| /* |
| * Compaq Hot Plug Controller Driver |
| * |
| * Copyright (C) 1995,2001 Compaq Computer Corporation |
| * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) |
| * Copyright (C) 2001 IBM Corp. |
| * |
| * All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or (at |
| * your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more |
| * details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Send feedback to <greg@kroah.com> |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| #include <linux/proc_fs.h> |
| #include <linux/pci.h> |
| #include <linux/pci_hotplug.h> |
| #include "../pci.h" |
| #include "cpqphp.h" |
| #include "cpqphp_nvram.h" |
| #include <asm/pci_x86.h> |
| |
| |
| u8 cpqhp_nic_irq; |
| u8 cpqhp_disk_irq; |
| |
| static u16 unused_IRQ; |
| |
| /* |
| * detect_HRT_floating_pointer |
| * |
| * find the Hot Plug Resource Table in the specified region of memory. |
| * |
| */ |
| static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end) |
| { |
| void __iomem *fp; |
| void __iomem *endp; |
| u8 temp1, temp2, temp3, temp4; |
| int status = 0; |
| |
| endp = (end - sizeof(struct hrt) + 1); |
| |
| for (fp = begin; fp <= endp; fp += 16) { |
| temp1 = readb(fp + SIG0); |
| temp2 = readb(fp + SIG1); |
| temp3 = readb(fp + SIG2); |
| temp4 = readb(fp + SIG3); |
| if (temp1 == '$' && |
| temp2 == 'H' && |
| temp3 == 'R' && |
| temp4 == 'T') { |
| status = 1; |
| break; |
| } |
| } |
| |
| if (!status) |
| fp = NULL; |
| |
| dbg("Discovered Hotplug Resource Table at %p\n", fp); |
| return fp; |
| } |
| |
| |
| int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func) |
| { |
| unsigned char bus; |
| struct pci_bus *child; |
| int num; |
| |
| if (func->pci_dev == NULL) |
| func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function)); |
| |
| /* No pci device, we need to create it then */ |
| if (func->pci_dev == NULL) { |
| dbg("INFO: pci_dev still null\n"); |
| |
| num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function)); |
| if (num) |
| pci_bus_add_devices(ctrl->pci_dev->bus); |
| |
| func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function)); |
| if (func->pci_dev == NULL) { |
| dbg("ERROR: pci_dev still null\n"); |
| return 0; |
| } |
| } |
| |
| if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
| pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus); |
| child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus); |
| pci_do_scan_bus(child); |
| } |
| |
| return 0; |
| } |
| |
| |
| int cpqhp_unconfigure_device(struct pci_func* func) |
| { |
| int j; |
| |
| dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function); |
| |
| for (j=0; j<8 ; j++) { |
| struct pci_dev* temp = pci_find_slot(func->bus, PCI_DEVFN(func->device, j)); |
| if (temp) |
| pci_remove_bus_device(temp); |
| } |
| return 0; |
| } |
| |
| static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value) |
| { |
| u32 vendID = 0; |
| |
| if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1) |
| return -1; |
| if (vendID == 0xffffffff) |
| return -1; |
| return pci_bus_read_config_dword (bus, devfn, offset, value); |
| } |
| |
| |
| /* |
| * cpqhp_set_irq |
| * |
| * @bus_num: bus number of PCI device |
| * @dev_num: device number of PCI device |
| * @slot: pointer to u8 where slot number will be returned |
| */ |
| int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num) |
| { |
| int rc = 0; |
| |
| if (cpqhp_legacy_mode) { |
| struct pci_dev *fakedev; |
| struct pci_bus *fakebus; |
| u16 temp_word; |
| |
| fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL); |
| fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL); |
| if (!fakedev || !fakebus) { |
| kfree(fakedev); |
| kfree(fakebus); |
| return -ENOMEM; |
| } |
| |
| fakedev->devfn = dev_num << 3; |
| fakedev->bus = fakebus; |
| fakebus->number = bus_num; |
| dbg("%s: dev %d, bus %d, pin %d, num %d\n", |
| __func__, dev_num, bus_num, int_pin, irq_num); |
| rc = pcibios_set_irq_routing(fakedev, int_pin - 0x0a, irq_num); |
| kfree(fakedev); |
| kfree(fakebus); |
| dbg("%s: rc %d\n", __func__, rc); |
| if (!rc) |
| return !rc; |
| |
| // set the Edge Level Control Register (ELCR) |
| temp_word = inb(0x4d0); |
| temp_word |= inb(0x4d1) << 8; |
| |
| temp_word |= 0x01 << irq_num; |
| |
| // This should only be for x86 as it sets the Edge Level Control Register |
| outb((u8) (temp_word & 0xFF), 0x4d0); |
| outb((u8) ((temp_word & 0xFF00) >> 8), 0x4d1); |
| rc = 0; |
| } |
| |
| return rc; |
| } |
| |
| |
| /* |
| * WTF??? This function isn't in the code, yet a function calls it, but the |
| * compiler optimizes it away? strange. Here as a placeholder to keep the |
| * compiler happy. |
| */ |
| static int PCI_ScanBusNonBridge (u8 bus, u8 device) |
| { |
| return 0; |
| } |
| |
| static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num) |
| { |
| u16 tdevice; |
| u32 work; |
| u8 tbus; |
| |
| ctrl->pci_bus->number = bus_num; |
| |
| for (tdevice = 0; tdevice < 0xFF; tdevice++) { |
| //Scan for access first |
| if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1) |
| continue; |
| dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice); |
| //Yep we got one. Not a bridge ? |
| if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) { |
| *dev_num = tdevice; |
| dbg("found it !\n"); |
| return 0; |
| } |
| } |
| for (tdevice = 0; tdevice < 0xFF; tdevice++) { |
| //Scan for access first |
| if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1) |
| continue; |
| dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice); |
| //Yep we got one. bridge ? |
| if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) { |
| pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus); |
| dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice); |
| if (PCI_ScanBusNonBridge(tbus, tdevice) == 0) |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| |
| static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge) |
| { |
| struct irq_routing_table *PCIIRQRoutingInfoLength; |
| long len; |
| long loop; |
| u32 work; |
| |
| u8 tbus, tdevice, tslot; |
| |
| PCIIRQRoutingInfoLength = pcibios_get_irq_routing_table(); |
| if (!PCIIRQRoutingInfoLength) |
| return -1; |
| |
| len = (PCIIRQRoutingInfoLength->size - |
| sizeof(struct irq_routing_table)) / sizeof(struct irq_info); |
| // Make sure I got at least one entry |
| if (len == 0) { |
| kfree(PCIIRQRoutingInfoLength ); |
| return -1; |
| } |
| |
| for (loop = 0; loop < len; ++loop) { |
| tbus = PCIIRQRoutingInfoLength->slots[loop].bus; |
| tdevice = PCIIRQRoutingInfoLength->slots[loop].devfn; |
| tslot = PCIIRQRoutingInfoLength->slots[loop].slot; |
| |
| if (tslot == slot) { |
| *bus_num = tbus; |
| *dev_num = tdevice; |
| ctrl->pci_bus->number = tbus; |
| pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work); |
| if (!nobridge || (work == 0xffffffff)) { |
| kfree(PCIIRQRoutingInfoLength ); |
| return 0; |
| } |
| |
| dbg("bus_num %d devfn %d\n", *bus_num, *dev_num); |
| pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work); |
| dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS); |
| |
| if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) { |
| pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus); |
| dbg("Scan bus for Non Bridge: bus %d\n", tbus); |
| if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) { |
| *bus_num = tbus; |
| kfree(PCIIRQRoutingInfoLength ); |
| return 0; |
| } |
| } else { |
| kfree(PCIIRQRoutingInfoLength ); |
| return 0; |
| } |
| |
| } |
| } |
| kfree(PCIIRQRoutingInfoLength ); |
| return -1; |
| } |
| |
| |
| int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot) |
| { |
| return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0); //plain (bridges allowed) |
| } |
| |
| |
| /* More PCI configuration routines; this time centered around hotplug controller */ |
| |
| |
| /* |
| * cpqhp_save_config |
| * |
| * Reads configuration for all slots in a PCI bus and saves info. |
| * |
| * Note: For non-hot plug busses, the slot # saved is the device # |
| * |
| * returns 0 if success |
| */ |
| int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug) |
| { |
| long rc; |
| u8 class_code; |
| u8 header_type; |
| u32 ID; |
| u8 secondary_bus; |
| struct pci_func *new_slot; |
| int sub_bus; |
| int FirstSupported; |
| int LastSupported; |
| int max_functions; |
| int function; |
| u8 DevError; |
| int device = 0; |
| int cloop = 0; |
| int stop_it; |
| int index; |
| |
| // Decide which slots are supported |
| |
| if (is_hot_plug) { |
| //********************************* |
| // is_hot_plug is the slot mask |
| //********************************* |
| FirstSupported = is_hot_plug >> 4; |
| LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1; |
| } else { |
| FirstSupported = 0; |
| LastSupported = 0x1F; |
| } |
| |
| // Save PCI configuration space for all devices in supported slots |
| ctrl->pci_bus->number = busnumber; |
| for (device = FirstSupported; device <= LastSupported; device++) { |
| ID = 0xFFFFFFFF; |
| rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID); |
| |
| if (ID != 0xFFFFFFFF) { // device in slot |
| rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code); |
| if (rc) |
| return rc; |
| |
| rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type); |
| if (rc) |
| return rc; |
| |
| // If multi-function device, set max_functions to 8 |
| if (header_type & 0x80) |
| max_functions = 8; |
| else |
| max_functions = 1; |
| |
| function = 0; |
| |
| do { |
| DevError = 0; |
| |
| if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // P-P Bridge |
| // Recurse the subordinate bus |
| // get the subordinate bus number |
| rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus); |
| if (rc) { |
| return rc; |
| } else { |
| sub_bus = (int) secondary_bus; |
| |
| // Save secondary bus cfg spc |
| // with this recursive call. |
| rc = cpqhp_save_config(ctrl, sub_bus, 0); |
| if (rc) |
| return rc; |
| ctrl->pci_bus->number = busnumber; |
| } |
| } |
| |
| index = 0; |
| new_slot = cpqhp_slot_find(busnumber, device, index++); |
| while (new_slot && |
| (new_slot->function != (u8) function)) |
| new_slot = cpqhp_slot_find(busnumber, device, index++); |
