blob: 23e922fa4ceca48fa5e4da5731c2c9977fa982d7 [file] [log] [blame]
/*
* Copyright (c) 2014-2015 MediaTek Inc.
* Author: Chaotian.Jing <chaotian.jing@mediatek.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/kthread.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/mmc/host.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/mmc/card.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sdio_func.h>
#define SDIO_CCCR_MTK_DDR208 0xF2
#define SUCCESS 0
#define FAIL 1
enum {
Read = 0,
Write = 1,
Tune = 2,
Hqa_read = 3,
Hqa_write = 4,
Reset = 5,
Stress_read = 6,
Stress_write = 7,
Stress_test = 8,
Func_ctrl = 9
};
static struct mmc_host *host;
/**
* define some count timer.
*/
#define KAL_TIME_INTERVAL_DECLARATION() struct timeval __rTs, __rTe
#define KAL_REC_TIME_START() do_gettimeofday(&__rTs)
#define KAL_REC_TIME_END() do_gettimeofday(&__rTe)
#define KAL_GET_TIME_INTERVAL() \
((__rTe.tv_sec * USEC_PER_SEC + __rTe.tv_usec) - \
(__rTs.tv_sec * USEC_PER_SEC + __rTs.tv_usec))
/**
* sdio_proc_show dispaly the common cccr and cis.
*/
static int sdio_proc_show(struct seq_file *m, void *v)
{
struct mmc_card *card;
struct sdio_cccr cccr;
WARN_ON(!host);
card = host->card;
cccr = card->cccr;
seq_puts(m, "\n=========================================\n");
seq_puts(m, "common cccr:\n");
seq_printf(m, "sdio_vsn:%x, sd_vsn:%x, multi_block%x.\n"
"low_speed:%x, wide_bus:%x, hight_power:%x.\n"
"high_speed:%x, disable_cd:%x.\n",
cccr.sdio_vsn, cccr.sd_vsn, cccr.multi_block,
cccr.low_speed, cccr.wide_bus, cccr.high_power,
cccr.high_speed, cccr.disable_cd);
seq_puts(m, "common cis:\n");
seq_printf(m, "vendor: %x, device:%x, blksize:%x, max_dtr:%x\n",
card->cis.vendor, card->cis.device,
card->cis.blksize, card->cis.max_dtr);
seq_puts(m, "read cmd format:\n");
seq_puts(m, "echo 0 0xReg 0xfunction> /proc/sdio\n");
seq_puts(m, "write cmd format:\n");
seq_puts(m, "echo 1 0xReg 0xfunction 0xValue> /proc/sdio\n");
seq_puts(m, "tune cmd format:\n");
seq_puts(m, "echo 2 0xloop_cycles > /proc/sdio\n");
seq_puts(m, "multi read cmd format:\n");
seq_puts(m, "echo 3 0x13 0x0 > /proc/sdio\n");
seq_puts(m, "multi write cmd format:\n");
seq_puts(m, "echo 4 0x13 0x0 0xvalue > /proc/sdio\n");
seq_puts(m, "Notice:value is the read result!\n");
seq_puts(m, "reset sdio cmd format:\n");
seq_puts(m, "echo 5 0x0 0x0 > /proc/sdio\n");
seq_puts(m, "throughput read cmd format:\n");
seq_puts(m, "echo 6 0xb0 0x1 > /proc/sdio\n");
seq_puts(m, "throughtput write cmd format:\n");
seq_puts(m, "echo 7 0xb0 0x1 > /proc/sdio\n");
seq_puts(m, "stress test cmd format:\n");
seq_puts(m, "echo 8 0x0 0x1 > /proc/sdio\n");
seq_puts(m, "function enable cmd format:\n");
seq_puts(m, "echo 9 0x0/0x1 0xfunc_number > /proc/sdio\n");
seq_puts(m, "=========================================\n");
return 0;
}
static int sdio_tuning(void)
{
int err = 0;
err = mmc_send_tuning(host, MMC_SEND_TUNING_BLOCK, NULL);
return err;
}
/*
* This function can be used to do HQA.SDIO SHPA for read.
* HQA: for SDR104 mode, it is better to set 0xb8(func1) to 0x5a.
* HQA: for SD3.0 plus, it is better to set 0xb8(func1) to 0x33cc.
