blob: c5e671e5dc9918605a3c51f5ff454c5fd7a03ba1 [file] [log] [blame]
/*
* CPUFreq governor based on scheduler-provided CPU utilization data.
*
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpufreq.h>
#include <linux/kthread.h>
#include <uapi/linux/sched/types.h>
#include <linux/slab.h>
#include <trace/events/power.h>
#include <trace/events/sched.h>
#include "sched.h"
#include "tune.h"
#include "cpufreq_schedutil.h"
#ifdef VENDOR_EDIT
/* Gaowei.Pu@BSP.Power.Basic, 2020/9/15, add to fix iowait boost issue*/
#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
#endif
#if defined (CONFIG_SCHED_WALT) && defined (OPLUS_FEATURE_UIFIRST)
extern int sysctl_slide_boost_enabled;
extern int sysctl_uifirst_enabled;
extern u64 ux_task_load[];
#endif
static struct cpufreq_governor schedutil_gov;
unsigned long boosted_cpu_util(int cpu);
void (*cpufreq_notifier_fp)(int cluster_id, unsigned long freq);
EXPORT_SYMBOL(cpufreq_notifier_fp);
#define SUGOV_KTHREAD_PRIORITY 50
#if defined(OPLUS_FEATURE_SCHEDUTIL_USE_TL) && defined(CONFIG_SCHEDUTIL_USE_TL)
/* Target load. Lower values result in higher CPU speeds. */
#define DEFAULT_TARGET_LOAD 80
static unsigned int default_target_loads[] = {DEFAULT_TARGET_LOAD};
#endif
struct sugov_tunables {
struct gov_attr_set attr_set;
unsigned int up_rate_limit_us;
unsigned int down_rate_limit_us;
#if defined(OPLUS_FEATURE_SCHEDUTIL_USE_TL) && defined(CONFIG_SCHEDUTIL_USE_TL)
spinlock_t target_loads_lock;
unsigned int *target_loads;
unsigned int *util_loads;
int ntarget_loads;
#endif
};
struct sugov_policy {
struct cpufreq_policy *policy;
struct sugov_tunables *tunables;
struct list_head tunables_hook;
raw_spinlock_t update_lock; /* For shared policies */
u64 last_freq_update_time;
s64 min_rate_limit_ns;
s64 up_rate_delay_ns;
s64 down_rate_delay_ns;
unsigned int next_freq;
unsigned int cached_raw_freq;
#if defined(OPLUS_FEATURE_SCHEDUTIL_USE_TL) && defined(CONFIG_SCHEDUTIL_USE_TL)
unsigned int len;
#endif
/* The next fields are only needed if fast switch cannot be used. */
struct irq_work irq_work;
struct kthread_work work;
struct mutex work_lock;
struct kthread_worker worker;
struct task_struct *thread;
bool work_in_progress;
bool need_freq_update;
#if defined (CONFIG_SCHED_WALT) && defined (OPLUS_FEATURE_UIFIRST)
unsigned int flags;
#endif
};
struct sugov_cpu {
struct update_util_data update_util;
struct sugov_policy *sg_policy;
unsigned int cpu;
bool iowait_boost_pending;
unsigned int iowait_boost;
unsigned int iowait_boost_max;
u64 last_update;
/* The fields below are only needed when sharing a policy. */
unsigned long util;
unsigned long max;
unsigned int flags;
/* The field below is for single-CPU policies only. */
#ifdef CONFIG_NO_HZ_COMMON
unsigned long saved_idle_calls;
#endif
};
static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
/************************ Governor internals ***********************/
static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
{
s64 delta_ns;
struct cpufreq_policy *policy = sg_policy->policy;
if (policy->governor != &schedutil_gov ||
!policy->governor_data)
return false;
/*
* Since cpufreq_update_util() is called with rq->lock held for
* the @target_cpu, our per-cpu data is fully serialized.
*
* However, drivers cannot in general deal with cross-cpu
* requests, so while get_next_freq() will work, our
* sugov_update_commit() call may not for the fast switching platforms.
*
* Hence stop here for remote requests if they aren't supported
* by the hardware, as calculating the frequency is pointless if
* we cannot in fact act on it.
*
* For the slow switching platforms, the kthread is always scheduled on
* the right set of CPUs and any CPU can find the next frequency and
* schedule the kthread.
*/
if (sg_policy->policy->fast_switch_enabled &&
!cpufreq_can_do_remote_dvfs(sg_policy->policy))
return false;
if (sg_policy->work_in_progress)
return false;
if (unlikely(sg_policy->need_freq_update)) {
sg_policy->need_freq_update = false;
/*
* This happens when limits change, so forget the previous
* next_freq value and force an update.
*/
sg_policy->next_freq = UINT_MAX;
return true;
}
/* No need to recalculate next freq for min_rate_limit_us
* at least. However we might still decide to further rate
* limit once frequency change direction is decided, according
* to the separate rate limits.
