| /* |
| * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Author: Tom Tucker <tom@opengridcomputing.com> |
| */ |
| |
| #include <linux/sunrpc/debug.h> |
| #include <linux/sunrpc/rpc_rdma.h> |
| #include <linux/spinlock.h> |
| #include <asm/unaligned.h> |
| #include <rdma/ib_verbs.h> |
| #include <rdma/rdma_cm.h> |
| #include <linux/sunrpc/svc_rdma.h> |
| |
| #define RPCDBG_FACILITY RPCDBG_SVCXPRT |
| |
| /* Encode an XDR as an array of IB SGE |
| * |
| * Assumptions: |
| * - head[0] is physically contiguous. |
| * - tail[0] is physically contiguous. |
| * - pages[] is not physically or virtually contigous and consists of |
| * PAGE_SIZE elements. |
| * |
| * Output: |
| * SGE[0] reserved for RCPRDMA header |
| * SGE[1] data from xdr->head[] |
| * SGE[2..sge_count-2] data from xdr->pages[] |
| * SGE[sge_count-1] data from xdr->tail. |
| * |
| */ |
| static struct ib_sge *xdr_to_sge(struct svcxprt_rdma *xprt, |
| struct xdr_buf *xdr, |
| struct ib_sge *sge, |
| int *sge_count) |
| { |
| /* Max we need is the length of the XDR / pagesize + one for |
| * head + one for tail + one for RPCRDMA header |
| */ |
| int sge_max = (xdr->len+PAGE_SIZE-1) / PAGE_SIZE + 3; |
| int sge_no; |
| u32 byte_count = xdr->len; |
| u32 sge_bytes; |
| u32 page_bytes; |
| int page_off; |
| int page_no; |
| |
| /* Skip the first sge, this is for the RPCRDMA header */ |
| sge_no = 1; |
| |
| /* Head SGE */ |
| sge[sge_no].addr = ib_dma_map_single(xprt->sc_cm_id->device, |
| xdr->head[0].iov_base, |
| xdr->head[0].iov_len, |
| DMA_TO_DEVICE); |
| sge_bytes = min_t(u32, byte_count, xdr->head[0].iov_len); |
| byte_count -= sge_bytes; |
| sge[sge_no].length = sge_bytes; |
| sge[sge_no].lkey = xprt->sc_phys_mr->lkey; |
| sge_no++; |
| |
| /* pages SGE */ |
| page_no = 0; |
| page_bytes = xdr->page_len; |
| page_off = xdr->page_base; |
| while (byte_count && page_bytes) { |
| sge_bytes = min_t(u32, byte_count, (PAGE_SIZE-page_off)); |
| sge[sge_no].addr = |
| ib_dma_map_page(xprt->sc_cm_id->device, |
| xdr->pages[page_no], page_off, |
| sge_bytes, DMA_TO_DEVICE); |
| sge_bytes = min(sge_bytes, page_bytes); |
| byte_count -= sge_bytes; |
| page_bytes -= sge_bytes; |
| sge[sge_no].length = sge_bytes; |
| sge[sge_no].lkey = xprt->sc_phys_mr->lkey; |
| |
| sge_no++; |
| page_no++; |
| page_off = 0; /* reset for next time through loop */ |
| } |
| |
| /* Tail SGE */ |
| if (byte_count && xdr->tail[0].iov_len) { |
| sge[sge_no].addr = |
| ib_dma_map_single(xprt->sc_cm_id->device, |
| xdr->tail[0].iov_base, |
| xdr->tail[0].iov_len, |
| DMA_TO_DEVICE); |
| sge_bytes = min_t(u32, byte_count, xdr->tail[0].iov_len); |
| byte_count -= sge_bytes; |
| sge[sge_no].length = sge_bytes; |
| sge[sge_no].lkey = xprt->sc_phys_mr->lkey; |
| sge_no++; |
| } |
| |
| BUG_ON(sge_no > sge_max); |