| |
| if (!new_slot) { |
| // Setup slot structure. |
| new_slot = cpqhp_slot_create(busnumber); |
| |
| if (new_slot == NULL) |
| return(1); |
| } |
| |
| new_slot->bus = (u8) busnumber; |
| new_slot->device = (u8) device; |
| new_slot->function = (u8) function; |
| new_slot->is_a_board = 1; |
| new_slot->switch_save = 0x10; |
| // In case of unsupported board |
| new_slot->status = DevError; |
| new_slot->pci_dev = pci_find_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function); |
| |
| for (cloop = 0; cloop < 0x20; cloop++) { |
| rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop])); |
| if (rc) |
| return rc; |
| } |
| |
| function++; |
| |
| stop_it = 0; |
| |
| // this loop skips to the next present function |
| // reading in Class Code and Header type. |
| |
| while ((function < max_functions)&&(!stop_it)) { |
| rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID); |
| if (ID == 0xFFFFFFFF) { // nothing there. |
| function++; |
| } else { // Something there |
| rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code); |
| if (rc) |
| return rc; |
| |
| rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type); |
| if (rc) |
| return rc; |
| |
| stop_it++; |
| } |
| } |
| |
| } while (function < max_functions); |
| } // End of IF (device in slot?) |
| else if (is_hot_plug) { |
| // Setup slot structure with entry for empty slot |
| new_slot = cpqhp_slot_create(busnumber); |
| |
| if (new_slot == NULL) { |
| return(1); |
| } |
| |
| new_slot->bus = (u8) busnumber; |
| new_slot->device = (u8) device; |
| new_slot->function = 0; |
| new_slot->is_a_board = 0; |
| new_slot->presence_save = 0; |
| new_slot->switch_save = 0; |
| } |
| } // End of FOR loop |
| |
| return(0); |
| } |
| |
| |
| /* |
| * cpqhp_save_slot_config |
| * |
| * Saves configuration info for all PCI devices in a given slot |
| * including subordinate busses. |
| * |
| * returns 0 if success |
| */ |
| int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot) |
| { |
| long rc; |
| u8 class_code; |
| u8 header_type; |
| u32 ID; |
| u8 secondary_bus; |
| int sub_bus; |
| int max_functions; |
| int function; |
| int cloop = 0; |
| int stop_it; |
| |
| ID = 0xFFFFFFFF; |
| |
| ctrl->pci_bus->number = new_slot->bus; |
| pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID); |
| |
| if (ID != 0xFFFFFFFF) { // device in slot |
| pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code); |
| pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type); |
| |
| if (header_type & 0x80) // Multi-function device |
| max_functions = 8; |
| else |
| max_functions = 1; |
| |
| function = 0; |
| |
| do { |
| if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge |
| // Recurse the subordinate bus |
| pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus); |
| |
| sub_bus = (int) secondary_bus; |
| |
| // Save the config headers for the secondary bus. |
| rc = cpqhp_save_config(ctrl, sub_bus, 0); |
| if (rc) |
| return(rc); |
| ctrl->pci_bus->number = new_slot->bus; |
| |
| } // End of IF |
| |
| new_slot->status = 0; |
| |
| for (cloop = 0; cloop < 0x20; cloop++) { |
| pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop])); |
| } |
| |
| function++; |
| |
| stop_it = 0; |
| |
| // this loop skips to the next present function |
| // reading in the Class Code and the Header type. |
| |
| while ((function < max_functions) && (!stop_it)) { |
| pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID); |
| |
| if (ID == 0xFFFFFFFF) { // nothing there. |
| function++; |
| } else { // Something there |
| pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code); |
| |
| pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type); |
| |
| stop_it++; |
| } |
| } |
| |
| } while (function < max_functions); |
| } // End of IF (device in slot?) |
| else { |
| return 2; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * cpqhp_save_base_addr_length |
| * |
| * Saves the length of all base address registers for the |
| * specified slot. this is for hot plug REPLACE |
| * |
| * returns 0 if success |
| */ |
| int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func) |
| { |
| u8 cloop; |
| u8 header_type; |
| u8 secondary_bus; |
| u8 type; |
| int sub_bus; |
| u32 temp_register; |
| u32 base; |
| u32 rc; |
| struct pci_func *next; |
| int index = 0; |
| struct pci_bus *pci_bus = ctrl->pci_bus; |
| unsigned int devfn; |
| |
| func = cpqhp_slot_find(func->bus, func->device, index++); |
| |
| while (func != NULL) { |
| pci_bus->number = func->bus; |
| devfn = PCI_DEVFN(func->device, func->function); |
| |
| // Check for Bridge |
| pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); |
| |
| if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { |
| // PCI-PCI Bridge |
| pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); |
| |
| sub_bus = (int) secondary_bus; |
| |
| next = cpqhp_slot_list[sub_bus]; |
| |
| while (next != NULL) { |
| rc = cpqhp_save_base_addr_length(ctrl, next); |
| if (rc) |
| return rc; |
| |
| next = next->next; |
| } |
| pci_bus->number = func->bus; |
| |