*/
#if defined (CONFIG_SCHED_WALT) && defined (OPLUS_FEATURE_UIFIRST)
if (sg_policy->flags & SCHED_CPUFREQ_BOOST)
return true;
#endif
delta_ns = time - sg_policy->last_freq_update_time;
return delta_ns >= sg_policy->min_rate_limit_ns;
}
static bool sugov_up_down_rate_limit(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
s64 delta_ns;
delta_ns = time - sg_policy->last_freq_update_time;
#if defined (CONFIG_SCHED_WALT) && defined (OPLUS_FEATURE_UIFIRST)
if (sg_policy->flags & SCHED_CPUFREQ_BOOST)
return false;
#endif
if (next_freq > sg_policy->next_freq &&
delta_ns < sg_policy->up_rate_delay_ns)
return true;
if (next_freq < sg_policy->next_freq &&
delta_ns < sg_policy->down_rate_delay_ns)
return true;
return false;
}
static void sugov_update_commit(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
struct cpufreq_policy *policy = sg_policy->policy;
int cid = arch_get_cluster_id(policy->cpu);
if (sg_policy->next_freq == next_freq)
return;
if (sugov_up_down_rate_limit(sg_policy, time, next_freq))
return;
sg_policy->next_freq = next_freq;
sg_policy->last_freq_update_time = time;
if (cpufreq_notifier_fp)
cpufreq_notifier_fp(cid, next_freq);
#ifdef CONFIG_MTK_TINYSYS_SSPM_SUPPORT
mt_cpufreq_set_by_wfi_load_cluster(cid, next_freq);
policy->cur = next_freq;
trace_sched_util(cid, next_freq, time);
#else
if (policy->fast_switch_enabled) {
next_freq = cpufreq_driver_fast_switch(policy, next_freq);
if (!next_freq)
return;
policy->cur = next_freq;
trace_cpu_frequency(next_freq, smp_processor_id());
} else {
sg_policy->work_in_progress = true;
irq_work_queue(&sg_policy->irq_work);
}
#endif
}
#if defined(OPLUS_FEATURE_SCHEDUTIL_USE_TL) && defined(CONFIG_SCHEDUTIL_USE_TL)
#ifdef CONFIG_NONLINEAR_FREQ_CTL
static inline unsigned int get_opp_capacity(struct cpufreq_policy *policy,
int row)
{
struct upower_tbl *upower_tbl;
upower_tbl = upower_get_core_tbl(policy->cpu);
return upower_tbl->row[row].cap;
}
#else
static inline unsigned int get_opp_capacity(struct cpufreq_policy *policy,
int row)
{
unsigned int cap, orig_cap;
unsigned long freq, max_freq;
max_freq = policy->cpuinfo.max_freq;
orig_cap = capacity_orig_of(policy->cpu);
freq = policy->freq_table[row].frequency;
cap = orig_cap * freq / max_freq;
return cap;
}
#endif
static unsigned int util_to_targetload(
struct sugov_tunables *tunables, unsigned int util)
{
int i;
unsigned int ret;
unsigned long flags;
spin_lock_irqsave(&tunables->target_loads_lock, flags);
for (i = 0; i < tunables->ntarget_loads - 1 &&
util >= tunables->util_loads[i+1]; i += 2)
;
ret = tunables->util_loads[i];
spin_unlock_irqrestore(&tunables->target_loads_lock, flags);
return ret;
}
unsigned int find_util_l(struct sugov_policy *sg_policy, unsigned int util)
{
unsigned int idx, capacity;
for (idx = 0; idx < sg_policy->len; idx++) {
/*TODO: find the first bigger one in table, to match below orginal codes
*in cpufreq_schedutil_plus.c
*tbl = upower_get_core_tbl(cpu);
*for (idx = 0; idx < tbl->row_num ; idx++) {
* cap = tbl->row[idx].cap;
* if (!cap)
* break;
*
* target_idx = idx;
*
* if (cap > util)
* break;
*}
*/
// if (sg_policy->freq2util[idx].cap >= util)
capacity = get_opp_capacity(sg_policy->policy, idx);
if (capacity >= util)
return capacity;
}
return get_opp_capacity(sg_policy->policy, sg_policy->len - 1);
}
unsigned int find_util_h(struct sugov_policy *sg_policy, unsigned int util)
{
unsigned int idx, capacity;
int target_idx = -1;
for (idx = 0; idx < sg_policy->len; idx++) {
capacity = get_opp_capacity(sg_policy->policy, idx);
if (capacity == util) {
return util;
}
if (capacity < util) {
target_idx = idx;
continue;
}
if (target_idx == -1)
return capacity;
return get_opp_capacity(sg_policy->policy, target_idx);
}
return get_opp_capacity(sg_policy->policy, target_idx);
}
unsigned int find_closest_util(struct sugov_policy *sg_policy, unsigned int util
, unsigned int policy)
{
switch (policy) {
case CPUFREQ_RELATION_L:
return find_util_l(sg_policy, util);
case CPUFREQ_RELATION_H:
return find_util_h(sg_policy, util);
default:
return util;
}
}
unsigned int choose_util(struct sugov_policy *sg_policy,
unsigned int util)
{
unsigned int prevutil, utilmin, utilmax;
unsigned int tl;
unsigned long orig_util = util;
if (!sg_policy) {
pr_err("sg_policy is null\n");
return -EINVAL;
}
utilmin = 0;
utilmax = UINT_MAX;
do {
prevutil = util;
tl = util_to_targetload(sg_policy->tunables, util);
/*
* Find the lowest frequency where the computed load is less
* than or equal to the target load.
