blob: 885c8265e6b5baf2178d3f8da74257635abf58d3 [file] [log] [blame]
/* Generic MTRR (Memory Type Range Register) driver.
Copyright (C) 1997-2000 Richard Gooch
Copyright (c) 2002 Patrick Mochel
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Richard Gooch may be reached by email at rgooch@atnf.csiro.au
The postal address is:
Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
Source: "Pentium Pro Family Developer's Manual, Volume 3:
Operating System Writer's Guide" (Intel document number 242692),
section 11.11.7
This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
on 6-7 March 2002.
Source: Intel Architecture Software Developers Manual, Volume 3:
System Programming Guide; Section 9.11. (1997 edition - PPro).
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/sort.h>
#include <asm/e820.h>
#include <asm/mtrr.h>
#include <asm/uaccess.h>
#include <asm/processor.h>
#include <asm/msr.h>
#include <asm/kvm_para.h>
#include "mtrr.h"
u32 num_var_ranges = 0;
unsigned int mtrr_usage_table[MAX_VAR_RANGES];
static DEFINE_MUTEX(mtrr_mutex);
u64 size_or_mask, size_and_mask;
static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
struct mtrr_ops * mtrr_if = NULL;
static void set_mtrr(unsigned int reg, unsigned long base,
unsigned long size, mtrr_type type);
void set_mtrr_ops(struct mtrr_ops * ops)
{
if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
mtrr_ops[ops->vendor] = ops;
}
/* Returns non-zero if we have the write-combining memory type */
static int have_wrcomb(void)
{
struct pci_dev *dev;
u8 rev;
if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
/* ServerWorks LE chipsets < rev 6 have problems with write-combining
Don't allow it and leave room for other chipsets to be tagged */
if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
if (rev <= 5) {
printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
pci_dev_put(dev);
return 0;
}
}
/* Intel 450NX errata # 23. Non ascending cacheline evictions to
write combining memory may resulting in data corruption */
if (dev->vendor == PCI_VENDOR_ID_INTEL &&
dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
pci_dev_put(dev);
return 0;
}
pci_dev_put(dev);
}
return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
}
/* This function returns the number of variable MTRRs */
static void __init set_num_var_ranges(void)
{
unsigned long config = 0, dummy;
if (use_intel()) {
rdmsr(MTRRcap_MSR, config, dummy);
} else if (is_cpu(AMD))
config = 2;
else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
config = 8;
num_var_ranges = config & 0xff;
}
static void __init init_table(void)
{
int i, max;
max = num_var_ranges;
for (i = 0; i < max; i++)
mtrr_usage_table[i] = 1;
}
struct set_mtrr_data {
atomic_t count;
atomic_t gate;
unsigned long smp_base;
unsigned long smp_size;
unsigned int smp_reg;
mtrr_type smp_type;
};
static void ipi_handler(void *info)
/* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
[RETURNS] Nothing.
*/
{
#ifdef CONFIG_SMP
struct set_mtrr_data *data = info;
unsigned long flags;
local_irq_save(flags);
atomic_dec(&data->count);
while(!atomic_read(&data->gate))
cpu_relax();
/* The master has cleared me to execute */
if (data->smp_reg != ~0U)
mtrr_if->set(data->smp_reg, data->smp_base,
data->smp_size, data->smp_type);
else
mtrr_if->set_all();
atomic_dec(&data->count);
while(atomic_read(&data->gate))
cpu_relax();
atomic_dec(&data->count);
local_irq_restore(flags);
#endif
}
static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
return type1 == MTRR_TYPE_UNCACHABLE ||
type2 == MTRR_TYPE_UNCACHABLE ||
(type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
(type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
}
/**
* set_mtrr - update mtrrs on all processors
* @reg: mtrr in question
* @base: mtrr base
* @size: mtrr size
* @type: mtrr type
*
* This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
*
* 1. Send IPI to do the following:
* 2. Disable Interrupts
* 3. Wait for all procs to do so
* 4. Enter no-fill cache mode
* 5. Flush caches
* 6. Clear PGE bit
* 7. Flush all TLBs
* 8. Disable all range registers
* 9. Update the MTRRs
* 10. Enable all range registers
* 11. Flush all TLBs and caches again
* 12. Enter normal cache mode and reenable caching
* 13. Set PGE
* 14. Wait for buddies to catch up
* 15. Enable interrupts.
*
* What does that mean for us? Well, first we set data.count to the number
* of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
* until it hits 0 and proceed. We set the data.gate flag and reset data.count.
* Meanwhile, they are waiting for that flag to be set. Once it's set, each
* CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
* differently, so we call mtrr_if->set() callback and let them take care of it.
* When they're done, they again decrement data->count and wait for data.gate to
* be reset.
* When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
* Everyone then enables interrupts and we all continue on.
*
* Note that the mechanism is the same for UP systems, too; all the SMP stuff
* becomes nops.
*/
static void set_mtrr(unsigned int reg, unsigned long base,
unsigned long size, mtrr_type type)
{
struct set_mtrr_data data;
unsigned long flags;
data.smp_reg = reg;
data.smp_base = base;
data.smp_size = size;
data.smp_type = type;
atomic_set(&data.count, num_booting_cpus() - 1);
/* make sure data.count is visible before unleashing other CPUs */
smp_wmb();
atomic_set(&data.gate,0);
/* Start the ball rolling on other CPUs */
if (smp_call_function(ipi_handler, &data, 0) != 0)
panic("mtrr: timed out waiting for other CPUs\n");
local_irq_save(flags);
while(atomic_read(&data.count))
cpu_relax();
/* ok, reset count and toggle gate */
atomic_set(&data.count, num_booting_cpus() - 1);
smp_wmb();
atomic_set(&data.gate,1);
/* do our MTRR business */
/* HACK!