| //FIXME: this loop is duplicated in the non-bridge case. The two could be rolled together |
| // Figure out IO and memory base lengths |
| for (cloop = 0x10; cloop <= 0x14; cloop += 4) { |
| temp_register = 0xFFFFFFFF; |
| pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); |
| pci_bus_read_config_dword (pci_bus, devfn, cloop, &base); |
| |
| if (base) { // If this register is implemented |
| if (base & 0x01L) { |
| // IO base |
| // set base = amount of IO space requested |
| base = base & 0xFFFFFFFE; |
| base = (~base) + 1; |
| |
| type = 1; |
| } else { |
| // memory base |
| base = base & 0xFFFFFFF0; |
| base = (~base) + 1; |
| |
| type = 0; |
| } |
| } else { |
| base = 0x0L; |
| type = 0; |
| } |
| |
| // Save information in slot structure |
| func->base_length[(cloop - 0x10) >> 2] = |
| base; |
| func->base_type[(cloop - 0x10) >> 2] = type; |
| |
| } // End of base register loop |
| |
| |
| } else if ((header_type & 0x7F) == 0x00) { // PCI-PCI Bridge |
| // Figure out IO and memory base lengths |
| for (cloop = 0x10; cloop <= 0x24; cloop += 4) { |
| temp_register = 0xFFFFFFFF; |
| pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); |
| pci_bus_read_config_dword (pci_bus, devfn, cloop, &base); |
| |
| if (base) { // If this register is implemented |
| if (base & 0x01L) { |
| // IO base |
| // base = amount of IO space requested |
| base = base & 0xFFFFFFFE; |
| base = (~base) + 1; |
| |
| type = 1; |
| } else { |
| // memory base |
| // base = amount of memory space requested |
| base = base & 0xFFFFFFF0; |
| base = (~base) + 1; |
| |
| type = 0; |
| } |
| } else { |
| base = 0x0L; |
| type = 0; |
| } |
| |
| // Save information in slot structure |
| func->base_length[(cloop - 0x10) >> 2] = base; |
| func->base_type[(cloop - 0x10) >> 2] = type; |
| |
| } // End of base register loop |
| |
| } else { // Some other unknown header type |
| } |
| |
| // find the next device in this slot |
| func = cpqhp_slot_find(func->bus, func->device, index++); |
| } |
| |
| return(0); |
| } |
| |
| |
| /* |
| * cpqhp_save_used_resources |
| * |
| * Stores used resource information for existing boards. this is |
| * for boards that were in the system when this driver was loaded. |
| * this function is for hot plug ADD |
| * |
| * returns 0 if success |
| */ |
| int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func) |
| { |
| u8 cloop; |
| u8 header_type; |
| u8 secondary_bus; |
| u8 temp_byte; |
| u8 b_base; |
| u8 b_length; |
| u16 command; |
| u16 save_command; |
| u16 w_base; |
| u16 w_length; |
| u32 temp_register; |
| u32 save_base; |
| u32 base; |
| int index = 0; |
| struct pci_resource *mem_node; |
| struct pci_resource *p_mem_node; |
| struct pci_resource *io_node; |
| struct pci_resource *bus_node; |
| struct pci_bus *pci_bus = ctrl->pci_bus; |
| unsigned int devfn; |
| |
| func = cpqhp_slot_find(func->bus, func->device, index++); |
| |
| while ((func != NULL) && func->is_a_board) { |
| pci_bus->number = func->bus; |
| devfn = PCI_DEVFN(func->device, func->function); |
| |
| // Save the command register |
| pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command); |
| |
| // disable card |
| command = 0x00; |
| pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); |
| |
| // Check for Bridge |
| pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); |
| |
| if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge |
| // Clear Bridge Control Register |
| command = 0x00; |
| pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); |
| pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); |
| pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte); |
| |
| bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL); |
| if (!bus_node) |
| return -ENOMEM; |
| |
| bus_node->base = secondary_bus; |
| bus_node->length = temp_byte - secondary_bus + 1; |
| |
| bus_node->next = func->bus_head; |
| func->bus_head = bus_node; |
| |
| // Save IO base and Limit registers |
| pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base); |
| pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length); |
| |
| if ((b_base <= b_length) && (save_command & 0x01)) { |
| io_node = kmalloc(sizeof(*io_node), GFP_KERNEL); |
| if (!io_node) |
| return -ENOMEM; |
| |
| io_node->base = (b_base & 0xF0) << 8; |
| io_node->length = (b_length - b_base + 0x10) << 8; |
| |
| io_node->next = func->io_head; |
| func->io_head = io_node; |
| } |
| |
| // Save memory base and Limit registers |
| pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base); |
| pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length); |
| |
| if ((w_base <= w_length) && (save_command & 0x02)) { |
| mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL); |
| if (!mem_node) |
| return -ENOMEM; |
| |
| mem_node->base = w_base << 16; |
| mem_node->length = (w_length - w_base + 0x10) << 16; |
| |
| mem_node->next = func->mem_head; |
| func->mem_head = mem_node; |
| } |
| |
| // Save prefetchable memory base and Limit registers |
| pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base); |
| pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length); |