*/
util = find_closest_util(sg_policy, (orig_util * 100 / tl), CPUFREQ_RELATION_L);
trace_choose_util(util, prevutil, utilmax, utilmin, tl);
if (util > prevutil) {
/* The previous frequency is too low. */
utilmin = prevutil;
if (util >= utilmax) {
/*
* Find the highest frequency that is less
* than freqmax.
*/
util = find_closest_util(sg_policy, utilmax - 1,CPUFREQ_RELATION_H);
if (util == utilmin) {
/*
* The first frequency below freqmax
* has already been found to be too
* low. freqmax is the lowest speed
* we found that is fast enough.
*/
util = utilmax;
break;
}
}
} else if (util < prevutil) {
/* The previous frequency is high enough. */
utilmax = prevutil;
if (util <= utilmin) {
/*
* Find the lowest frequency that is higher
* than freqmin.
*/
util = find_closest_util(sg_policy, utilmin + 1, CPUFREQ_RELATION_L);
/*
* If freqmax is the first frequency above
* freqmin then we have already found that
* this speed is fast enough.
*/
if (util == utilmax)
break;
}
}
/* If same frequency chosen as previous then done. */
} while (util != prevutil);
return util;
}
#endif
#ifdef CONFIG_NONLINEAR_FREQ_CTL
#include "cpufreq_schedutil_plus.c"
#else
/**
* get_next_freq - Compute a new frequency for a given cpufreq policy.
* @sg_policy: schedutil policy object to compute the new frequency for.
* @util: Current CPU utilization.
* @max: CPU capacity.
*
* If the utilization is frequency-invariant, choose the new frequency to be
* proportional to it, that is
*
* next_freq = C * max_freq * util / max
*
* Otherwise, approximate the would-be frequency-invariant utilization by
* util_raw * (curr_freq / max_freq) which leads to
*
* next_freq = C * curr_freq * util_raw / max
*
* Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
*
* The lowest driver-supported frequency which is equal or greater than the raw
* next_freq (as calculated above) is returned, subject to policy min/max and
* cpufreq driver limitations.
*/
static unsigned int get_next_freq(struct sugov_policy *sg_policy,
unsigned long util, unsigned long max)
{
struct cpufreq_policy *policy = sg_policy->policy;
unsigned int freq = arch_scale_freq_invariant() ?
policy->cpuinfo.max_freq : policy->cur;
freq = freq * util / max;
freq = freq / SCHED_CAPACITY_SCALE * capacity_margin;
sg_policy->cached_raw_freq = freq;
#ifdef CONFIG_MTK_TINYSYS_SSPM_SUPPORT
return freq;
#else
return cpufreq_driver_resolve_freq(policy, freq);
#endif
}
#endif
static void sugov_get_util(unsigned long *util, unsigned long *max, int cpu)
{
unsigned long max_cap;
max_cap = arch_scale_cpu_capacity(NULL, cpu);
*util = boosted_cpu_util(cpu);
#if defined (CONFIG_SCHED_WALT) && defined (OPLUS_FEATURE_UIFIRST)
if (!sysctl_uifirst_enabled || !sysctl_slide_boost_enabled || !ux_task_load[cpu]) {
if (idle_cpu(cpu))
*util = 0;
}
#else
if (idle_cpu(cpu))
*util = 0;
#endif
*util = min(*util, max_cap);
*max = max_cap;
}
static void sugov_set_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
unsigned int flags)
{
unsigned int max_boost;
if (flags & SCHED_CPUFREQ_IOWAIT) {
if (sg_cpu->iowait_boost_pending)
return;
sg_cpu->iowait_boost_pending = true;
/*
* Boost FAIR tasks only up to the CPU clamped utilization.
*
* Since DL tasks have a much more advanced bandwidth control,
* it's safe to assume that IO boost does not apply to
* those tasks.
* Instead, since RT tasks are currently not utiliation clamped,
* we don't want to apply clamping on IO boost while there is
* blocked RT utilization.
