| /* |
| * Copyright 1995, Russell King. |
| * Various bits and pieces copyrights include: |
| * Linus Torvalds (test_bit). |
| * Big endian support: Copyright 2001, Nicolas Pitre |
| * reworked by rmk. |
| * |
| * bit 0 is the LSB of an "unsigned long" quantity. |
| * |
| * Please note that the code in this file should never be included |
| * from user space. Many of these are not implemented in assembler |
| * since they would be too costly. Also, they require privileged |
| * instructions (which are not available from user mode) to ensure |
| * that they are atomic. |
| */ |
| |
| #ifndef __ASM_ARM_BITOPS_H |
| #define __ASM_ARM_BITOPS_H |
| |
| #ifdef __KERNEL__ |
| |
| #ifndef _LINUX_BITOPS_H |
| #error only <linux/bitops.h> can be included directly |
| #endif |
| |
| #include <linux/compiler.h> |
| #include <linux/irqflags.h> |
| #include <asm/barrier.h> |
| |
| /* |
| * These functions are the basis of our bit ops. |
| * |
| * First, the atomic bitops. These use native endian. |
| */ |
| static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p) |
| { |
| unsigned long flags; |
| unsigned long mask = BIT_MASK(bit); |
| |
| p += BIT_WORD(bit); |
| |
| raw_local_irq_save(flags); |
| *p |= mask; |
| raw_local_irq_restore(flags); |
| } |
| |
| static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p) |
| { |
| unsigned long flags; |
| unsigned long mask = BIT_MASK(bit); |
| |
| p += BIT_WORD(bit); |
| |
| raw_local_irq_save(flags); |
| *p &= ~mask; |
| raw_local_irq_restore(flags); |
| } |
| |
| static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p) |
| { |
| unsigned long flags; |
| unsigned long mask = BIT_MASK(bit); |
| |
| p += BIT_WORD(bit); |
| |
| raw_local_irq_save(flags); |
| *p ^= mask; |
| raw_local_irq_restore(flags); |
| } |
| |
| static inline int |
| ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p) |
| { |
| unsigned long flags; |
| unsigned int res; |
| unsigned long mask = BIT_MASK(bit); |
| |
| p += BIT_WORD(bit); |
| |
| raw_local_irq_save(flags); |
| res = *p; |
| *p = res | mask; |
| raw_local_irq_restore(flags); |
| |
| return (res & mask) != 0; |
| } |
| |
| static inline int |
| ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p) |
| { |
| unsigned long flags; |
| unsigned int res; |
| unsigned long mask = BIT_MASK(bit); |
| |
| p += BIT_WORD(bit); |
| |
| raw_local_irq_save(flags); |
| res = *p; |
| *p = res & ~mask; |
| raw_local_irq_restore(flags); |
| |
| return (res & mask) != 0; |
| } |
| |
| static inline int |
| ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p) |
| { |
| unsigned long flags; |
| unsigned int res; |
| unsigned long mask = BIT_MASK(bit); |
| |
| p += BIT_WORD(bit); |
| |
| raw_local_irq_save(flags); |
| res = *p; |
| *p = res ^ mask; |
| raw_local_irq_restore(flags); |
| |
| return (res & mask) != 0; |
| } |
| |
| #include <asm-generic/bitops/non-atomic.h> |
| |
| /* |
| * A note about Endian-ness. |
| * ------------------------- |
| * |
| * When the ARM is put into big endian mode via CR15, the processor |
| * merely swaps the order of bytes within words, thus: |
| * |
| * ------------ physical data bus bits ----------- |
| * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0 |
| * little byte 3 byte 2 byte 1 byte 0 |
| * big byte 0 byte 1 byte 2 byte 3 |
| * |
| * This means that reading a 32-bit word at address 0 returns the same |
| * value irrespective of the endian mode bit. |
| * |
| * Peripheral devices should be connected with the data bus reversed in |
| * "Big Endian" mode. ARM Application Note 61 is applicable, and is |
| * available from http://www.arm.com/. |
| * |
| * The following assumes that the data bus connectivity for big endian |
| * mode has been followed. |
| * |
| * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0. |
| */ |
| |
| /* |
| * Native endian assembly bitops. nr = 0 -> word 0 bit 0. |
| */ |
| extern void _set_bit(int nr, volatile unsigned long * p); |
| extern void _clear_bit(int nr, volatile unsigned long * p); |
| extern void _change_bit(int nr, volatile unsigned long * p); |
| extern int _test_and_set_bit(int nr, volatile unsigned long * p); |
| extern int _test_and_clear_bit(int nr, volatile unsigned long * p); |
| extern int _test_and_change_bit(int nr, volatile unsigned long * p); |
| |
| /* |
| * Little endian assembly bitops. nr = 0 -> byte 0 bit 0. |
| */ |
| extern int _find_first_zero_bit_le(const unsigned long *p, unsigned size); |
| extern int _find_next_zero_bit_le(const unsigned long *p, int size, int offset); |
| extern int _find_first_bit_le(const unsigned long *p, unsigned size); |
| extern int _find_next_bit_le(const unsigned long *p, int size, int offset); |
| |
| /* |
| * Big endian assembly bitops. nr = 0 -> byte 3 bit 0. |
| */ |
| extern int _find_first_zero_bit_be(const unsigned long *p, unsigned size); |