* We use this same function to initialize the mtrrs on boot.
* The state of the boot cpu's mtrrs has been saved, and we want
* to replicate across all the APs.
* If we're doing that @reg is set to something special...
*/
if (reg != ~0U)
mtrr_if->set(reg,base,size,type);
/* wait for the others */
while(atomic_read(&data.count))
cpu_relax();
atomic_set(&data.count, num_booting_cpus() - 1);
smp_wmb();
atomic_set(&data.gate,0);
/*
* Wait here for everyone to have seen the gate change
* So we're the last ones to touch 'data'
*/
while(atomic_read(&data.count))
cpu_relax();
local_irq_restore(flags);
}
/**
* mtrr_add_page - Add a memory type region
* @base: Physical base address of region in pages (in units of 4 kB!)
* @size: Physical size of region in pages (4 kB)
* @type: Type of MTRR desired
* @increment: If this is true do usage counting on the region
*
* Memory type region registers control the caching on newer Intel and
* non Intel processors. This function allows drivers to request an
* MTRR is added. The details and hardware specifics of each processor's
* implementation are hidden from the caller, but nevertheless the
* caller should expect to need to provide a power of two size on an
* equivalent power of two boundary.
*
* If the region cannot be added either because all regions are in use
* or the CPU cannot support it a negative value is returned. On success
* the register number for this entry is returned, but should be treated
* as a cookie only.
*
* On a multiprocessor machine the changes are made to all processors.
* This is required on x86 by the Intel processors.
*
* The available types are
*
* %MTRR_TYPE_UNCACHABLE - No caching
*
* %MTRR_TYPE_WRBACK - Write data back in bursts whenever
*
* %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
*
* %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
*
* BUGS: Needs a quiet flag for the cases where drivers do not mind
* failures and do not wish system log messages to be sent.
*/
int mtrr_add_page(unsigned long base, unsigned long size,
unsigned int type, bool increment)
{
int i, replace, error;
mtrr_type ltype;
unsigned long lbase, lsize;
if (!mtrr_if)
return -ENXIO;
if ((error = mtrr_if->validate_add_page(base,size,type)))
return error;
if (type >= MTRR_NUM_TYPES) {
printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
return -EINVAL;
}
/* If the type is WC, check that this processor supports it */
if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
printk(KERN_WARNING
"mtrr: your processor doesn't support write-combining\n");
return -ENOSYS;
}
if (!size) {
printk(KERN_WARNING "mtrr: zero sized request\n");
return -EINVAL;
}
if (base & size_or_mask || size & size_or_mask) {
printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
return -EINVAL;
}
error = -EINVAL;
replace = -1;
/* No CPU hotplug when we change MTRR entries */
get_online_cpus();
/* Search for existing MTRR */
mutex_lock(&mtrr_mutex);
for (i = 0; i < num_var_ranges; ++i) {
mtrr_if->get(i, &lbase, &lsize, &ltype);
if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
continue;
/* At this point we know there is some kind of overlap/enclosure */
if (base < lbase || base + size - 1 > lbase + lsize - 1) {
if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
/* New region encloses an existing region */
if (type == ltype) {
replace = replace == -1 ? i : -2;
continue;
}
else if (types_compatible(type, ltype))
continue;
}
printk(KERN_WARNING
"mtrr: 0x%lx000,0x%lx000 overlaps existing"
" 0x%lx000,0x%lx000\n", base, size, lbase,
lsize);
goto out;
}
/* New region is enclosed by an existing region */
if (ltype != type) {
if (types_compatible(type, ltype))
continue;
printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
base, size, mtrr_attrib_to_str(ltype),
mtrr_attrib_to_str(type));
goto out;
}
if (increment)
++mtrr_usage_table[i];
error = i;
goto out;
}
/* Search for an empty MTRR */
i = mtrr_if->get_free_region(base, size, replace);
if (i >= 0) {
set_mtrr(i, base, size, type);
if (likely(replace < 0)) {
mtrr_usage_table[i] = 1;
} else {
mtrr_usage_table[i] = mtrr_usage_table[replace];
if (increment)
mtrr_usage_table[i]++;
if (unlikely(replace != i)) {
set_mtrr(replace, 0, 0, 0);
mtrr_usage_table[replace] = 0;
}
}
} else
printk(KERN_INFO "mtrr: no more MTRRs available\n");
error = i;
out:
mutex_unlock(&mtrr_mutex);
put_online_cpus();
return error;
}
static int mtrr_check(unsigned long base, unsigned long size)
{
if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
printk(KERN_WARNING
"mtrr: size and base must be multiples of 4 kiB\n");
printk(KERN_DEBUG
"mtrr: size: 0x%lx base: 0x%lx\n", size, base);
dump_stack();
return -1;
}
return 0;
}
/**
* mtrr_add - Add a memory type region
* @base: Physical base address of region
* @size: Physical size of region
* @type: Type of MTRR desired
* @increment: If this is true do usage counting on the region
*
* Memory type region registers control the caching on newer Intel and
* non Intel processors. This function allows drivers to request an
* MTRR is added. The details and hardware specifics of each processor's
* implementation are hidden from the caller, but nevertheless the
* caller should expect to need to provide a power of two size on an
* equivalent power of two boundary.