| BUG_ON(byte_count != 0); |
| |
| *sge_count = sge_no; |
| return sge; |
| } |
| |
| |
| /* Assumptions: |
| * - The specified write_len can be represented in sc_max_sge * PAGE_SIZE |
| */ |
| static int send_write(struct svcxprt_rdma *xprt, struct svc_rqst *rqstp, |
| u32 rmr, u64 to, |
| u32 xdr_off, int write_len, |
| struct ib_sge *xdr_sge, int sge_count) |
| { |
| struct svc_rdma_op_ctxt *tmp_sge_ctxt; |
| struct ib_send_wr write_wr; |
| struct ib_sge *sge; |
| int xdr_sge_no; |
| int sge_no; |
| int sge_bytes; |
| int sge_off; |
| int bc; |
| struct svc_rdma_op_ctxt *ctxt; |
| int ret = 0; |
| |
| BUG_ON(sge_count >= 32); |
| dprintk("svcrdma: RDMA_WRITE rmr=%x, to=%llx, xdr_off=%d, " |
| "write_len=%d, xdr_sge=%p, sge_count=%d\n", |
| rmr, to, xdr_off, write_len, xdr_sge, sge_count); |
| |
| ctxt = svc_rdma_get_context(xprt); |
| ctxt->count = 0; |
| tmp_sge_ctxt = svc_rdma_get_context(xprt); |
| sge = tmp_sge_ctxt->sge; |
| |
| /* Find the SGE associated with xdr_off */ |
| for (bc = xdr_off, xdr_sge_no = 1; bc && xdr_sge_no < sge_count; |
| xdr_sge_no++) { |
| if (xdr_sge[xdr_sge_no].length > bc) |
| break; |
| bc -= xdr_sge[xdr_sge_no].length; |
| } |
| |
| sge_off = bc; |
| bc = write_len; |
| sge_no = 0; |
| |
| /* Copy the remaining SGE */ |
| while (bc != 0 && xdr_sge_no < sge_count) { |
| sge[sge_no].addr = xdr_sge[xdr_sge_no].addr + sge_off; |
| sge[sge_no].lkey = xdr_sge[xdr_sge_no].lkey; |
| sge_bytes = min((size_t)bc, |
| (size_t)(xdr_sge[xdr_sge_no].length-sge_off)); |
| sge[sge_no].length = sge_bytes; |
| |
| sge_off = 0; |
| sge_no++; |
| xdr_sge_no++; |
| bc -= sge_bytes; |
| } |
| |
| BUG_ON(bc != 0); |
| BUG_ON(xdr_sge_no > sge_count); |
| |
| /* Prepare WRITE WR */ |
| memset(&write_wr, 0, sizeof write_wr); |
| ctxt->wr_op = IB_WR_RDMA_WRITE; |
| write_wr.wr_id = (unsigned long)ctxt; |
| write_wr.sg_list = &sge[0]; |
| write_wr.num_sge = sge_no; |
| write_wr.opcode = IB_WR_RDMA_WRITE; |
| write_wr.send_flags = IB_SEND_SIGNALED; |
| write_wr.wr.rdma.rkey = rmr; |
| write_wr.wr.rdma.remote_addr = to; |
| |
| /* Post It */ |
| atomic_inc(&rdma_stat_write); |
| if (svc_rdma_send(xprt, &write_wr)) { |
| svc_rdma_put_context(ctxt, 1); |
| /* Fatal error, close transport */ |
| ret = -EIO; |
| } |
| svc_rdma_put_context(tmp_sge_ctxt, 0); |
| return ret; |
| } |
| |
| static int send_write_chunks(struct svcxprt_rdma *xprt, |
| struct rpcrdma_msg *rdma_argp, |
| struct rpcrdma_msg *rdma_resp, |
| struct svc_rqst *rqstp, |
| struct ib_sge *sge, |
| int sge_count) |
| { |
| u32 xfer_len = rqstp->rq_res.page_len + rqstp->rq_res.tail[0].iov_len; |
| int write_len; |
| int max_write; |
| u32 xdr_off; |
| int chunk_off; |
| int chunk_no; |
| struct rpcrdma_write_array *arg_ary; |
| struct rpcrdma_write_array *res_ary; |