| extern int _find_next_zero_bit_be(const unsigned long *p, int size, int offset); |
| extern int _find_first_bit_be(const unsigned long *p, unsigned size); |
| extern int _find_next_bit_be(const unsigned long *p, int size, int offset); |
| |
| #ifndef CONFIG_SMP |
| /* |
| * The __* form of bitops are non-atomic and may be reordered. |
| */ |
| #define ATOMIC_BITOP(name,nr,p) \ |
| (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p)) |
| #else |
| #define ATOMIC_BITOP(name,nr,p) _##name(nr,p) |
| #endif |
| |
| /* |
| * Native endian atomic definitions. |
| */ |
| #define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p) |
| #define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p) |
| #define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p) |
| #define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p) |
| #define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p) |
| #define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p) |
| |
| #ifndef __ARMEB__ |
| /* |
| * These are the little endian, atomic definitions. |
| */ |
| #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz) |
| #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off) |
| #define find_first_bit(p,sz) _find_first_bit_le(p,sz) |
| #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off) |
| |
| #else |
| /* |
| * These are the big endian, atomic definitions. |
| */ |
| #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz) |
| #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off) |
| #define find_first_bit(p,sz) _find_first_bit_be(p,sz) |
| #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off) |
| |
| #endif |
| |
| #if __LINUX_ARM_ARCH__ < 5 |
| |
| #include <asm-generic/bitops/ffz.h> |
| #include <asm-generic/bitops/__fls.h> |
| #include <asm-generic/bitops/__ffs.h> |
| #include <asm-generic/bitops/fls.h> |
| #include <asm-generic/bitops/ffs.h> |
| |
| #else |
| |
| static inline int constant_fls(int x) |
| { |
| int r = 32; |
| |
| if (!x) |
| return 0; |
| if (!(x & 0xffff0000u)) { |
| x <<= 16; |
| r -= 16; |
| } |
| if (!(x & 0xff000000u)) { |
| x <<= 8; |
| r -= 8; |
| } |
| if (!(x & 0xf0000000u)) { |
| x <<= 4; |
| r -= 4; |
| } |
| if (!(x & 0xc0000000u)) { |
| x <<= 2; |
| r -= 2; |
| } |
| if (!(x & 0x80000000u)) { |
| x <<= 1; |
| r -= 1; |
| } |
| return r; |
| } |
| |
| /* |
| * On ARMv5 and above those functions can be implemented around the |
| * clz instruction for much better code efficiency. __clz returns |
| * the number of leading zeros, zero input will return 32, and |
| * 0x80000000 will return 0. |
| */ |
| static inline unsigned int __clz(unsigned int x) |
| { |
| unsigned int ret; |
| |
| asm("clz\t%0, %1" : "=r" (ret) : "r" (x)); |
| |
| return ret; |
| } |
| |
| /* |
| * fls() returns zero if the input is zero, otherwise returns the bit |
| * position of the last set bit, where the LSB is 1 and MSB is 32. |
| */ |
| static inline int fls(int x) |
| { |
| if (__builtin_constant_p(x)) |
| return constant_fls(x); |
| |
| return 32 - __clz(x); |
| } |
| |
| /* |
| * __fls() returns the bit position of the last bit set, where the |
| * LSB is 0 and MSB is 31. Zero input is undefined. |
| */ |
| static inline unsigned long __fls(unsigned long x) |
| { |
| return fls(x) - 1; |
| } |
| |
| /* |
| * ffs() returns zero if the input was zero, otherwise returns the bit |
| * position of the first set bit, where the LSB is 1 and MSB is 32. |
| */ |
| static inline int ffs(int x) |
| { |
| return fls(x & -x); |
| } |
| |
| /* |
| * __ffs() returns the bit position of the first bit set, where the |
| * LSB is 0 and MSB is 31. Zero input is undefined. |
| */ |
| static inline unsigned long __ffs(unsigned long x) |
| { |
| return ffs(x) - 1; |
| } |
| |
| #define ffz(x) __ffs( ~(x) ) |
| |
| #endif |
| |
| #include <asm-generic/bitops/fls64.h> |
| |
| #include <asm-generic/bitops/sched.h> |
| #include <asm-generic/bitops/hweight.h> |
| #include <asm-generic/bitops/lock.h> |
| |
| #ifdef __ARMEB__ |
| |
| static inline int find_first_zero_bit_le(const void *p, unsigned size) |
| { |
| return _find_first_zero_bit_le(p, size); |
| } |
| #define find_first_zero_bit_le find_first_zero_bit_le |
| |
| static inline int find_next_zero_bit_le(const void *p, int size, int offset) |
| { |
| return _find_next_zero_bit_le(p, size, offset); |
| } |
| #define find_next_zero_bit_le find_next_zero_bit_le |
| |
| static inline int find_next_bit_le(const void *p, int size, int offset) |
| { |
| return _find_next_bit_le(p, size, offset); |
| } |
| #define find_next_bit_le find_next_bit_le |
| |
| #endif |
| |
| #include <asm-generic/bitops/le.h> |
| |
| /* |
| * Ext2 is defined to use little-endian byte ordering. |
| */ |
| #include <asm-generic/bitops/ext2-atomic-setbit.h> |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ARM_BITOPS_H */ |