| #ifndef BLK_INTERNAL_H |
| #define BLK_INTERNAL_H |
| |
| #include <linux/idr.h> |
| |
| /* Amount of time in which a process may batch requests */ |
| #define BLK_BATCH_TIME (HZ/50UL) |
| |
| /* Number of requests a "batching" process may submit */ |
| #define BLK_BATCH_REQ 32 |
| |
| extern struct kmem_cache *blk_requestq_cachep; |
| extern struct kobj_type blk_queue_ktype; |
| extern struct ida blk_queue_ida; |
| |
| static inline void __blk_get_queue(struct request_queue *q) |
| { |
| kobject_get(&q->kobj); |
| } |
| |
| void init_request_from_bio(struct request *req, struct bio *bio); |
| void blk_rq_bio_prep(struct request_queue *q, struct request *rq, |
| struct bio *bio); |
| int blk_rq_append_bio(struct request_queue *q, struct request *rq, |
| struct bio *bio); |
| void blk_drain_queue(struct request_queue *q, bool drain_all); |
| void blk_dequeue_request(struct request *rq); |
| void __blk_queue_free_tags(struct request_queue *q); |
| bool __blk_end_bidi_request(struct request *rq, int error, |
| unsigned int nr_bytes, unsigned int bidi_bytes); |
| |
| void blk_rq_timed_out_timer(unsigned long data); |
| void blk_delete_timer(struct request *); |
| void blk_add_timer(struct request *); |
| void __generic_unplug_device(struct request_queue *); |
| |
| /* |
| * Internal atomic flags for request handling |
| */ |
| enum rq_atomic_flags { |
| REQ_ATOM_COMPLETE = 0, |
| }; |
| |
| /* |
| * EH timer and IO completion will both attempt to 'grab' the request, make |
| * sure that only one of them succeeds |
| */ |
| static inline int blk_mark_rq_complete(struct request *rq) |
| { |
| return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); |
| } |
| |
| static inline void blk_clear_rq_complete(struct request *rq) |
| { |
| clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); |
| } |
| |
| /* |
| * Internal elevator interface |
| */ |
| #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash)) |
| |
| void blk_insert_flush(struct request *rq); |
| void blk_abort_flushes(struct request_queue *q); |
| |
| static inline struct request *__elv_next_request(struct request_queue *q) |
| { |
| struct request *rq; |
| |
| while (1) { |
| if (!list_empty(&q->queue_head)) { |
| rq = list_entry_rq(q->queue_head.next); |
| return rq; |
| } |
| |
| /* |
| * Flush request is running and flush request isn't queueable |
| * in the drive, we can hold the queue till flush request is |
| * finished. Even we don't do this, driver can't dispatch next |
| * requests and will requeue them. And this can improve |
| * throughput too. For example, we have request flush1, write1, |
| * flush 2. flush1 is dispatched, then queue is hold, write1 |
| * isn't inserted to queue. After flush1 is finished, flush2 |
| * will be dispatched. Since disk cache is already clean, |
| * flush2 will be finished very soon, so looks like flush2 is |
| * folded to flush1. |
| * Since the queue is hold, a flag is set to indicate the queue |
| * should be restarted later. Please see flush_end_io() for |
| * details. |
| */ |
| if (q->flush_pending_idx != q->flush_running_idx && |
| !queue_flush_queueable(q)) { |
| q->flush_queue_delayed = 1; |
| return NULL; |
| } |
| if (unlikely(blk_queue_dead(q)) || |
| !q->elevator->ops->elevator_dispatch_fn(q, 0)) |
| return NULL; |
| } |
| } |
| |
| static inline void elv_activate_rq(struct request_queue *q, struct request *rq) |
| { |
| struct elevator_queue *e = q->elevator; |
| |
| if (e->ops->elevator_activate_req_fn) |
| e->ops->elevator_activate_req_fn(q, rq); |
| } |
| |
| static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq) |
| { |