*/
max_boost = sg_cpu->iowait_boost_max;
max_boost = uclamp_util(cpu_rq(sg_cpu->cpu), max_boost);
if (sg_cpu->iowait_boost) {
sg_cpu->iowait_boost <<= 1;
if (sg_cpu->iowait_boost > max_boost)
sg_cpu->iowait_boost = max_boost;
} else {
#ifdef VENDOR_EDIT
/* Gaowei.Pu@BSP.Power.Basic, 2020/9/15, add to fix iowait boost issue*/
sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
#endif
}
#ifdef VENDOR_EDIT
/* Gaowei.Pu@BSP.Power.Basic, 2020/9/15, add to fix iowait boost issue*/
trace_cpu_iowait_util(sg_cpu->cpu, sg_cpu->iowait_boost);
#endif
} else if (sg_cpu->iowait_boost) {
s64 delta_ns = time - sg_cpu->last_update;
/* Clear iowait_boost if the CPU apprears to have been idle. */
if (delta_ns > TICK_NSEC) {
sg_cpu->iowait_boost = 0;
sg_cpu->iowait_boost_pending = false;
}
}
}
static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, unsigned long *util,
unsigned long *max)
{
unsigned int boost_util, boost_max;
if (!sg_cpu->iowait_boost)
return;
if (sg_cpu->iowait_boost_pending) {
sg_cpu->iowait_boost_pending = false;
} else {
sg_cpu->iowait_boost >>= 1;
if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
sg_cpu->iowait_boost = 0;
return;
}
}
boost_util = sg_cpu->iowait_boost;
boost_max = sg_cpu->iowait_boost_max;
if (*util * boost_max < *max * boost_util) {
*util = boost_util;
*max = boost_max;
}
}
#ifdef CONFIG_NO_HZ_COMMON
static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
{
unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
bool ret = idle_calls == sg_cpu->saved_idle_calls;
sg_cpu->saved_idle_calls = idle_calls;
return ret;
}
#else
static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
#endif /* CONFIG_NO_HZ_COMMON */
static void sugov_update_single(struct update_util_data *hook, u64 time,
unsigned int flags)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
struct cpufreq_policy *policy = sg_policy->policy;
unsigned long util, max;
unsigned int next_f;
bool busy;
#ifdef CONFIG_MTK_TINYSYS_SSPM_SUPPORT
int cid;
#endif
sugov_set_iowait_boost(sg_cpu, time, flags);
sg_cpu->last_update = time;
if (!sugov_should_update_freq(sg_policy, time))
return;
busy = sugov_cpu_is_busy(sg_cpu);
if (flags & SCHED_CPUFREQ_DL) {
next_f = policy->cpuinfo.max_freq;
} else {
sugov_get_util(&util, &max, sg_cpu->cpu);
util = uclamp_util(cpu_rq(sg_cpu->cpu), util);
sugov_iowait_boost(sg_cpu, &util, &max);
next_f = get_next_freq(sg_policy, util, max);
#ifdef CONFIG_MTK_TINYSYS_SSPM_SUPPORT
next_f = clamp_val(next_f, policy->min, policy->max);
cid = arch_get_cluster_id(sg_policy->policy->cpu);
next_f = mt_cpufreq_find_close_freq(cid, next_f);
#endif
/*
* Do not reduce the frequency if the CPU has not been idle
* recently, as the reduction is likely to be premature then.
*/
if (busy && next_f < sg_policy->next_freq &&
sg_policy->next_freq != UINT_MAX) {
next_f = sg_policy->next_freq;
/* Reset cached freq as next_freq has changed */
sg_policy->cached_raw_freq = 0;
}
}
sugov_update_commit(sg_policy, time, next_f);
}
static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
{
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
struct cpufreq_policy *policy = sg_policy->policy;
unsigned long util = 0, max = 1;
unsigned int j;
unsigned int next_f;
#ifdef CONFIG_MTK_TINYSYS_SSPM_SUPPORT
int cid;
#endif
for_each_cpu(j, policy->cpus) {
struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
unsigned long j_util, j_max;
s64 delta_ns;
/*
* If the CPU utilization was last updated before the previous
* frequency update and the time elapsed between the last update
* of the CPU utilization and the last frequency update is long
* enough, don't take the CPU into account as it probably is
* idle now (and clear iowait_boost for it).