*
* If the region cannot be added either because all regions are in use
* or the CPU cannot support it a negative value is returned. On success
* the register number for this entry is returned, but should be treated
* as a cookie only.
*
* On a multiprocessor machine the changes are made to all processors.
* This is required on x86 by the Intel processors.
*
* The available types are
*
* %MTRR_TYPE_UNCACHABLE - No caching
*
* %MTRR_TYPE_WRBACK - Write data back in bursts whenever
*
* %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
*
* %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
*
* BUGS: Needs a quiet flag for the cases where drivers do not mind
* failures and do not wish system log messages to be sent.
*/
int
mtrr_add(unsigned long base, unsigned long size, unsigned int type,
bool increment)
{
if (mtrr_check(base, size))
return -EINVAL;
return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
increment);
}
/**
* mtrr_del_page - delete a memory type region
* @reg: Register returned by mtrr_add
* @base: Physical base address
* @size: Size of region
*
* If register is supplied then base and size are ignored. This is
* how drivers should call it.
*
* Releases an MTRR region. If the usage count drops to zero the
* register is freed and the region returns to default state.
* On success the register is returned, on failure a negative error
* code.
*/
int mtrr_del_page(int reg, unsigned long base, unsigned long size)
{
int i, max;
mtrr_type ltype;
unsigned long lbase, lsize;
int error = -EINVAL;
if (!mtrr_if)
return -ENXIO;
max = num_var_ranges;
/* No CPU hotplug when we change MTRR entries */
get_online_cpus();
mutex_lock(&mtrr_mutex);
if (reg < 0) {
/* Search for existing MTRR */
for (i = 0; i < max; ++i) {
mtrr_if->get(i, &lbase, &lsize, &ltype);
if (lbase == base && lsize == size) {
reg = i;
break;
}
}
if (reg < 0) {
printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
size);
goto out;
}
}
if (reg >= max) {
printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
goto out;
}
mtrr_if->get(reg, &lbase, &lsize, &ltype);
if (lsize < 1) {
printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
goto out;
}
if (mtrr_usage_table[reg] < 1) {
printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
goto out;
}
if (--mtrr_usage_table[reg] < 1)
set_mtrr(reg, 0, 0, 0);
error = reg;
out:
mutex_unlock(&mtrr_mutex);
put_online_cpus();
return error;
}
/**
* mtrr_del - delete a memory type region
* @reg: Register returned by mtrr_add
* @base: Physical base address
* @size: Size of region
*
* If register is supplied then base and size are ignored. This is
* how drivers should call it.
*
* Releases an MTRR region. If the usage count drops to zero the
* register is freed and the region returns to default state.
* On success the register is returned, on failure a negative error
* code.
*/
int
mtrr_del(int reg, unsigned long base, unsigned long size)
{
if (mtrr_check(base, size))
return -EINVAL;
return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
}
EXPORT_SYMBOL(mtrr_add);
EXPORT_SYMBOL(mtrr_del);
/* HACK ALERT!
* These should be called implicitly, but we can't yet until all the initcall
* stuff is done...
*/
static void __init init_ifs(void)
{
#ifndef CONFIG_X86_64
amd_init_mtrr();
cyrix_init_mtrr();
centaur_init_mtrr();
#endif
}
/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
* MTRR driver doesn't require this
*/
struct mtrr_value {
mtrr_type ltype;
unsigned long lbase;
unsigned long lsize;
};
static struct mtrr_value mtrr_state[MAX_VAR_RANGES];
static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
{
int i;
for (i = 0; i < num_var_ranges; i++) {
mtrr_if->get(i,
&mtrr_state[i].lbase,
&mtrr_state[i].lsize,
&mtrr_state[i].ltype);
}
return 0;
}
static int mtrr_restore(struct sys_device * sysdev)
{
int i;
for (i = 0; i < num_var_ranges; i++) {
if (mtrr_state[i].lsize)
set_mtrr(i,
mtrr_state[i].lbase,
mtrr_state[i].lsize,
mtrr_state[i].ltype);
}
return 0;
}
static struct sysdev_driver mtrr_sysdev_driver = {
.suspend = mtrr_save,
.resume = mtrr_restore,
};
/* should be related to MTRR_VAR_RANGES nums */
#define RANGE_NUM 256
struct res_range {
unsigned long start;
unsigned long end;
};
static int __init
add_range(struct res_range *range, int nr_range, unsigned long start,
unsigned long end)
{
/* out of slots */
if (nr_range >= RANGE_NUM)
return nr_range;
range[nr_range].start = start;
range[nr_range].end = end;
nr_range++;
return nr_range;
}
static int __init
add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
unsigned long end)
{
int i;
/* try to merge it with old one */
for (i = 0; i < nr_range; i++) {
unsigned long final_start, final_end;
unsigned long common_start, common_end;
if (!range[i].end)
continue;
common_start = max(range[i].start, start);
common_end = min(range[i].end, end);
if (common_start > common_end + 1)