| int ret; |
| |
| arg_ary = svc_rdma_get_write_array(rdma_argp); |
| if (!arg_ary) |
| return 0; |
| res_ary = (struct rpcrdma_write_array *) |
| &rdma_resp->rm_body.rm_chunks[1]; |
| |
| max_write = xprt->sc_max_sge * PAGE_SIZE; |
| |
| /* Write chunks start at the pagelist */ |
| for (xdr_off = rqstp->rq_res.head[0].iov_len, chunk_no = 0; |
| xfer_len && chunk_no < arg_ary->wc_nchunks; |
| chunk_no++) { |
| struct rpcrdma_segment *arg_ch; |
| u64 rs_offset; |
| |
| arg_ch = &arg_ary->wc_array[chunk_no].wc_target; |
| write_len = min(xfer_len, arg_ch->rs_length); |
| |
| /* Prepare the response chunk given the length actually |
| * written */ |
| rs_offset = get_unaligned(&(arg_ch->rs_offset)); |
| svc_rdma_xdr_encode_array_chunk(res_ary, chunk_no, |
| arg_ch->rs_handle, |
| rs_offset, |
| write_len); |
| chunk_off = 0; |
| while (write_len) { |
| int this_write; |
| this_write = min(write_len, max_write); |
| ret = send_write(xprt, rqstp, |
| arg_ch->rs_handle, |
| rs_offset + chunk_off, |
| xdr_off, |
| this_write, |
| sge, |
| sge_count); |
| if (ret) { |
| dprintk("svcrdma: RDMA_WRITE failed, ret=%d\n", |
| ret); |
| return -EIO; |
| } |
| chunk_off += this_write; |
| xdr_off += this_write; |
| xfer_len -= this_write; |
| write_len -= this_write; |
| } |
| } |
| /* Update the req with the number of chunks actually used */ |
| svc_rdma_xdr_encode_write_list(rdma_resp, chunk_no); |
| |
| return rqstp->rq_res.page_len + rqstp->rq_res.tail[0].iov_len; |
| } |
| |
| static int send_reply_chunks(struct svcxprt_rdma *xprt, |
| struct rpcrdma_msg *rdma_argp, |
| struct rpcrdma_msg *rdma_resp, |
| struct svc_rqst *rqstp, |
| struct ib_sge *sge, |
| int sge_count) |
| { |
| u32 xfer_len = rqstp->rq_res.len; |
| int write_len; |
| int max_write; |
| u32 xdr_off; |
| int chunk_no; |
| int chunk_off; |
| struct rpcrdma_segment *ch; |
| struct rpcrdma_write_array *arg_ary; |
| struct rpcrdma_write_array *res_ary; |
| int ret; |
| |
| arg_ary = svc_rdma_get_reply_array(rdma_argp); |
| if (!arg_ary) |
| return 0; |
| /* XXX: need to fix when reply lists occur with read-list and or |
| * write-list */ |
| res_ary = (struct rpcrdma_write_array *) |
| &rdma_resp->rm_body.rm_chunks[2]; |
| |
| max_write = xprt->sc_max_sge * PAGE_SIZE; |
| |
| /* xdr offset starts at RPC message */ |
| for (xdr_off = 0, chunk_no = 0; |
| xfer_len && chunk_no < arg_ary->wc_nchunks; |
| chunk_no++) { |
| u64 rs_offset; |
| ch = &arg_ary->wc_array[chunk_no].wc_target; |
| write_len = min(xfer_len, ch->rs_length); |
| |
| |
| /* Prepare the reply chunk given the length actually |
| * written */ |
| rs_offset = get_unaligned(&(ch->rs_offset)); |
| svc_rdma_xdr_encode_array_chunk(res_ary, chunk_no, |
| ch->rs_handle, rs_offset, |
| write_len); |
| chunk_off = 0; |