| |
| if ((w_base <= w_length) && (save_command & 0x02)) { |
| p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL); |
| if (!p_mem_node) |
| return -ENOMEM; |
| |
| p_mem_node->base = w_base << 16; |
| p_mem_node->length = (w_length - w_base + 0x10) << 16; |
| |
| p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = p_mem_node; |
| } |
| // Figure out IO and memory base lengths |
| for (cloop = 0x10; cloop <= 0x14; cloop += 4) { |
| pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base); |
| |
| temp_register = 0xFFFFFFFF; |
| pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); |
| pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); |
| |
| temp_register = base; |
| |
| if (base) { // If this register is implemented |
| if (((base & 0x03L) == 0x01) |
| && (save_command & 0x01)) { |
| // IO base |
| // set temp_register = amount of IO space requested |
| temp_register = base & 0xFFFFFFFE; |
| temp_register = (~temp_register) + 1; |
| |
| io_node = kmalloc(sizeof(*io_node), |
| GFP_KERNEL); |
| if (!io_node) |
| return -ENOMEM; |
| |
| io_node->base = |
| save_base & (~0x03L); |
| io_node->length = temp_register; |
| |
| io_node->next = func->io_head; |
| func->io_head = io_node; |
| } else |
| if (((base & 0x0BL) == 0x08) |
| && (save_command & 0x02)) { |
| // prefetchable memory base |
| temp_register = base & 0xFFFFFFF0; |
| temp_register = (~temp_register) + 1; |
| |
| p_mem_node = kmalloc(sizeof(*p_mem_node), |
| GFP_KERNEL); |
| if (!p_mem_node) |
| return -ENOMEM; |
| |
| p_mem_node->base = save_base & (~0x0FL); |
| p_mem_node->length = temp_register; |
| |
| p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = p_mem_node; |
| } else |
| if (((base & 0x0BL) == 0x00) |
| && (save_command & 0x02)) { |
| // prefetchable memory base |
| temp_register = base & 0xFFFFFFF0; |
| temp_register = (~temp_register) + 1; |
| |
| mem_node = kmalloc(sizeof(*mem_node), |
| GFP_KERNEL); |
| if (!mem_node) |
| return -ENOMEM; |
| |
| mem_node->base = save_base & (~0x0FL); |
| mem_node->length = temp_register; |
| |
| mem_node->next = func->mem_head; |
| func->mem_head = mem_node; |
| } else |
| return(1); |
| } |
| } // End of base register loop |
| } else if ((header_type & 0x7F) == 0x00) { // Standard header |
| // Figure out IO and memory base lengths |
| for (cloop = 0x10; cloop <= 0x24; cloop += 4) { |
| pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base); |
| |
| temp_register = 0xFFFFFFFF; |
| pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); |
| pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); |
| |
| temp_register = base; |
| |
| if (base) { // If this register is implemented |
| if (((base & 0x03L) == 0x01) |
| && (save_command & 0x01)) { |
| // IO base |
| // set temp_register = amount of IO space requested |
| temp_register = base & 0xFFFFFFFE; |
| temp_register = (~temp_register) + 1; |
| |
| io_node = kmalloc(sizeof(*io_node), |
| GFP_KERNEL); |
| if (!io_node) |
| return -ENOMEM; |
| |
| io_node->base = save_base & (~0x01L); |
| io_node->length = temp_register; |
| |
| io_node->next = func->io_head; |
| func->io_head = io_node; |
| } else |
| if (((base & 0x0BL) == 0x08) |
| && (save_command & 0x02)) { |
| // prefetchable memory base |
| temp_register = base & 0xFFFFFFF0; |
| temp_register = (~temp_register) + 1; |
| |
| p_mem_node = kmalloc(sizeof(*p_mem_node), |
| GFP_KERNEL); |
| if (!p_mem_node) |
| return -ENOMEM; |
| |
| p_mem_node->base = save_base & (~0x0FL); |
| p_mem_node->length = temp_register; |
| |
| p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = p_mem_node; |
| } else |
| if (((base & 0x0BL) == 0x00) |
| && (save_command & 0x02)) { |
| // prefetchable memory base |
| temp_register = base & 0xFFFFFFF0; |
| temp_register = (~temp_register) + 1; |
| |
| mem_node = kmalloc(sizeof(*mem_node), |
| GFP_KERNEL); |
| if (!mem_node) |
| return -ENOMEM; |
| |
| mem_node->base = save_base & (~0x0FL); |
| mem_node->length = temp_register; |
| |
| mem_node->next = func->mem_head; |
| func->mem_head = mem_node; |
| } else |
| return(1); |
| } |
| } // End of base register loop |
| } else { // Some other unknown header type |
| } |
| |
| // find the next device in this slot |
| func = cpqhp_slot_find(func->bus, func->device, index++); |
| } |
| |
| return(0); |
| } |
| |
| |
| /* |
| * cpqhp_configure_board |
| * |
| * Copies saved configuration information to one slot. |
| * this is called recursively for bridge devices. |
| * this is for hot plug REPLACE! |
| * |
| * returns 0 if success |
| */ |
| int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func) |
| { |
| int cloop; |
| u8 header_type; |
| u8 secondary_bus; |
| int sub_bus; |
| struct pci_func *next; |
| u32 temp; |
| u32 rc; |
| int index = 0; |
| struct pci_bus *pci_bus = ctrl->pci_bus; |
| unsigned int devfn; |
| |
| func = cpqhp_slot_find(func->bus, func->device, index++); |
| |
| while (func != NULL) { |
| pci_bus->number = func->bus; |
| devfn = PCI_DEVFN(func->device, func->function); |
| |
| // Start at the top of config space so that the control |