continue;
final_start = min(range[i].start, start);
final_end = max(range[i].end, end);
range[i].start = final_start;
range[i].end = final_end;
return nr_range;
}
/* need to add that */
return add_range(range, nr_range, start, end);
}
static void __init
subtract_range(struct res_range *range, unsigned long start, unsigned long end)
{
int i, j;
for (j = 0; j < RANGE_NUM; j++) {
if (!range[j].end)
continue;
if (start <= range[j].start && end >= range[j].end) {
range[j].start = 0;
range[j].end = 0;
continue;
}
if (start <= range[j].start && end < range[j].end &&
range[j].start < end + 1) {
range[j].start = end + 1;
continue;
}
if (start > range[j].start && end >= range[j].end &&
range[j].end > start - 1) {
range[j].end = start - 1;
continue;
}
if (start > range[j].start && end < range[j].end) {
/* find the new spare */
for (i = 0; i < RANGE_NUM; i++) {
if (range[i].end == 0)
break;
}
if (i < RANGE_NUM) {
range[i].end = range[j].end;
range[i].start = end + 1;
} else {
printk(KERN_ERR "run of slot in ranges\n");
}
range[j].end = start - 1;
continue;
}
}
}
static int __init cmp_range(const void *x1, const void *x2)
{
const struct res_range *r1 = x1;
const struct res_range *r2 = x2;
long start1, start2;
start1 = r1->start;
start2 = r2->start;
return start1 - start2;
}
struct var_mtrr_range_state {
unsigned long base_pfn;
unsigned long size_pfn;
mtrr_type type;
};
struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
static int __initdata debug_print;
static int __init
x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
unsigned long extra_remove_base,
unsigned long extra_remove_size)
{
unsigned long i, base, size;
mtrr_type type;
for (i = 0; i < num_var_ranges; i++) {
type = range_state[i].type;
if (type != MTRR_TYPE_WRBACK)
continue;
base = range_state[i].base_pfn;
size = range_state[i].size_pfn;
nr_range = add_range_with_merge(range, nr_range, base,
base + size - 1);
}
if (debug_print) {
printk(KERN_DEBUG "After WB checking\n");
for (i = 0; i < nr_range; i++)
printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
range[i].start, range[i].end + 1);
}
/* take out UC ranges */
for (i = 0; i < num_var_ranges; i++) {
type = range_state[i].type;
if (type != MTRR_TYPE_UNCACHABLE)
continue;
size = range_state[i].size_pfn;
if (!size)
continue;
base = range_state[i].base_pfn;
subtract_range(range, base, base + size - 1);
}
if (extra_remove_size)
subtract_range(range, extra_remove_base,
extra_remove_base + extra_remove_size - 1);
/* get new range num */
nr_range = 0;
for (i = 0; i < RANGE_NUM; i++) {
if (!range[i].end)
continue;
nr_range++;
}
if (debug_print) {
printk(KERN_DEBUG "After UC checking\n");
for (i = 0; i < nr_range; i++)
printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
range[i].start, range[i].end + 1);
}
/* sort the ranges */
sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
if (debug_print) {
printk(KERN_DEBUG "After sorting\n");
for (i = 0; i < nr_range; i++)
printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
range[i].start, range[i].end + 1);
}
/* clear those is not used */
for (i = nr_range; i < RANGE_NUM; i++)
memset(&range[i], 0, sizeof(range[i]));
return nr_range;
}
static struct res_range __initdata range[RANGE_NUM];
#ifdef CONFIG_MTRR_SANITIZER
static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
{
unsigned long sum;
int i;
sum = 0;
for (i = 0; i < nr_range; i++)
sum += range[i].end + 1 - range[i].start;
return sum;
}
static int enable_mtrr_cleanup __initdata =
CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
static int __init disable_mtrr_cleanup_setup(char *str)
{
if (enable_mtrr_cleanup != -1)
enable_mtrr_cleanup = 0;
return 0;
}
early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
static int __init enable_mtrr_cleanup_setup(char *str)
{
if (enable_mtrr_cleanup != -1)
enable_mtrr_cleanup = 1;
return 0;
}
early_param("enable_mtrr_cleanup", enable_mtrr_cleanup_setup);
struct var_mtrr_state {
unsigned long range_startk;
unsigned long range_sizek;
unsigned long chunk_sizek;
unsigned long gran_sizek;
unsigned int reg;
};
static void __init
set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
unsigned char type, unsigned int address_bits)
{
u32 base_lo, base_hi, mask_lo, mask_hi;
u64 base, mask;
if (!sizek) {
fill_mtrr_var_range(reg, 0, 0, 0, 0);
return;
}
mask = (1ULL << address_bits) - 1;
mask &= ~((((u64)sizek) << 10) - 1);
base = ((u64)basek) << 10;
base |= type;
mask |= 0x800;
base_lo = base & ((1ULL<<32) - 1);
base_hi = base >> 32;
mask_lo = mask & ((1ULL<<32) - 1);
mask_hi = mask >> 32;
fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
}
static void __init
save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
unsigned char type)
{
range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
range_state[reg].type = type;
}
static void __init
set_var_mtrr_all(unsigned int address_bits)
{