*/
delta_ns = time - j_sg_cpu->last_update;
if (delta_ns > TICK_NSEC) {
j_sg_cpu->iowait_boost = 0;
j_sg_cpu->iowait_boost_pending = false;
if (idle_cpu(j))
continue;
}
if (j_sg_cpu->flags & SCHED_CPUFREQ_DL)
return policy->cpuinfo.max_freq;
j_util = j_sg_cpu->util;
j_max = j_sg_cpu->max;
#ifdef CONFIG_UCLAMP_TASK
trace_schedutil_uclamp_util(j, j_util);
#endif
j_util = uclamp_util(cpu_rq(j), j_util);
if (j_util * max > j_max * util) {
util = j_util;
max = j_max;
}
sugov_iowait_boost(j_sg_cpu, &util, &max);
}
next_f = get_next_freq(sg_policy, util, max);
#ifdef CONFIG_MTK_TINYSYS_SSPM_SUPPORT
next_f = clamp_val(next_f, policy->min, policy->max);
cid = arch_get_cluster_id(sg_policy->policy->cpu);
next_f = mt_cpufreq_find_close_freq(cid, next_f);
#endif
return next_f;
}
static void sugov_update_shared(struct update_util_data *hook, u64 time,
unsigned int flags)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
unsigned long util, max;
unsigned int next_f;
sugov_get_util(&util, &max, sg_cpu->cpu);
raw_spin_lock(&sg_policy->update_lock);
sg_cpu->util = util;
sg_cpu->max = max;
sg_cpu->flags = flags;
#if defined (CONFIG_SCHED_WALT) && defined (OPLUS_FEATURE_UIFIRST)
sg_policy->flags = flags;
#endif
sugov_set_iowait_boost(sg_cpu, time, flags);
sg_cpu->last_update = time;
if (sugov_should_update_freq(sg_policy, time)) {
if (flags & SCHED_CPUFREQ_DL)
next_f = sg_policy->policy->cpuinfo.max_freq;
else
next_f = sugov_next_freq_shared(sg_cpu, time);
sugov_update_commit(sg_policy, time, next_f);
}
raw_spin_unlock(&sg_policy->update_lock);
}
static void sugov_work(struct kthread_work *work)
{
struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
mutex_lock(&sg_policy->work_lock);
__cpufreq_driver_target(sg_policy->policy, sg_policy->next_freq,
CPUFREQ_RELATION_L);
mutex_unlock(&sg_policy->work_lock);
sg_policy->work_in_progress = false;
}
static void sugov_irq_work(struct irq_work *irq_work)
{
struct sugov_policy *sg_policy;
sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
/*
* For RT and deadline tasks, the schedutil governor shoots the
* frequency to maximum. Special care must be taken to ensure that this
* kthread doesn't result in the same behavior.
*
* This is (mostly) guaranteed by the work_in_progress flag. The flag is
* updated only at the end of the sugov_work() function and before that
* the schedutil governor rejects all other frequency scaling requests.
*
* There is a very rare case though, where the RT thread yields right
* after the work_in_progress flag is cleared. The effects of that are
* neglected for now.
*/
kthread_queue_work(&sg_policy->worker, &sg_policy->work);
}
/************************** sysfs interface ************************/
static struct sugov_tunables *global_tunables;
static DEFINE_MUTEX(global_tunables_lock);
static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
{
return container_of(attr_set, struct sugov_tunables, attr_set);
}
static DEFINE_MUTEX(min_rate_lock);
static void update_min_rate_limit_ns(struct sugov_policy *sg_policy)
{
mutex_lock(&min_rate_lock);
sg_policy->min_rate_limit_ns = min(sg_policy->up_rate_delay_ns,
sg_policy->down_rate_delay_ns);
mutex_unlock(&min_rate_lock);
}
static ssize_t up_rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->up_rate_limit_us);
}
static ssize_t down_rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->down_rate_limit_us);
}
static ssize_t up_rate_limit_us_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
struct sugov_policy *sg_policy;
unsigned int rate_limit_us;
if (kstrtouint(buf, 10, &rate_limit_us))
return -EINVAL;
tunables->up_rate_limit_us = rate_limit_us;
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
sg_policy->up_rate_delay_ns = rate_limit_us * NSEC_PER_USEC;
update_min_rate_limit_ns(sg_policy);
}
return count;
}
static ssize_t down_rate_limit_us_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
struct sugov_policy *sg_policy;
unsigned int rate_limit_us;
if (kstrtouint(buf, 10, &rate_limit_us))
return -EINVAL;
tunables->down_rate_limit_us = rate_limit_us;
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
sg_policy->down_rate_delay_ns = rate_limit_us * NSEC_PER_USEC;
update_min_rate_limit_ns(sg_policy);
}
return count;
}
int schedutil_set_down_rate_limit_us(int cpu, unsigned int rate_limit_us)
{
struct cpufreq_policy *policy;