| // registers are programmed last |
| for (cloop = 0x3C; cloop > 0; cloop -= 4) { |
| pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]); |
| } |
| |
| pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); |
| |
| // If this is a bridge device, restore subordinate devices |
| if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge |
| pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); |
| |
| sub_bus = (int) secondary_bus; |
| |
| next = cpqhp_slot_list[sub_bus]; |
| |
| while (next != NULL) { |
| rc = cpqhp_configure_board(ctrl, next); |
| if (rc) |
| return rc; |
| |
| next = next->next; |
| } |
| } else { |
| |
| // Check all the base Address Registers to make sure |
| // they are the same. If not, the board is different. |
| |
| for (cloop = 16; cloop < 40; cloop += 4) { |
| pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp); |
| |
| if (temp != func->config_space[cloop >> 2]) { |
| dbg("Config space compare failure!!! offset = %x\n", cloop); |
| dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function); |
| dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]); |
| return 1; |
| } |
| } |
| } |
| |
| func->configured = 1; |
| |
| func = cpqhp_slot_find(func->bus, func->device, index++); |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * cpqhp_valid_replace |
| * |
| * this function checks to see if a board is the same as the |
| * one it is replacing. this check will detect if the device's |
| * vendor or device id's are the same |
| * |
| * returns 0 if the board is the same nonzero otherwise |
| */ |
| int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func) |
| { |
| u8 cloop; |
| u8 header_type; |
| u8 secondary_bus; |
| u8 type; |
| u32 temp_register = 0; |
| u32 base; |
| u32 rc; |
| struct pci_func *next; |
| int index = 0; |
| struct pci_bus *pci_bus = ctrl->pci_bus; |
| unsigned int devfn; |
| |
| if (!func->is_a_board) |
| return(ADD_NOT_SUPPORTED); |
| |
| func = cpqhp_slot_find(func->bus, func->device, index++); |
| |
| while (func != NULL) { |
| pci_bus->number = func->bus; |
| devfn = PCI_DEVFN(func->device, func->function); |
| |
| pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register); |
| |
| // No adapter present |
| if (temp_register == 0xFFFFFFFF) |
| return(NO_ADAPTER_PRESENT); |
| |
| if (temp_register != func->config_space[0]) |
| return(ADAPTER_NOT_SAME); |
| |
| // Check for same revision number and class code |
| pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register); |
| |
| // Adapter not the same |
| if (temp_register != func->config_space[0x08 >> 2]) |
| return(ADAPTER_NOT_SAME); |
| |
| // Check for Bridge |
| pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); |
| |
| if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge |
| // In order to continue checking, we must program the |
| // bus registers in the bridge to respond to accesses |
| // for it's subordinate bus(es) |
| |
| temp_register = func->config_space[0x18 >> 2]; |
| pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register); |
| |
| secondary_bus = (temp_register >> 8) & 0xFF; |
| |
| next = cpqhp_slot_list[secondary_bus]; |
| |
| while (next != NULL) { |
| rc = cpqhp_valid_replace(ctrl, next); |
| if (rc) |
| return rc; |
| |
| next = next->next; |
| } |
| |
| } |
| // Check to see if it is a standard config header |
| else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) { |
| // Check subsystem vendor and ID |
| pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register); |
| |
| if (temp_register != func->config_space[0x2C >> 2]) { |
| // If it's a SMART-2 and the register isn't filled |
| // in, ignore the difference because |
| // they just have an old rev of the firmware |
| |
| if (!((func->config_space[0] == 0xAE100E11) |
| && (temp_register == 0x00L))) |
| return(ADAPTER_NOT_SAME); |
| } |
| // Figure out IO and memory base lengths |
| for (cloop = 0x10; cloop <= 0x24; cloop += 4) { |
| temp_register = 0xFFFFFFFF; |
| pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); |
| pci_bus_read_config_dword (pci_bus, devfn, cloop, &base); |
| if (base) { // If this register is implemented |
| if (base & 0x01L) { |
| // IO base |
| // set base = amount of IO space requested |
| base = base & 0xFFFFFFFE; |
| base = (~base) + 1; |
| |
| type = 1; |
| } else { |
| // memory base |
| base = base & 0xFFFFFFF0; |
| base = (~base) + 1; |
| |
| type = 0; |
| } |
| } else { |
| base = 0x0L; |
| type = 0; |
| } |
| |
| // Check information in slot structure |
| if (func->base_length[(cloop - 0x10) >> 2] != base) |
| return(ADAPTER_NOT_SAME); |
| |
| if (func->base_type[(cloop - 0x10) >> 2] != type) |
| return(ADAPTER_NOT_SAME); |
| |
| } // End of base register loop |
| |
| } // End of (type 0 config space) else |
| else { |
| // this is not a type 0 or 1 config space header so |
| // we don't know how to do it |
| return(DEVICE_TYPE_NOT_SUPPORTED); |
| } |
| |
| // Get the next function |
| func = cpqhp_slot_find(func->bus, func->device, index++); |
| } |
| |
| |
| return 0; |
| } |
| |
| |
| /* |
| * cpqhp_find_available_resources |
| * |