| while (write_len) { |
| int this_write; |
| |
| this_write = min(write_len, max_write); |
| ret = send_write(xprt, rqstp, |
| ch->rs_handle, |
| rs_offset + chunk_off, |
| xdr_off, |
| this_write, |
| sge, |
| sge_count); |
| if (ret) { |
| dprintk("svcrdma: RDMA_WRITE failed, ret=%d\n", |
| ret); |
| return -EIO; |
| } |
| chunk_off += this_write; |
| xdr_off += this_write; |
| xfer_len -= this_write; |
| write_len -= this_write; |
| } |
| } |
| /* Update the req with the number of chunks actually used */ |
| svc_rdma_xdr_encode_reply_array(res_ary, chunk_no); |
| |
| return rqstp->rq_res.len; |
| } |
| |
| /* This function prepares the portion of the RPCRDMA message to be |
| * sent in the RDMA_SEND. This function is called after data sent via |
| * RDMA has already been transmitted. There are three cases: |
| * - The RPCRDMA header, RPC header, and payload are all sent in a |
| * single RDMA_SEND. This is the "inline" case. |
| * - The RPCRDMA header and some portion of the RPC header and data |
| * are sent via this RDMA_SEND and another portion of the data is |
| * sent via RDMA. |
| * - The RPCRDMA header [NOMSG] is sent in this RDMA_SEND and the RPC |
| * header and data are all transmitted via RDMA. |
| * In all three cases, this function prepares the RPCRDMA header in |
| * sge[0], the 'type' parameter indicates the type to place in the |
| * RPCRDMA header, and the 'byte_count' field indicates how much of |
| * the XDR to include in this RDMA_SEND. |
| */ |
| static int send_reply(struct svcxprt_rdma *rdma, |
| struct svc_rqst *rqstp, |
| struct page *page, |
| struct rpcrdma_msg *rdma_resp, |
| struct svc_rdma_op_ctxt *ctxt, |
| int sge_count, |
| int byte_count) |
| { |
| struct ib_send_wr send_wr; |
| int sge_no; |
| int sge_bytes; |
| int page_no; |
| int ret; |
| |
| /* Prepare the context */ |
| ctxt->pages[0] = page; |
| ctxt->count = 1; |
| |
| /* Prepare the SGE for the RPCRDMA Header */ |
| ctxt->sge[0].addr = |
| ib_dma_map_page(rdma->sc_cm_id->device, |
| page, 0, PAGE_SIZE, DMA_TO_DEVICE); |
| ctxt->direction = DMA_TO_DEVICE; |
| ctxt->sge[0].length = svc_rdma_xdr_get_reply_hdr_len(rdma_resp); |
| ctxt->sge[0].lkey = rdma->sc_phys_mr->lkey; |
| |
| /* Determine how many of our SGE are to be transmitted */ |
| for (sge_no = 1; byte_count && sge_no < sge_count; sge_no++) { |
| sge_bytes = min((size_t)ctxt->sge[sge_no].length, |
| (size_t)byte_count); |
| byte_count -= sge_bytes; |
| } |
| BUG_ON(byte_count != 0); |
| |
| /* Save all respages in the ctxt and remove them from the |
| * respages array. They are our pages until the I/O |
| * completes. |
| */ |
| for (page_no = 0; page_no < rqstp->rq_resused; page_no++) { |
| ctxt->pages[page_no+1] = rqstp->rq_respages[page_no]; |
| ctxt->count++; |
| rqstp->rq_respages[page_no] = NULL; |