*/
static int multi_read(struct sdio_func *func, struct mmc_host *host)
{
int err, i;
u32 data, value, count_rw = 0;
unsigned long total = 0;
unsigned char *fac_buf = NULL;
KAL_TIME_INTERVAL_DECLARATION();
__kernel_suseconds_t usec;
func->cur_blksize = 0x200;
fac_buf = kmalloc(0x400, GFP_KERNEL);
if (!fac_buf)
return FAIL;
/* This function can be used to do HQA.SDIO SHPA */
data = sdio_f0_readb(func, SDIO_CCCR_MTK_DDR208, &err);
if (err) {
kfree(fac_buf);
return FAIL;
} else if ((data & 0x3) == 0x3) {
value = 0x33cc33cc;
err = sdio_writesb(func, 0x0, &value, 0x4);
dev_info(mmc_dev(host), "[sd3.0+]: value is 0x33cc\n");
} else {
value = 0x5a5a5a5a;
//err = sdio_writesb(func, 0x0, &value, 0x4);
dev_info(mmc_dev(host), "[sd3.0]: value is 0x5a5a\n");
}
//value = 0;
//err = sdio_readsb(func, &value, 0x0, 0x4);
i = 0;
/* byte to bit */
total = 0x400 * 0x10;
do {
if (i % 0x10 == 0)
KAL_REC_TIME_START();
//dev_info(mmc_dev(host),
//"[sd3.0]: value is 0x5a5a try read\n");
err = sdio_readsb(func, fac_buf, 0x0, 0x400);
//dev_info(mmc_dev(host),
//"[sd3.0]: value is 0x5a5a try read end\n");
if (err)
count_rw = count_rw + 1;
i = i + 1;
if ((i / 0x10) && (i % 0x10 == 0)) {
KAL_REC_TIME_END();
usec = KAL_GET_TIME_INTERVAL();
dev_info(mmc_dev(host), "read: %lu Kbps, err:%x.\n",
total / (usec / USEC_PER_MSEC), count_rw);
}
} while (i < 0x10);
kfree(fac_buf);
return SUCCESS;
}
/**
* This function can be used to do de-sense.HQA.SHPA for write.
* HQA: for SDR104 mode, it is better to set 0xb8(func1) to 0x5a.
* HQA: for SD3.0 plus, it is better to set 0xb8(func1) to 0x33cc.
* de_sense: data is random or not.
*/
static int multi_write(struct sdio_func *func, struct mmc_host *host,
int de_sense)
{
int err, i;
u32 data, value, count_rw = 0;
unsigned long total = 0;
unsigned char *fac_buf = NULL;
KAL_TIME_INTERVAL_DECLARATION();
__kernel_suseconds_t usec;
func->cur_blksize = 0x200;
fac_buf = kmalloc(0x400, GFP_KERNEL);
if (!fac_buf)
return FAIL;
/* This function can be used to do de-sense.HQA.SHPA */
data = sdio_f0_readb(func, SDIO_CCCR_MTK_DDR208, &err);
if (err) {
kfree(fac_buf);
return FAIL;
}
if (de_sense) {
//err = wait_for_random_bytes();
if (!err)
dev_info(mmc_dev(host),
"wait random bytes success.\n");
//get_random_bytes(fac_buf, 0x10000);
} else if ((err & 0x3) == 0x3) {
value = 0x33cc33cc;
err = sdio_writesb(func, 0x0, &value, 0x400);
err = sdio_readsb(func, fac_buf, 0x0, 0x400);
dev_info(mmc_dev(host), "[sd3.0+]: value is 0x33cc\n");
} else {
memset(fac_buf, 0x5a, 0x400);
dev_info(mmc_dev(host), "[sd3.0]: value is 0x5a5a\n");
}
i = 0;
/* byte to bit */
total = 0x400 * 0x10;
do {
if (i % 0x10 == 0)
KAL_REC_TIME_START();
err = sdio_writesb(func, 0x0, fac_buf, 0x400);
if (err)
count_rw = count_rw + 1;
i = i + 1;
if ((i / 0x10) && (i % 0x10 == 0)) {
KAL_REC_TIME_END();
usec = KAL_GET_TIME_INTERVAL();
dev_info(mmc_dev(host), "write: %lu Kbps, err:%x\n",
total / (usec / USEC_PER_MSEC), count_rw);
}
} while (i < 0x10);
kfree(fac_buf);
return SUCCESS;
}
static int sdio_stress_test(struct sdio_func *func, struct mmc_host *host)
{
int ret;
while (1) {
ret = multi_write(func, host, 0);
sdio_release_host(func);
if (ret)
return ret;
msleep(20);
sdio_claim_host(func);
ret = multi_read(func, host);
if (ret)
return ret;
}
}
/**
* sdio_proc_write - read/write sdio function register.