| * Finds available memory, IO, and IRQ resources for programming |
| * devices which may be added to the system |
| * this function is for hot plug ADD! |
| * |
| * returns 0 if success |
| */ |
| int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start) |
| { |
| u8 temp; |
| u8 populated_slot; |
| u8 bridged_slot; |
| void __iomem *one_slot; |
| void __iomem *rom_resource_table; |
| struct pci_func *func = NULL; |
| int i = 10, index; |
| u32 temp_dword, rc; |
| struct pci_resource *mem_node; |
| struct pci_resource *p_mem_node; |
| struct pci_resource *io_node; |
| struct pci_resource *bus_node; |
| |
| rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff); |
| dbg("rom_resource_table = %p\n", rom_resource_table); |
| |
| if (rom_resource_table == NULL) { |
| return -ENODEV; |
| } |
| // Sum all resources and setup resource maps |
| unused_IRQ = readl(rom_resource_table + UNUSED_IRQ); |
| dbg("unused_IRQ = %x\n", unused_IRQ); |
| |
| temp = 0; |
| while (unused_IRQ) { |
| if (unused_IRQ & 1) { |
| cpqhp_disk_irq = temp; |
| break; |
| } |
| unused_IRQ = unused_IRQ >> 1; |
| temp++; |
| } |
| |
| dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq); |
| unused_IRQ = unused_IRQ >> 1; |
| temp++; |
| |
| while (unused_IRQ) { |
| if (unused_IRQ & 1) { |
| cpqhp_nic_irq = temp; |
| break; |
| } |
| unused_IRQ = unused_IRQ >> 1; |
| temp++; |
| } |
| |
| dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq); |
| unused_IRQ = readl(rom_resource_table + PCIIRQ); |
| |
| temp = 0; |
| |
| if (!cpqhp_nic_irq) { |
| cpqhp_nic_irq = ctrl->cfgspc_irq; |
| } |
| |
| if (!cpqhp_disk_irq) { |
| cpqhp_disk_irq = ctrl->cfgspc_irq; |
| } |
| |
| dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq); |
| |
| rc = compaq_nvram_load(rom_start, ctrl); |
| if (rc) |
| return rc; |
| |
| one_slot = rom_resource_table + sizeof (struct hrt); |
| |
| i = readb(rom_resource_table + NUMBER_OF_ENTRIES); |
| dbg("number_of_entries = %d\n", i); |
| |
| if (!readb(one_slot + SECONDARY_BUS)) |
| return 1; |
| |
| dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n"); |
| |
| while (i && readb(one_slot + SECONDARY_BUS)) { |
| u8 dev_func = readb(one_slot + DEV_FUNC); |
| u8 primary_bus = readb(one_slot + PRIMARY_BUS); |
| u8 secondary_bus = readb(one_slot + SECONDARY_BUS); |
| u8 max_bus = readb(one_slot + MAX_BUS); |
| u16 io_base = readw(one_slot + IO_BASE); |
| u16 io_length = readw(one_slot + IO_LENGTH); |
| u16 mem_base = readw(one_slot + MEM_BASE); |
| u16 mem_length = readw(one_slot + MEM_LENGTH); |
| u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE); |
| u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH); |
| |
| dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n", |
| dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length, |
| primary_bus, secondary_bus, max_bus); |
| |
| // If this entry isn't for our controller's bus, ignore it |
| if (primary_bus != ctrl->bus) { |
| i--; |
| one_slot += sizeof (struct slot_rt); |
| continue; |
| } |
| // find out if this entry is for an occupied slot |
| ctrl->pci_bus->number = primary_bus; |
| pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword); |
| dbg("temp_D_word = %x\n", temp_dword); |
| |
| if (temp_dword != 0xFFFFFFFF) { |
| index = 0; |
| func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0); |
| |
| while (func && (func->function != (dev_func & 0x07))) { |
| dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index); |
| func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++); |
| } |
| |
| // If we can't find a match, skip this table entry |
| if (!func) { |
| i--; |
| one_slot += sizeof (struct slot_rt); |
| continue; |
| } |
| // this may not work and shouldn't be used |
| if (secondary_bus != primary_bus) |
| bridged_slot = 1; |
| else |
| bridged_slot = 0; |
| |
| populated_slot = 1; |
| } else { |
| populated_slot = 0; |
| bridged_slot = 0; |
| } |
| |
| |
| // If we've got a valid IO base, use it |
| |
| temp_dword = io_base + io_length; |
| |
| if ((io_base) && (temp_dword < 0x10000)) { |
| io_node = kmalloc(sizeof(*io_node), GFP_KERNEL); |
| if (!io_node) |
| return -ENOMEM; |
| |
| io_node->base = io_base; |
| io_node->length = io_length; |
| |
| dbg("found io_node(base, length) = %x, %x\n", |
| io_node->base, io_node->length); |
| dbg("populated slot =%d \n", populated_slot); |
| if (!populated_slot) { |
| io_node->next = ctrl->io_head; |
| ctrl->io_head = io_node; |
| } else { |
| io_node->next = func->io_head; |
| func->io_head = io_node; |
| } |
| } |
| |
| // If we've got a valid memory base, use it |
| temp_dword = mem_base + mem_length; |
| if ((mem_base) && (temp_dword < 0x10000)) { |
| mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL); |
| if (!mem_node) |
| return -ENOMEM; |
| |
| mem_node->base = mem_base << 16; |
| |
| mem_node->length = mem_length << 16; |
| |
| dbg("found mem_node(base, length) = %x, %x\n", |
| mem_node->base, mem_node->length); |
| dbg("populated slot =%d \n", populated_slot); |
| if (!populated_slot) { |
| mem_node->next = ctrl->mem_head; |
| ctrl->mem_head = mem_node; |