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
struct gov_attr_set *attr_set;
policy = cpufreq_cpu_get(cpu);
if (!policy)
return -EINVAL;
if (policy->governor != &schedutil_gov)
return -ENOENT;
mutex_lock(&global_tunables_lock);
sg_policy = policy->governor_data;
if (!sg_policy) {
mutex_unlock(&global_tunables_lock);
cpufreq_cpu_put(policy);
return -EINVAL;
}
tunables = sg_policy->tunables;
tunables->down_rate_limit_us = rate_limit_us;
attr_set = &tunables->attr_set;
mutex_lock(&attr_set->update_lock);
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
sg_policy->down_rate_delay_ns = rate_limit_us * NSEC_PER_USEC;
update_min_rate_limit_ns(sg_policy);
}
mutex_unlock(&attr_set->update_lock);
mutex_unlock(&global_tunables_lock);
if (policy)
cpufreq_cpu_put(policy);
return 0;
}
EXPORT_SYMBOL(schedutil_set_down_rate_limit_us);
int schedutil_set_up_rate_limit_us(int cpu, unsigned int rate_limit_us)
{
struct cpufreq_policy *policy;
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
struct gov_attr_set *attr_set;
policy = cpufreq_cpu_get(cpu);
if (!policy)
return -EINVAL;
if (policy->governor != &schedutil_gov)
return -ENOENT;
mutex_lock(&global_tunables_lock);
sg_policy = policy->governor_data;
if (!sg_policy) {
mutex_unlock(&global_tunables_lock);
cpufreq_cpu_put(policy);
return -EINVAL;
}
tunables = sg_policy->tunables;
tunables->up_rate_limit_us = rate_limit_us;
attr_set = &tunables->attr_set;
mutex_lock(&attr_set->update_lock);
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
sg_policy->up_rate_delay_ns = rate_limit_us * NSEC_PER_USEC;
update_min_rate_limit_ns(sg_policy);
}
mutex_unlock(&attr_set->update_lock);
mutex_unlock(&global_tunables_lock);
if (policy)
cpufreq_cpu_put(policy);
return 0;
}
EXPORT_SYMBOL(schedutil_set_up_rate_limit_us);
#if defined(OPLUS_FEATURE_SCHEDUTIL_USE_TL) && defined(CONFIG_SCHEDUTIL_USE_TL)
static ssize_t target_loads_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
int i;
ssize_t ret = 0;
unsigned long flags;
spin_lock_irqsave(&tunables->target_loads_lock, flags);
for (i = 0; i < tunables->ntarget_loads; i++)
ret += snprintf(buf + ret, PAGE_SIZE - ret - 1, "%u%s", tunables->target_loads[i],
i & 0x1 ? ":" : " ");
snprintf(buf + ret - 1, PAGE_SIZE - ret - 1, "\n");
spin_unlock_irqrestore(&tunables->target_loads_lock, flags);
return ret;
}
static unsigned int *get_tokenized_data(const char *buf, int *num_tokens)
{
const char *cp;
int i;
int ntokens = 1;
unsigned int *tokenized_data;
int err = -EINVAL;
cp = buf;
while ((cp = strpbrk(cp + 1, " :")))
ntokens++;
if (!(ntokens & 0x1))
goto err;
tokenized_data = kmalloc(ntokens * sizeof(unsigned int), GFP_KERNEL);
if (!tokenized_data) {
err = -ENOMEM;
goto err;
}
cp = buf;
i = 0;
while (i < ntokens) {
if (sscanf(cp, "%u", &tokenized_data[i++]) != 1)
goto err_kfree;
cp = strpbrk(cp, " :");
if (!cp)
break;
cp++;
}
if (i != ntokens)
goto err_kfree;
*num_tokens = ntokens;
return tokenized_data;
err_kfree:
kfree(tokenized_data);
err:
return ERR_PTR(err);
}
static unsigned int freq2util(struct sugov_policy *sg_policy, unsigned int freq)
{
int idx;
unsigned int capacity, opp_freq;
#ifdef CONFIG_MTK_TINYSYS_SSPM_SUPPORT
int cpu = sg_policy->policy->cpu;
int cid = arch_get_cluster_id(cpu);
cid = arch_get_cluster_id(cpu);
freq = mt_cpufreq_find_close_freq(cid, freq);
#endif
for (idx = 0; idx < sg_policy->len; idx++) {
capacity = get_opp_capacity(sg_policy->policy, idx);
opp_freq = mt_cpufreq_get_cpu_freq(sg_policy->policy->cpu, idx);
if (freq <= opp_freq)
return capacity;
}
return get_opp_capacity(sg_policy->policy, sg_policy->len - 1);
}
static ssize_t target_loads_store(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
int ntokens, i;
unsigned int *new_target_loads = NULL;
unsigned long flags;
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
struct sugov_policy *sg_policy;
unsigned int *new_util_loads = NULL;
//get the first policy if this tunnables have mutil policies
sg_policy = list_first_entry(&attr_set->policy_list, struct sugov_policy, tunables_hook);
if (!sg_policy) {
pr_err("sg_policy is null\n");
return count;
}
new_target_loads = get_tokenized_data(buf, &ntokens);
for(i = 0; i < ntokens; i++) {
printk("token %d is %d\n", i, new_target_loads[i]);
}
if (IS_ERR(new_target_loads))
return PTR_ERR(new_target_loads);