*/
static ssize_t sdio_proc_write(struct file *file, const char *buf,
size_t count, loff_t *f_pos)
{
struct mmc_card *card;
struct sdio_func *func;
struct mmc_ios *ios;
char *cmd_buf, *str_hand;
unsigned char *fac_buf = NULL;
unsigned int cmd, addr, fn, value, hqa_result, offset, option;
unsigned char result;
int i = 0, ret;
unsigned long count_r = 0, count_w = 0, total = 0;
KAL_TIME_INTERVAL_DECLARATION();
__kernel_suseconds_t usec;
WARN_ON(!host);
ios = &host->ios;
card = host->card;
cmd_buf = kzalloc((count + 1), GFP_KERNEL);
if (!cmd_buf)
return count;
str_hand = kzalloc(2, GFP_KERNEL);
if (!str_hand) {
kfree(cmd_buf);
return count;
}
func = kzalloc(sizeof(struct sdio_func), GFP_KERNEL);
if (!func) {
kfree(cmd_buf);
kfree(str_hand);
return count;
}
ret = copy_from_user(cmd_buf, buf, count);
if (ret < 0)
goto end;
*(cmd_buf + count) = '\0';
ret = sscanf(cmd_buf, "%x %x %x %x %x %x",
&cmd, &addr, &fn, &value, &offset, &option);
if (ret == 0) {
ret = sscanf(cmd_buf, "%s", str_hand);
if (ret == 0)
dev_info(mmc_dev(host), "please enter cmd.\n");
goto end;
}
if (cmd == Tune)
fn = 0;
/* Judge whether request fn is over the max functions. */
if (fn > card->sdio_funcs) {
dev_info(mmc_dev(host), "the fn is over the max sdio funcs.\n");
goto end;
}
if (fn) {
/**
* The test read/write api don't need more func
* information. So we just use the card & func->num
* to the new struct func.
*/
if (card->sdio_func[fn - 1]) {
func->card = card;
func->num = card->sdio_func[fn - 1]->num;
func->tuples = card->sdio_func[fn - 1]->tuples;
func->tmpbuf = card->sdio_func[fn - 1]->tmpbuf;
hqa_result = card->sdio_func[fn - 1]->max_blksize;
func->max_blksize = hqa_result;
if ((cmd == Hqa_read) || (cmd == Hqa_write)) {
func->cur_blksize = 8;
} else if ((cmd == Stress_write) ||
(cmd == Stress_read)) {
func->cur_blksize = 0x200;
fac_buf = kmalloc(0x40000, GFP_KERNEL);
if (!fac_buf)
goto end;
memset(fac_buf, 0x3c, 0x40000);
} else {
func->cur_blksize = 1;
}
} else {
dev_info(mmc_dev(host), "func %d is null,.\n", fn);
}
} else {
/**
* function 0 should not need struct func.
* but the api need the parameter, so we create
* the a new func for function 0.