| struct elevator_queue *e = q->elevator; |
| |
| if (e->ops->elevator_deactivate_req_fn) |
| e->ops->elevator_deactivate_req_fn(q, rq); |
| } |
| |
| #ifdef CONFIG_FAIL_IO_TIMEOUT |
| int blk_should_fake_timeout(struct request_queue *); |
| ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); |
| ssize_t part_timeout_store(struct device *, struct device_attribute *, |
| const char *, size_t); |
| #else |
| static inline int blk_should_fake_timeout(struct request_queue *q) |
| { |
| return 0; |
| } |
| #endif |
| |
| void get_io_context(struct io_context *ioc); |
| struct io_context *current_io_context(gfp_t gfp_flags, int node); |
| |
| int ll_back_merge_fn(struct request_queue *q, struct request *req, |
| struct bio *bio); |
| int ll_front_merge_fn(struct request_queue *q, struct request *req, |
| struct bio *bio); |
| int attempt_back_merge(struct request_queue *q, struct request *rq); |
| int attempt_front_merge(struct request_queue *q, struct request *rq); |
| int blk_attempt_req_merge(struct request_queue *q, struct request *rq, |
| struct request *next); |
| void blk_recalc_rq_segments(struct request *rq); |
| void blk_rq_set_mixed_merge(struct request *rq); |
| |
| void blk_queue_congestion_threshold(struct request_queue *q); |
| |
| int blk_dev_init(void); |
| |
| void elv_quiesce_start(struct request_queue *q); |
| void elv_quiesce_end(struct request_queue *q); |
| |
| |
| /* |
| * Return the threshold (number of used requests) at which the queue is |
| * considered to be congested. It include a little hysteresis to keep the |
| * context switch rate down. |
| */ |
| static inline int queue_congestion_on_threshold(struct request_queue *q) |
| { |
| return q->nr_congestion_on; |
| } |
| |
| /* |
| * The threshold at which a queue is considered to be uncongested |
| */ |
| static inline int queue_congestion_off_threshold(struct request_queue *q) |
| { |
| return q->nr_congestion_off; |
| } |
| |
| static inline int blk_cpu_to_group(int cpu) |
| { |
| int group = NR_CPUS; |
| #ifdef CONFIG_SCHED_MC |
| const struct cpumask *mask = cpu_coregroup_mask(cpu); |
| group = cpumask_first(mask); |
| #elif defined(CONFIG_SCHED_SMT) |
| group = cpumask_first(topology_thread_cpumask(cpu)); |
| #else |
| return cpu; |
| #endif |
| if (likely(group < NR_CPUS)) |
| return group; |
| return cpu; |
| } |
| |
| /* |
| * Contribute to IO statistics IFF: |
| * |
| * a) it's attached to a gendisk, and |
| * b) the queue had IO stats enabled when this request was started, and |
| * c) it's a file system request or a discard request |
| */ |
| static inline int blk_do_io_stat(struct request *rq) |
| { |
| return rq->rq_disk && |
| (rq->cmd_flags & REQ_IO_STAT) && |
| (rq->cmd_type == REQ_TYPE_FS || |
| (rq->cmd_flags & REQ_DISCARD)); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_THROTTLING |
| extern bool blk_throtl_bio(struct request_queue *q, struct bio *bio); |
| extern void blk_throtl_drain(struct request_queue *q); |
| extern int blk_throtl_init(struct request_queue *q); |
| extern void blk_throtl_exit(struct request_queue *q); |
| extern void blk_throtl_release(struct request_queue *q); |
| #else /* CONFIG_BLK_DEV_THROTTLING */ |
| static inline bool blk_throtl_bio(struct request_queue *q, struct bio *bio) |
| { |
| return false; |
| } |
| static inline void blk_throtl_drain(struct request_queue *q) { } |
| static inline int blk_throtl_init(struct request_queue *q) { return 0; } |
| static inline void blk_throtl_exit(struct request_queue *q) { } |
| static inline void blk_throtl_release(struct request_queue *q) { } |
| #endif /* CONFIG_BLK_DEV_THROTTLING */ |
| |
| #endif /* BLK_INTERNAL_H */ |