unsigned long basek, sizek;
unsigned char type;
unsigned int reg;
for (reg = 0; reg < num_var_ranges; reg++) {
basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
type = range_state[reg].type;
set_var_mtrr(reg, basek, sizek, type, address_bits);
}
}
static unsigned int __init
range_to_mtrr(unsigned int reg, unsigned long range_startk,
unsigned long range_sizek, unsigned char type)
{
if (!range_sizek || (reg >= num_var_ranges))
return reg;
while (range_sizek) {
unsigned long max_align, align;
unsigned long sizek;
/* Compute the maximum size I can make a range */
if (range_startk)
max_align = ffs(range_startk) - 1;
else
max_align = 32;
align = fls(range_sizek) - 1;
if (align > max_align)
align = max_align;
sizek = 1 << align;
if (debug_print)
printk(KERN_DEBUG "Setting variable MTRR %d, "
"base: %ldMB, range: %ldMB, type %s\n",
reg, range_startk >> 10, sizek >> 10,
(type == MTRR_TYPE_UNCACHABLE)?"UC":
((type == MTRR_TYPE_WRBACK)?"WB":"Other")
);
save_var_mtrr(reg++, range_startk, sizek, type);
range_startk += sizek;
range_sizek -= sizek;
if (reg >= num_var_ranges)
break;
}
return reg;
}
static unsigned __init
range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
unsigned long sizek)
{
unsigned long hole_basek, hole_sizek;
unsigned long second_basek, second_sizek;
unsigned long range0_basek, range0_sizek;
unsigned long range_basek, range_sizek;
unsigned long chunk_sizek;
unsigned long gran_sizek;
hole_basek = 0;
hole_sizek = 0;
second_basek = 0;
second_sizek = 0;
chunk_sizek = state->chunk_sizek;
gran_sizek = state->gran_sizek;
/* align with gran size, prevent small block used up MTRRs */
range_basek = ALIGN(state->range_startk, gran_sizek);
if ((range_basek > basek) && basek)
return second_sizek;
state->range_sizek -= (range_basek - state->range_startk);
range_sizek = ALIGN(state->range_sizek, gran_sizek);
while (range_sizek > state->range_sizek) {
range_sizek -= gran_sizek;
if (!range_sizek)
return 0;
}
state->range_sizek = range_sizek;
/* try to append some small hole */
range0_basek = state->range_startk;
range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
if (range0_sizek == state->range_sizek) {
if (debug_print)
printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
range0_basek<<10,
(range0_basek + state->range_sizek)<<10);
state->reg = range_to_mtrr(state->reg, range0_basek,
state->range_sizek, MTRR_TYPE_WRBACK);
return 0;
}
range0_sizek -= chunk_sizek;
if (range0_sizek && sizek) {
while (range0_basek + range0_sizek > (basek + sizek)) {
range0_sizek -= chunk_sizek;
if (!range0_sizek)
break;
}
}
if (range0_sizek) {
if (debug_print)
printk(KERN_DEBUG "range0: %016lx - %016lx\n",
range0_basek<<10,
(range0_basek + range0_sizek)<<10);
state->reg = range_to_mtrr(state->reg, range0_basek,
range0_sizek, MTRR_TYPE_WRBACK);
}
range_basek = range0_basek + range0_sizek;
range_sizek = chunk_sizek;
if (range_basek + range_sizek > basek &&
range_basek + range_sizek <= (basek + sizek)) {
/* one hole */
second_basek = basek;
second_sizek = range_basek + range_sizek - basek;
}
/* if last piece, only could one hole near end */
if ((second_basek || !basek) &&
range_sizek - (state->range_sizek - range0_sizek) - second_sizek <
(chunk_sizek >> 1)) {
/*
* one hole in middle (second_sizek is 0) or at end
* (second_sizek is 0 )
*/
hole_sizek = range_sizek - (state->range_sizek - range0_sizek)
- second_sizek;
hole_basek = range_basek + range_sizek - hole_sizek
- second_sizek;
} else {
/* fallback for big hole, or several holes */
range_sizek = state->range_sizek - range0_sizek;
second_basek = 0;
second_sizek = 0;
}
if (debug_print)
printk(KERN_DEBUG "range: %016lx - %016lx\n", range_basek<<10,
(range_basek + range_sizek)<<10);
state->reg = range_to_mtrr(state->reg, range_basek, range_sizek,
MTRR_TYPE_WRBACK);
if (hole_sizek) {
if (debug_print)
printk(KERN_DEBUG "hole: %016lx - %016lx\n",
hole_basek<<10, (hole_basek + hole_sizek)<<10);
state->reg = range_to_mtrr(state->reg, hole_basek, hole_sizek,
MTRR_TYPE_UNCACHABLE);
}
return second_sizek;
}
static void __init
set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
unsigned long size_pfn)
{
unsigned long basek, sizek;
unsigned long second_sizek = 0;
if (state->reg >= num_var_ranges)
return;
basek = base_pfn << (PAGE_SHIFT - 10);
sizek = size_pfn << (PAGE_SHIFT - 10);
/* See if I can merge with the last range */
if ((basek <= 1024) ||
(state->range_startk + state->range_sizek == basek)) {
unsigned long endk = basek + sizek;
state->range_sizek = endk - state->range_startk;
return;
}
/* Write the range mtrrs */
if (state->range_sizek != 0)
second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
/* Allocate an msr */
state->range_startk = basek + second_sizek;
state->range_sizek = sizek - second_sizek;
}
/* mininum size of mtrr block that can take hole */
static u64 mtrr_chunk_size __initdata = (256ULL<<20);