*/
func->card = card;
func->tuples = card->tuples;
func->num = 0;
func->max_blksize = 16;
if ((cmd == Hqa_read) || (cmd == Hqa_write))
func->cur_blksize = 16;
else
func->cur_blksize = 1;
func->tmpbuf = kmalloc(func->cur_blksize, GFP_KERNEL);
if (!func->tmpbuf)
goto end;
memset(func->tmpbuf, 0, func->cur_blksize);
}
sdio_claim_host(func);
switch (cmd) {
case Read:
dev_info(mmc_dev(host), "read addr:%x, fn:%d.\n", addr, fn);
ret = 0;
if (fn == 0)
result = sdio_f0_readb(func, addr, &ret);
else
result = sdio_readb(func, addr, &ret);
if (ret)
dev_info(mmc_dev(host), "Read fail(%d).\n", ret);
else
dev_info(mmc_dev(host), "f%d reg(%x) is 0x%02x.\n",
func->num, addr, result);
break;
case Write:
dev_info(mmc_dev(host), "write addr:%x, value:%x, fn:%d.\n",
addr, (u8)value, fn);
ret = 0;
if (fn == 0)
/* (0xF0 - 0xFF) are permiited for func0 */
sdio_f0_writeb(func, (u8)value, addr, &ret);
else
sdio_writeb(func, (u8)value, addr, &ret);
if (ret)
dev_info(mmc_dev(host), "write fail(%d).\n", ret);
else
dev_info(mmc_dev(host), "write success(%d).\n", ret);
break;
case Tune:
value = 0;
do {
result = sdio_tuning();
if (result)
value = value + 1;
i = i + 1;
} while (i < 64);
if (value)
dev_info(mmc_dev(host), "test fail.\n");
else
dev_info(mmc_dev(host), "test well.\n");
break;
case Hqa_read:
dev_info(mmc_dev(host), "read addr:%x, fn %d\n", addr, fn);
i = 0;
hqa_result = 0;
do {
ret = 0;
hqa_result = sdio_readl(func, addr, &ret);
if (ret)
dev_info(mmc_dev(host), "Read f%d reg(%x) fail(%d).\n",
func->num, addr, ret);
i = i + 1;
} while (i < 0x10000);
dev_info(mmc_dev(host), "Read result: 0x%02x.\n", hqa_result);
break;
case Hqa_write:
dev_info(mmc_dev(host), "write addr:%x, value:%x, fn %d\n",
addr, value, fn);
i = 0;
hqa_result = 0;
do {
ret = 0;
sdio_writel(func, value, addr, &ret);
if (ret)
dev_info(mmc_dev(host), "write f%d reg(%x) fail(%d).\n",
func->num, addr, ret);
i = i + 1;
} while (i < 0x10000);
dev_info(mmc_dev(host), "write success(%d).\n", ret);
break;
case Reset:
mmc_hw_reset(host);
break;
case Stress_read:
i = 0;
/* byte to bit */
total = 0x6400000 * 8;
dev_info(mmc_dev(host), "START test SDIO read throughput\n");
KAL_REC_TIME_START();
do {
ret = sdio_readsb(func, fac_buf, addr, 0x40000);
if (ret)
count_r = count_r + 1;
i = i + 1;
} while (i < 0x1900);
KAL_REC_TIME_END();
usec = KAL_GET_TIME_INTERVAL();
dev_info(mmc_dev(host), "%lu Kbps, err:%lx\n",
total / (usec / USEC_PER_MSEC) * 0x10, count_r);
break;
case Stress_write:
i = 0;
/* byte to bit */
total = 0x6400000 * 8;
dev_info(mmc_dev(host), "START test SDIO write throughput\n");
KAL_REC_TIME_START();
do {
ret = sdio_writesb(func, addr, fac_buf, 0x40000);
if (ret)
count_w = count_w + 1;
i = i + 1;
} while (i < 0x1900);
KAL_REC_TIME_END();
usec = KAL_GET_TIME_INTERVAL();
dev_info(mmc_dev(host), "%lu Kbps, err:%lx\n",
total / (usec / USEC_PER_MSEC) * 0x10, count_w);
break;
case Stress_test:
ret = sdio_stress_test(func, host);
if (ret) {
dev_info(mmc_dev(host), "IO Stress Test Fail!!!\n");
sdio_release_host(func);
goto end;
}
break;
case Func_ctrl:
/* addr is func ctrl value in this case*/
if (addr)
ret = sdio_enable_func(func);
else
ret = sdio_disable_func(func);
break;
default:
dev_info(mmc_dev(host), "cmd is not valid.\n");
break;
}
sdio_release_host(func);
end:
kfree(str_hand);
kfree(cmd_buf);
kfree(func);
return count;
}
/**
* open function show some stable information.
*/
static int sdio_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, sdio_proc_show, inode->i_private);
}
/**
* sdio pre is our own function.
* seq or single pre is the kernel function.
*/
static const struct file_operations sdio_proc_fops = {
.owner = THIS_MODULE,
.open = sdio_proc_open,
.release = single_release,
.write = sdio_proc_write,
.read = seq_read,
.llseek = seq_lseek,
};
int sdio_proc_init(struct mmc_host *host_init)
{
struct proc_dir_entry *prEntry;
host = host_init;
prEntry = proc_create("sdio", 0660, NULL, &sdio_proc_fops);
if (prEntry)
dev_info(mmc_dev(host), "/proc/sdio is created.\n");
else
dev_info(mmc_dev(host), "create /proc/sdio failed.\n");
return 0;
}