8000_0400: normal vectors |
| */ |
| new_ebase = 0x80000400; |
| bmips_set_reset_vec(0, RESET_FROM_KSEG0); |
| break; |
| case CPU_BMIPS5000: |
| /* |
| * 0x8000_0000: reset/NMI (initially in kseg1) |
| * 0x8000_1000: normal vectors |
| */ |
| new_ebase = 0x80001000; |
| bmips_set_reset_vec(0, RESET_FROM_KSEG0); |
| write_c0_ebase(new_ebase); |
| break; |
| default: |
| return; |
| } |
| |
| board_nmi_handler_setup = &bmips_nmi_handler_setup; |
| ebase = new_ebase; |
| } |
| |
| asmlinkage void __weak plat_wired_tlb_setup(void) |
| { |
| /* |
| * Called when starting/restarting a secondary CPU. |
| * Kernel stacks and other important data might only be accessible |
| * once the wired entries are present. |
| */ |
| } |
| |
| void __init bmips_cpu_setup(void) |
| { |
| void __iomem __maybe_unused *cbr = BMIPS_GET_CBR(); |
| u32 __maybe_unused cfg; |
| |
| switch (current_cpu_type()) { |
| case CPU_BMIPS3300: |
| /* Set BIU to async mode */ |
| set_c0_brcm_bus_pll(BIT(22)); |
| __sync(); |
| |
| /* put the BIU back in sync mode */ |
| clear_c0_brcm_bus_pll(BIT(22)); |
| |
| /* clear BHTD to enable branch history table */ |
| clear_c0_brcm_reset(BIT(16)); |
| |
| /* Flush and enable RAC */ |
| cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG); |
| __raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG); |
| __raw_readl(cbr + BMIPS_RAC_CONFIG); |
| |
| cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG); |
| __raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG); |
| __raw_readl(cbr + BMIPS_RAC_CONFIG); |
| |
| cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE); |
| __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE); |
| __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE); |
| break; |
| |
| case CPU_BMIPS4380: |
| /* CBG workaround for early BMIPS4380 CPUs */ |
| switch (read_c0_prid()) { |
| case 0x2a040: |
| case 0x2a042: |
| case 0x2a044: |
| case 0x2a060: |
| cfg = __raw_readl(cbr + BMIPS_L2_CONFIG); |
| __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG); |
| __raw_readl(cbr + BMIPS_L2_CONFIG); |
| } |
| |
| /* clear BHTD to enable branch history table */ |
| clear_c0_brcm_config_0(BIT(21)); |
| |
| /* XI/ROTR enable */ |
| set_c0_brcm_config_0(BIT(23)); |
| set_c0_brcm_cmt_ctrl(BIT(15)); |
| break; |
| |
| case CPU_BMIPS5000: |
| /* enable RDHWR, BRDHWR */ |
| set_c0_brcm_config(BIT(17) | BIT(21)); |
| |
| /* Disable JTB */ |
| __asm__ __volatile__( |
| " .set noreorder\n" |
| " li $8, 0x5a455048\n" |
| " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */ |
| " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */ |
| " li $9, 0x00008000\n" |
| " or $8, $8, $9\n" |
| " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */ |
| " sync\n" |
| " li $8, 0x0\n" |
| " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */ |
| " .set reorder\n" |
| : : : "$8", "$9"); |
| |
| /* XI enable */ |
| set_c0_brcm_config(BIT(27)); |
| |
| /* enable MIPS32R2 ROR instruction for XI TLB handlers */ |
| __asm__ __volatile__( |
| " li $8, 0x5a455048\n" |
| " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */ |
| " nop; nop; nop\n" |
| " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */ |
| " lui $9, 0x0100\n" |
| " or $8, $9\n" |
| " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */ |
| : : : "$8", "$9"); |
| break; |
| } |
| } |