static int __init parse_mtrr_chunk_size_opt(char *p)
{
if (!p)
return -EINVAL;
mtrr_chunk_size = memparse(p, &p);
return 0;
}
early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
/* granity of mtrr of block */
static u64 mtrr_gran_size __initdata;
static int __init parse_mtrr_gran_size_opt(char *p)
{
if (!p)
return -EINVAL;
mtrr_gran_size = memparse(p, &p);
return 0;
}
early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
static int nr_mtrr_spare_reg __initdata =
CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
static int __init parse_mtrr_spare_reg(char *arg)
{
if (arg)
nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
return 0;
}
early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
static int __init
x86_setup_var_mtrrs(struct res_range *range, int nr_range,
u64 chunk_size, u64 gran_size)
{
struct var_mtrr_state var_state;
int i;
int num_reg;
var_state.range_startk = 0;
var_state.range_sizek = 0;
var_state.reg = 0;
var_state.chunk_sizek = chunk_size >> 10;
var_state.gran_sizek = gran_size >> 10;
memset(range_state, 0, sizeof(range_state));
/* Write the range etc */
for (i = 0; i < nr_range; i++)
set_var_mtrr_range(&var_state, range[i].start,
range[i].end - range[i].start + 1);
/* Write the last range */
if (var_state.range_sizek != 0)
range_to_mtrr_with_hole(&var_state, 0, 0);
num_reg = var_state.reg;
/* Clear out the extra MTRR's */
while (var_state.reg < num_var_ranges) {
save_var_mtrr(var_state.reg, 0, 0, 0);
var_state.reg++;
}
return num_reg;
}
struct mtrr_cleanup_result {
unsigned long gran_sizek;
unsigned long chunk_sizek;
unsigned long lose_cover_sizek;
unsigned int num_reg;
int bad;
};
/*
* gran_size: 1M, 2M, ..., 2G
* chunk size: gran_size, ..., 4G
* so we need (2+13)*6
*/
#define NUM_RESULT 90
#define PSHIFT (PAGE_SHIFT - 10)
static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
static struct res_range __initdata range_new[RANGE_NUM];
static unsigned long __initdata min_loss_pfn[RANGE_NUM];
static int __init mtrr_cleanup(unsigned address_bits)
{
unsigned long extra_remove_base, extra_remove_size;
unsigned long i, base, size, def, dummy;
mtrr_type type;
int nr_range, nr_range_new;
u64 chunk_size, gran_size;
unsigned long range_sums, range_sums_new;
int index_good;
int num_reg_good;
/* extra one for all 0 */
int num[MTRR_NUM_TYPES + 1];
if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
return 0;
rdmsr(MTRRdefType_MSR, def, dummy);
def &= 0xff;
if (def != MTRR_TYPE_UNCACHABLE)
return 0;
/* get it and store it aside */
memset(range_state, 0, sizeof(range_state));
for (i = 0; i < num_var_ranges; i++) {
mtrr_if->get(i, &base, &size, &type);
range_state[i].base_pfn = base;
range_state[i].size_pfn = size;
range_state[i].type = type;
}
/* check entries number */
memset(num, 0, sizeof(num));
for (i = 0; i < num_var_ranges; i++) {
type = range_state[i].type;
size = range_state[i].size_pfn;
if (type >= MTRR_NUM_TYPES)
continue;
if (!size)
type = MTRR_NUM_TYPES;
num[type]++;
}
/* check if we got UC entries */
if (!num[MTRR_TYPE_UNCACHABLE])
return 0;
/* check if we only had WB and UC */
if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
num_var_ranges - num[MTRR_NUM_TYPES])
return 0;
memset(range, 0, sizeof(range));
extra_remove_size = 0;
if (mtrr_tom2) {
extra_remove_base = 1 << (32 - PAGE_SHIFT);
extra_remove_size =
(mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
}
nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
extra_remove_size);
range_sums = sum_ranges(range, nr_range);
printk(KERN_INFO "total RAM coverred: %ldM\n",
range_sums >> (20 - PAGE_SHIFT));
if (mtrr_chunk_size && mtrr_gran_size) {
int num_reg;
debug_print = 1;
/* convert ranges to var ranges state */
num_reg = x86_setup_var_mtrrs(range, nr_range, mtrr_chunk_size,
mtrr_gran_size);
/* we got new setting in range_state, check it */
memset(range_new, 0, sizeof(range_new));
nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
extra_remove_base,
extra_remove_size);
range_sums_new = sum_ranges(range_new, nr_range_new);
i = 0;
result[i].chunk_sizek = mtrr_chunk_size >> 10;
result[i].gran_sizek = mtrr_gran_size >> 10;
result[i].num_reg = num_reg;
if (range_sums < range_sums_new) {
result[i].lose_cover_sizek =
(range_sums_new - range_sums) << PSHIFT;
result[i].bad = 1;
} else
result[i].lose_cover_sizek =
(range_sums - range_sums_new) << PSHIFT;
printk(KERN_INFO "%sgran_size: %ldM \tchunk_size: %ldM \t",
result[i].bad?"*BAD*":" ", result[i].gran_sizek >> 10,
result[i].chunk_sizek >> 10);
printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ldM \n",
result[i].num_reg, result[i].bad?"-":"",
result[i].lose_cover_sizek >> 10);
if (!result[i].bad) {
set_var_mtrr_all(address_bits);
return 1;
}
printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
"will find optimal one\n");
debug_print = 0;
memset(result, 0, sizeof(result[0]));
}
i = 0;
memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
memset(result, 0, sizeof(result));
for (gran_size = (1ULL<<20); gran_size < (1ULL<<32); gran_size <<= 1) {
for (chunk_size = gran_size; chunk_size < (1ULL<<33);
chunk_size <<= 1) {
int num_reg;
if (debug_print)
printk(KERN_INFO
"\ngran_size: %lldM chunk_size_size: %lldM\n",
gran_size >> 20, chunk_size >> 20);
if (i >= NUM_RESULT)
continue;
/* convert ranges to var ranges state */
num_reg = x86_setup_var_mtrrs(range, nr_range,
chunk_size, gran_size);
/* we got new setting in range_state, check it */
memset(range_new, 0, sizeof(range_new));
nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
extra_remove_base, extra_remove_size);
range_sums_new = sum_ranges(range_new, nr_range_new);
result[i].chunk_sizek = chunk_size >> 10;
result[i].gran_sizek = gran_size >> 10;
result[i].num_reg = num_reg;
if (range_sums < range_sums_new) {
result[i].lose_cover_sizek =
(range_sums_new - range_sums) << PSHIFT;
result[i].bad = 1;
} else
result[i].lose_cover_sizek =
(range_sums - range_sums_new) << PSHIFT;
/* double check it */
if (!result[i].bad && !result[i].lose_cover_sizek) {
if (nr_range_new != nr_range ||
memcmp(range, range_new, sizeof(range)))
result[i].bad = 1;
}
if (!result[i].bad && (range_sums - range_sums_new <
min_loss_pfn[num_reg])) {
min_loss_pfn[num_reg] =
range_sums - range_sums_new;
}
i++;
}
}
/* print out all */
for (i = 0; i < NUM_RESULT; i++) {
printk(KERN_INFO "%sgran_size: %ldM \tchunk_size: %ldM \t",
result[i].bad?"*BAD* ":" ", result[i].gran_sizek >> 10,
result[i].chunk_sizek >> 10);
printk(KERN_CONT "num_reg: %d \tlose RAM: %s%ldM\n",
result[i].num_reg, result[i].bad?"-":"",
result[i].lose_cover_sizek >> 10);
}
/* try to find the optimal index */
if (nr_mtrr_spare_reg >= num_var_ranges)
nr_mtrr_spare_reg = num_var_ranges - 1;
num_reg_good = -1;
for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
if (!min_loss_pfn[i]) {
num_reg_good = i;
break;
}
}
index_good = -1;
if (num_reg_good != -1) {
for (i = 0; i < NUM_RESULT; i++) {
if (!result[i].bad &&
result[i].num_reg == num_reg_good &&
!result[i].lose_cover_sizek) {
index_good = i;
break;
}
}
}
if (index_good != -1) {
printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
i = index_good;
printk(KERN_INFO "gran_size: %ldM \tchunk_size: %ldM \t",
result[i].gran_sizek >> 10,
result[i].chunk_sizek >> 10);
printk(KERN_CONT "num_reg: %d \tlose RAM: %ldM\n",
result[i].num_reg,
result[i].lose_cover_sizek >> 10);
/* convert ranges to var ranges state */
chunk_size = result[i].chunk_sizek;
chunk_size <<= 10;
gran_size = result[i].gran_sizek;
gran_size <<= 10;
debug_print = 1;
x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
set_var_mtrr_all(address_bits);
return 1;
}
printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
return 0;
}
#else
static int __init mtrr_cleanup(unsigned address_bits)
{
return 0;
}
#endif
static int __initdata changed_by_mtrr_cleanup;
static int disable_mtrr_trim;
static int __init disable_mtrr_trim_setup(char *str)
{
disable_mtrr_trim = 1;
return 0;
}
early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
/*
* Newer AMD K8s and later CPUs have a special magic MSR way to force WB
* for memory >4GB. Check for that here.
* Note this won't check if the MTRRs < 4GB where the magic bit doesn't
* apply to are wrong, but so far we don't know of any such case in the wild.
*/
#define Tom2Enabled (1U << 21)
#define Tom2ForceMemTypeWB (1U << 22)
int __init amd_special_default_mtrr(void)
{
u32 l, h;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
return 0;
if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
return 0;
/* In case some hypervisor doesn't pass SYSCFG through */
if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
return 0;
/*
* Memory between 4GB and top of mem is forced WB by this magic bit.
* Reserved before K8RevF, but should be zero there.
*/
if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
(Tom2Enabled | Tom2ForceMemTypeWB))
return 1;
return 0;
}
static u64 __init real_trim_memory(unsigned long start_pfn,
unsigned long limit_pfn)
{
u64 trim_start, trim_size;
trim_start = start_pfn;
trim_start <<= PAGE_SHIFT;
trim_size = limit_pfn;
trim_size <<= PAGE_SHIFT;
trim_size -= trim_start;
return e820_update_range(trim_start, trim_size, E820_RAM,
E820_RESERVED);
}
/**
* mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
* @end_pfn: ending page frame number
*
* Some buggy BIOSes don't setup the MTRRs properly for systems with certain
* memory configurations. This routine checks that the highest MTRR matches
* the end of memory, to make sure the MTRRs having a write back type cover
* all of the memory the kernel is intending to use. If not, it'll trim any
* memory off the end by adjusting end_pfn, removing it from the kernel's
* allocation pools, warning the user with an obnoxious message.