| } |
| |
| BUG_ON(sge_no > rdma->sc_max_sge); |
| memset(&send_wr, 0, sizeof send_wr); |
| ctxt->wr_op = IB_WR_SEND; |
| send_wr.wr_id = (unsigned long)ctxt; |
| send_wr.sg_list = ctxt->sge; |
| send_wr.num_sge = sge_no; |
| send_wr.opcode = IB_WR_SEND; |
| send_wr.send_flags = IB_SEND_SIGNALED; |
| |
| ret = svc_rdma_send(rdma, &send_wr); |
| if (ret) |
| svc_rdma_put_context(ctxt, 1); |
| |
| return ret; |
| } |
| |
| void svc_rdma_prep_reply_hdr(struct svc_rqst *rqstp) |
| { |
| } |
| |
| /* |
| * Return the start of an xdr buffer. |
| */ |
| static void *xdr_start(struct xdr_buf *xdr) |
| { |
| return xdr->head[0].iov_base - |
| (xdr->len - |
| xdr->page_len - |
| xdr->tail[0].iov_len - |
| xdr->head[0].iov_len); |
| } |
| |
| int svc_rdma_sendto(struct svc_rqst *rqstp) |
| { |
| struct svc_xprt *xprt = rqstp->rq_xprt; |
| struct svcxprt_rdma *rdma = |
| container_of(xprt, struct svcxprt_rdma, sc_xprt); |
| struct rpcrdma_msg *rdma_argp; |
| struct rpcrdma_msg *rdma_resp; |
| struct rpcrdma_write_array *reply_ary; |
| enum rpcrdma_proc reply_type; |
| int ret; |
| int inline_bytes; |
| struct ib_sge *sge; |
| int sge_count = 0; |
| struct page *res_page; |
| struct svc_rdma_op_ctxt *ctxt; |
| |
| dprintk("svcrdma: sending response for rqstp=%p\n", rqstp); |
| |
| /* Get the RDMA request header. */ |
| rdma_argp = xdr_start(&rqstp->rq_arg); |
| |
| /* Build an SGE for the XDR */ |
| ctxt = svc_rdma_get_context(rdma); |
| ctxt->direction = DMA_TO_DEVICE; |
| sge = xdr_to_sge(rdma, &rqstp->rq_res, ctxt->sge, &sge_count); |
| |
| inline_bytes = rqstp->rq_res.len; |
| |
| /* Create the RDMA response header */ |
| res_page = svc_rdma_get_page(); |
| rdma_resp = page_address(res_page); |
| reply_ary = svc_rdma_get_reply_array(rdma_argp); |
| if (reply_ary) |
| reply_type = RDMA_NOMSG; |
| else |
| reply_type = RDMA_MSG; |
| svc_rdma_xdr_encode_reply_header(rdma, rdma_argp, |
| rdma_resp, reply_type); |
| |
| /* Send any write-chunk data and build resp write-list */ |
| ret = send_write_chunks(rdma, rdma_argp, rdma_resp, |
| rqstp, sge, sge_count); |
| if (ret < 0) { |
| printk(KERN_ERR "svcrdma: failed to send write chunks, rc=%d\n", |
| ret); |
| goto error; |
| } |
| inline_bytes -= ret; |
| |
| /* Send any reply-list data and update resp reply-list */ |
| ret = send_reply_chunks(rdma, rdma_argp, rdma_resp, |
| rqstp, sge, sge_count); |
| if (ret < 0) { |
| printk(KERN_ERR "svcrdma: failed to send reply chunks, rc=%d\n", |
| ret); |
| goto error; |
| } |
| inline_bytes -= ret; |
| |
| ret = send_reply(rdma, rqstp, res_page, rdma_resp, ctxt, sge_count, |
| inline_bytes); |
| dprintk("svcrdma: send_reply returns %d\n", ret); |
| return ret; |
| error: |
| svc_rdma_put_context(ctxt, 0); |
| put_page(res_page); |
| return ret; |
| } |