new_util_loads = kzalloc(ntokens * sizeof(unsigned int), GFP_KERNEL);
if (!new_util_loads)
return -ENOMEM;
memcpy(new_util_loads, new_target_loads, sizeof(unsigned int) * ntokens);
for (i = 0; i < ntokens - 1; i += 2) {
new_util_loads[i+1] = freq2util(sg_policy, new_target_loads[i+1]);
printk("freq = %d, util = %d\n", new_target_loads[i+1], new_util_loads[i+1]);
}
spin_lock_irqsave(&tunables->target_loads_lock, flags);
if (tunables->target_loads != default_target_loads)
kfree(tunables->target_loads);
if (tunables->util_loads != default_target_loads)
kfree(tunables->util_loads);
tunables->target_loads = new_target_loads;
tunables->ntarget_loads = ntokens;
tunables->util_loads = new_util_loads;
spin_unlock_irqrestore(&tunables->target_loads_lock, flags);
return count;
}
ssize_t set_sugov_tl(unsigned int cpu, char *buf)
{
struct cpufreq_policy *policy;
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
struct gov_attr_set *attr_set;
size_t count;
if (!buf)
return -EFAULT;
policy = cpufreq_cpu_get(cpu);
if (!policy)
return -ENODEV;
sg_policy = policy->governor_data;
if (!sg_policy)
return -EINVAL;
tunables = sg_policy->tunables;
if (!tunables)
return -ENOMEM;
attr_set = &tunables->attr_set;
count = strlen(buf);
return target_loads_store(attr_set, buf, count);
}
EXPORT_SYMBOL_GPL(set_sugov_tl);
#endif
static struct governor_attr up_rate_limit_us = __ATTR_RW(up_rate_limit_us);
static struct governor_attr down_rate_limit_us = __ATTR_RW(down_rate_limit_us);
#if defined(OPLUS_FEATURE_SCHEDUTIL_USE_TL) && defined(CONFIG_SCHEDUTIL_USE_TL)
static struct governor_attr target_loads =
__ATTR(target_loads, 0664, target_loads_show, target_loads_store);
#endif
static struct attribute *sugov_attributes[] = {
&up_rate_limit_us.attr,
&down_rate_limit_us.attr,
#if defined(OPLUS_FEATURE_SCHEDUTIL_USE_TL) && defined(CONFIG_SCHEDUTIL_USE_TL)
&target_loads.attr,
#endif
NULL
};
static void sugov_tunables_free(struct kobject *kobj)
{
struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
kfree(to_sugov_tunables(attr_set));
}
static struct kobj_type sugov_tunables_ktype = {
.default_attrs = sugov_attributes,
.sysfs_ops = &governor_sysfs_ops,
.release = &sugov_tunables_free,
};
/********************** cpufreq governor interface *********************/
static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
if (!sg_policy)
return NULL;
sg_policy->policy = policy;
raw_spin_lock_init(&sg_policy->update_lock);
return sg_policy;
}
static void sugov_policy_free(struct sugov_policy *sg_policy)
{
kfree(sg_policy);
}
static int sugov_kthread_create(struct sugov_policy *sg_policy)
{
struct task_struct *thread;
struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO / 2 };
struct cpufreq_policy *policy = sg_policy->policy;
int ret;
/* kthread only required for slow path */
if (policy->fast_switch_enabled)
return 0;
kthread_init_work(&sg_policy->work, sugov_work);
kthread_init_worker(&sg_policy->worker);
thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
"sugov:%d",
cpumask_first(policy->related_cpus));
if (IS_ERR(thread)) {
pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
return PTR_ERR(thread);
}
ret = sched_setscheduler_nocheck(thread, SCHED_FIFO, &param);
if (ret) {
kthread_stop(thread);
pr_warn("%s: failed to set SCHED_FIFO\n", __func__);
return ret;
}
sg_policy->thread = thread;
/* Kthread is bound to all CPUs by default */
if (!policy->dvfs_possible_from_any_cpu)
kthread_bind_mask(thread, policy->related_cpus);
init_irq_work(&sg_policy->irq_work, sugov_irq_work);
mutex_init(&sg_policy->work_lock);
wake_up_process(thread);
return 0;
}
static void sugov_kthread_stop(struct sugov_policy *sg_policy)
{
/* kthread only required for slow path */
if (sg_policy->policy->fast_switch_enabled)
return;
kthread_flush_worker(&sg_policy->worker);
kthread_stop(sg_policy->thread);
mutex_destroy(&sg_policy->work_lock);
}
static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
{
struct sugov_tunables *tunables;
tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
if (tunables) {
gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
if (!have_governor_per_policy())
global_tunables = tunables;
}
return tunables;
}
static void sugov_clear_global_tunables(void)
{
if (!have_governor_per_policy())
global_tunables = NULL;
}
static int sugov_init(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