| } else { |
| mem_node->next = func->mem_head; |
| func->mem_head = mem_node; |
| } |
| } |
| |
| // If we've got a valid prefetchable memory base, and |
| // the base + length isn't greater than 0xFFFF |
| temp_dword = pre_mem_base + pre_mem_length; |
| if ((pre_mem_base) && (temp_dword < 0x10000)) { |
| p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL); |
| if (!p_mem_node) |
| return -ENOMEM; |
| |
| p_mem_node->base = pre_mem_base << 16; |
| |
| p_mem_node->length = pre_mem_length << 16; |
| dbg("found p_mem_node(base, length) = %x, %x\n", |
| p_mem_node->base, p_mem_node->length); |
| dbg("populated slot =%d \n", populated_slot); |
| |
| if (!populated_slot) { |
| p_mem_node->next = ctrl->p_mem_head; |
| ctrl->p_mem_head = p_mem_node; |
| } else { |
| p_mem_node->next = func->p_mem_head; |
| func->p_mem_head = p_mem_node; |
| } |
| } |
| |
| // If we've got a valid bus number, use it |
| // The second condition is to ignore bus numbers on |
| // populated slots that don't have PCI-PCI bridges |
| if (secondary_bus && (secondary_bus != primary_bus)) { |
| bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL); |
| if (!bus_node) |
| return -ENOMEM; |
| |
| bus_node->base = secondary_bus; |
| bus_node->length = max_bus - secondary_bus + 1; |
| dbg("found bus_node(base, length) = %x, %x\n", |
| bus_node->base, bus_node->length); |
| dbg("populated slot =%d \n", populated_slot); |
| if (!populated_slot) { |
| bus_node->next = ctrl->bus_head; |
| ctrl->bus_head = bus_node; |
| } else { |
| bus_node->next = func->bus_head; |
| func->bus_head = bus_node; |
| } |
| } |
| |
| i--; |
| one_slot += sizeof (struct slot_rt); |
| } |
| |
| // If all of the following fail, we don't have any resources for |
| // hot plug add |
| rc = 1; |
| rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); |
| rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); |
| rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head)); |
| rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); |
| |
| return rc; |
| } |
| |
| |
| /* |
| * cpqhp_return_board_resources |
| * |
| * this routine returns all resources allocated to a board to |
| * the available pool. |
| * |
| * returns 0 if success |
| */ |
| int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources) |
| { |
| int rc = 0; |
| struct pci_resource *node; |
| struct pci_resource *t_node; |
| dbg("%s\n", __func__); |
| |
| if (!func) |
| return 1; |
| |
| node = func->io_head; |
| func->io_head = NULL; |
| while (node) { |
| t_node = node->next; |
| return_resource(&(resources->io_head), node); |
| node = t_node; |
| } |
| |
| node = func->mem_head; |
| func->mem_head = NULL; |
| while (node) { |
| t_node = node->next; |
| return_resource(&(resources->mem_head), node); |
| node = t_node; |
| } |
| |
| node = func->p_mem_head; |
| func->p_mem_head = NULL; |
| while (node) { |
| t_node = node->next; |
| return_resource(&(resources->p_mem_head), node); |
| node = t_node; |
| } |
| |
| node = func->bus_head; |
| func->bus_head = NULL; |
| while (node) { |
| t_node = node->next; |
| return_resource(&(resources->bus_head), node); |
| node = t_node; |
| } |
| |
| rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head)); |
| rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head)); |
| rc |= cpqhp_resource_sort_and_combine(&(resources->io_head)); |
| rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head)); |
| |
| return rc; |
| } |
| |
| |
| /* |
| * cpqhp_destroy_resource_list |
| * |
| * Puts node back in the resource list pointed to by head |
| */ |
| void cpqhp_destroy_resource_list (struct resource_lists * resources) |
| { |
| struct pci_resource *res, *tres; |
| |
| res = resources->io_head; |
| resources->io_head = NULL; |
| |
| while (res) { |
| tres = res; |
| res = res->next; |
| kfree(tres); |
| } |
| |
| res = resources->mem_head; |
| resources->mem_head = NULL; |
| |
| while (res) { |
| tres = res; |
| res = res->next; |
| kfree(tres); |
| } |
| |
| res = resources->p_mem_head; |
| resources->p_mem_head = NULL; |
| |
| while (res) { |
| tres = res; |
| res = res->next; |
| kfree(tres); |
| } |
| |
| res = resources->bus_head; |
| resources->bus_head = NULL; |
| |
| while (res) { |
| tres = res; |
| res = res->next; |
| kfree(tres); |
| } |
| } |
| |
| |
| /* |
| * cpqhp_destroy_board_resources |
| * |
| * Puts node back in the resource list pointed to by head |
| */ |
| void cpqhp_destroy_board_resources (struct pci_func * func) |
| { |
| struct pci_resource *res, *tres; |
| |
| res = func->io_head; |
| func->io_head = NULL; |
| |
| while (res) { |
| tres = res; |
| res = res->next; |
| kfree(tres); |
| } |
| |
| res = func->mem_head; |
| func->mem_head = NULL; |
| |
| while (res) { |
| tres = res; |
| res = res->next; |
| kfree(tres); |
| } |
| |
| res = func->p_mem_head; |
| func->p_mem_head = NULL; |
| |
| while (res) { |
| tres = res; |
| res = res->next; |
| kfree(tres); |
| } |
| |
| res = func->bus_head; |
| func->bus_head = NULL; |
| |
| while (res) { |
| tres = res; |
| res = res->next; |
| kfree(tres); |
| } |
| } |
| |