*/
int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
{
unsigned long i, base, size, highest_pfn = 0, def, dummy;
mtrr_type type;
int nr_range;
u64 total_trim_size;
/* extra one for all 0 */
int num[MTRR_NUM_TYPES + 1];
/*
* Make sure we only trim uncachable memory on machines that
* support the Intel MTRR architecture:
*/
if (!is_cpu(INTEL) || disable_mtrr_trim)
return 0;
rdmsr(MTRRdefType_MSR, def, dummy);
def &= 0xff;
if (def != MTRR_TYPE_UNCACHABLE)
return 0;
/* get it and store it aside */
memset(range_state, 0, sizeof(range_state));
for (i = 0; i < num_var_ranges; i++) {
mtrr_if->get(i, &base, &size, &type);
range_state[i].base_pfn = base;
range_state[i].size_pfn = size;
range_state[i].type = type;
}
/* Find highest cached pfn */
for (i = 0; i < num_var_ranges; i++) {
type = range_state[i].type;
if (type != MTRR_TYPE_WRBACK)
continue;
base = range_state[i].base_pfn;
size = range_state[i].size_pfn;
if (highest_pfn < base + size)
highest_pfn = base + size;
}
/* kvm/qemu doesn't have mtrr set right, don't trim them all */
if (!highest_pfn) {
WARN(!kvm_para_available(), KERN_WARNING
"WARNING: strange, CPU MTRRs all blank?\n");
return 0;
}
/* check entries number */
memset(num, 0, sizeof(num));
for (i = 0; i < num_var_ranges; i++) {
type = range_state[i].type;
if (type >= MTRR_NUM_TYPES)
continue;
size = range_state[i].size_pfn;
if (!size)
type = MTRR_NUM_TYPES;
num[type]++;
}
/* no entry for WB? */
if (!num[MTRR_TYPE_WRBACK])
return 0;
/* check if we only had WB and UC */
if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
num_var_ranges - num[MTRR_NUM_TYPES])
return 0;
memset(range, 0, sizeof(range));
nr_range = 0;
if (mtrr_tom2) {
range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
if (highest_pfn < range[nr_range].end + 1)
highest_pfn = range[nr_range].end + 1;
nr_range++;
}
nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
total_trim_size = 0;
/* check the head */
if (range[0].start)
total_trim_size += real_trim_memory(0, range[0].start);
/* check the holes */
for (i = 0; i < nr_range - 1; i++) {
if (range[i].end + 1 < range[i+1].start)
total_trim_size += real_trim_memory(range[i].end + 1,
range[i+1].start);
}
/* check the top */
i = nr_range - 1;
if (range[i].end + 1 < end_pfn)
total_trim_size += real_trim_memory(range[i].end + 1,
end_pfn);
if (total_trim_size) {
printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
" all of memory, losing %lluMB of RAM.\n",
total_trim_size >> 20);
if (!changed_by_mtrr_cleanup)
WARN_ON(1);
printk(KERN_INFO "update e820 for mtrr\n");
update_e820();
return 1;
}
return 0;
}
/**
* mtrr_bp_init - initialize mtrrs on the boot CPU
*
* This needs to be called early; before any of the other CPUs are
* initialized (i.e. before smp_init()).
*
*/
void __init mtrr_bp_init(void)
{
u32 phys_addr;
init_ifs();
phys_addr = 32;
if (cpu_has_mtrr) {
mtrr_if = &generic_mtrr_ops;
size_or_mask = 0xff000000; /* 36 bits */
size_and_mask = 0x00f00000;
phys_addr = 36;
/* This is an AMD specific MSR, but we assume(hope?) that
Intel will implement it to when they extend the address
bus of the Xeon. */
if (cpuid_eax(0x80000000) >= 0x80000008) {
phys_addr = cpuid_eax(0x80000008) & 0xff;
/* CPUID workaround for Intel 0F33/0F34 CPU */
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
boot_cpu_data.x86 == 0xF &&
boot_cpu_data.x86_model == 0x3 &&
(boot_cpu_data.x86_mask == 0x3 ||
boot_cpu_data.x86_mask == 0x4))
phys_addr = 36;
size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
size_and_mask = ~size_or_mask & 0xfffff00000ULL;
} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
boot_cpu_data.x86 == 6) {
/* VIA C* family have Intel style MTRRs, but
don't support PAE */
size_or_mask = 0xfff00000; /* 32 bits */
size_and_mask = 0;
phys_addr = 32;
}
} else {
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
if (cpu_has_k6_mtrr) {
/* Pre-Athlon (K6) AMD CPU MTRRs */
mtrr_if = mtrr_ops[X86_VENDOR_AMD];
size_or_mask = 0xfff00000; /* 32 bits */
size_and_mask = 0;
}
break;
case X86_VENDOR_CENTAUR:
if (cpu_has_centaur_mcr) {
mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
size_or_mask = 0xfff00000; /* 32 bits */
size_and_mask = 0;
}
break;
case X86_VENDOR_CYRIX:
if (cpu_has_cyrix_arr) {
mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
size_or_mask = 0xfff00000; /* 32 bits */
size_and_mask = 0;
}
break;
default:
break;
}
}
if (mtrr_if) {
set_num_var_ranges();
init_table();
if (use_intel()) {
get_mtrr_state();
if (mtrr_cleanup(phys_addr)) {
changed_by_mtrr_cleanup = 1;
mtrr_if->set_all();
}
}
}
}
void mtrr_ap_init(void)
{
unsigned long flags;
if (!mtrr_if || !use_intel())
return;
/*
* Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
* but this routine will be called in cpu boot time, holding the lock
* breaks it. This routine is called in two cases: 1.very earily time
* of software resume, when there absolutely isn't mtrr entry changes;
* 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
* prevent mtrr entry changes
*/
local_irq_save(flags);
mtrr_if->set_all();
local_irq_restore(flags);
}
/**
* Save current fixed-range MTRR state of the BSP
*/
void mtrr_save_state(void)
{
smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
}
static int __init mtrr_init_finialize(void)
{
if (!mtrr_if)
return 0;
if (use_intel()) {
if (!changed_by_mtrr_cleanup)
mtrr_state_warn();
} else {
/* The CPUs haven't MTRR and seem to not support SMP. They have
* specific drivers, we use a tricky method to support
* suspend/resume for them.
* TBD: is there any system with such CPU which supports
* suspend/resume? if no, we should remove the code.
*/
sysdev_driver_register(&cpu_sysdev_class,
&mtrr_sysdev_driver);
}
return 0;
}
subsys_initcall(mtrr_init_finialize);