int ret = 0;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
cpufreq_enable_fast_switch(policy);
sg_policy = sugov_policy_alloc(policy);
if (!sg_policy) {
ret = -ENOMEM;
goto disable_fast_switch;
}
#if defined(OPLUS_FEATURE_SCHEDUTIL_USE_TL) && defined(CONFIG_SCHEDUTIL_USE_TL)
sg_policy->len = UPOWER_OPP_NUM;
#endif
ret = sugov_kthread_create(sg_policy);
if (ret)
goto free_sg_policy;
mutex_lock(&global_tunables_lock);
if (global_tunables) {
if (WARN_ON(have_governor_per_policy())) {
ret = -EINVAL;
goto stop_kthread;
}
policy->governor_data = sg_policy;
sg_policy->tunables = global_tunables;
gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
goto out;
}
tunables = sugov_tunables_alloc(sg_policy);
if (!tunables) {
ret = -ENOMEM;
goto stop_kthread;
}
tunables->up_rate_limit_us = cpufreq_policy_transition_delay_us(policy);
tunables->down_rate_limit_us = cpufreq_policy_transition_delay_us(policy);
#if defined(OPLUS_FEATURE_SCHEDUTIL_USE_TL) && defined(CONFIG_SCHEDUTIL_USE_TL)
tunables->target_loads = default_target_loads;
tunables->ntarget_loads = ARRAY_SIZE(default_target_loads);
//same with target_loads by default
tunables->util_loads = default_target_loads;
spin_lock_init(&tunables->target_loads_lock);
#endif
policy->governor_data = sg_policy;
sg_policy->tunables = tunables;
ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
get_governor_parent_kobj(policy), "%s",
schedutil_gov.name);
if (ret)
goto fail;
out:
mutex_unlock(&global_tunables_lock);
return 0;
fail:
kobject_put(&tunables->attr_set.kobj);
policy->governor_data = NULL;
sugov_clear_global_tunables();
stop_kthread:
sugov_kthread_stop(sg_policy);
mutex_unlock(&global_tunables_lock);
free_sg_policy:
sugov_policy_free(sg_policy);
disable_fast_switch:
cpufreq_disable_fast_switch(policy);
pr_err("initialization failed (error %d)\n", ret);
return ret;
}
static void sugov_exit(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
struct sugov_tunables *tunables = sg_policy->tunables;
unsigned int count;
mutex_lock(&global_tunables_lock);
count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
policy->governor_data = NULL;
if (!count)
sugov_clear_global_tunables();
mutex_unlock(&global_tunables_lock);
sugov_kthread_stop(sg_policy);
sugov_policy_free(sg_policy);
cpufreq_disable_fast_switch(policy);
}
static int sugov_start(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
sg_policy->up_rate_delay_ns =
sg_policy->tunables->up_rate_limit_us * NSEC_PER_USEC;
sg_policy->down_rate_delay_ns =
sg_policy->tunables->down_rate_limit_us * NSEC_PER_USEC;
update_min_rate_limit_ns(sg_policy);
sg_policy->last_freq_update_time = 0;
sg_policy->next_freq = UINT_MAX;
sg_policy->work_in_progress = false;
sg_policy->need_freq_update = false;
sg_policy->cached_raw_freq = 0;
#if defined (CONFIG_SCHED_WALT) && defined (OPLUS_FEATURE_UIFIRST)
sg_policy->flags = 0;
#endif
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
memset(sg_cpu, 0, sizeof(*sg_cpu));
sg_cpu->cpu = cpu;
sg_cpu->sg_policy = sg_policy;
sg_cpu->flags = SCHED_CPUFREQ_DL;
sg_cpu->iowait_boost_max = capacity_orig_of(cpu);
}
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
policy_is_shared(policy) ?
sugov_update_shared :
sugov_update_single);
}
return 0;
}
static void sugov_stop(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
for_each_cpu(cpu, policy->cpus)
cpufreq_remove_update_util_hook(cpu);
synchronize_sched();
if (!policy->fast_switch_enabled) {
irq_work_sync(&sg_policy->irq_work);
kthread_cancel_work_sync(&sg_policy->work);
}
}
static void sugov_limits(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
if (!policy->fast_switch_enabled) {
mutex_lock(&sg_policy->work_lock);
cpufreq_policy_apply_limits(policy);
mutex_unlock(&sg_policy->work_lock);
}
sg_policy->need_freq_update = true;
}
static struct cpufreq_governor schedutil_gov = {
.name = "schedutil",
.owner = THIS_MODULE,
.dynamic_switching = true,
.init = sugov_init,
.exit = sugov_exit,
.start = sugov_start,
.stop = sugov_stop,
.limits = sugov_limits,
};
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
struct cpufreq_governor *cpufreq_default_governor(void)
{
return &schedutil_gov;
}
#endif
static int __init sugov_register(void)
{
return cpufreq_register_governor(&schedutil_gov);
}
fs_initcall(sugov_register);