| /* |
| * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com) |
| * Copyright 2003 PathScale, Inc. |
| * Licensed under the GPL |
| */ |
| |
| #include "linux/config.h" |
| #include "linux/kernel.h" |
| #include "linux/sched.h" |
| #include "linux/interrupt.h" |
| #include "linux/mm.h" |
| #include "linux/slab.h" |
| #include "linux/utsname.h" |
| #include "linux/fs.h" |
| #include "linux/utime.h" |
| #include "linux/smp_lock.h" |
| #include "linux/module.h" |
| #include "linux/init.h" |
| #include "linux/capability.h" |
| #include "linux/vmalloc.h" |
| #include "linux/spinlock.h" |
| #include "linux/proc_fs.h" |
| #include "linux/ptrace.h" |
| #include "linux/random.h" |
| #include "asm/unistd.h" |
| #include "asm/mman.h" |
| #include "asm/segment.h" |
| #include "asm/stat.h" |
| #include "asm/pgtable.h" |
| #include "asm/processor.h" |
| #include "asm/tlbflush.h" |
| #include "asm/uaccess.h" |
| #include "asm/user.h" |
| #include "user_util.h" |
| #include "kern_util.h" |
| #include "kern.h" |
| #include "signal_kern.h" |
| #include "signal_user.h" |
| #include "init.h" |
| #include "irq_user.h" |
| #include "mem_user.h" |
| #include "time_user.h" |
| #include "tlb.h" |
| #include "frame_kern.h" |
| #include "sigcontext.h" |
| #include "os.h" |
| #include "mode.h" |
| #include "mode_kern.h" |
| #include "choose-mode.h" |
| |
| /* This is a per-cpu array. A processor only modifies its entry and it only |
| * cares about its entry, so it's OK if another processor is modifying its |
| * entry. |
| */ |
| struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; |
| |
| struct task_struct *get_task(int pid, int require) |
| { |
| struct task_struct *ret; |
| |
| read_lock(&tasklist_lock); |
| ret = find_task_by_pid(pid); |
| read_unlock(&tasklist_lock); |
| |
| if(require && (ret == NULL)) panic("get_task couldn't find a task\n"); |
| return(ret); |
| } |
| |
| int external_pid(void *t) |
| { |
| struct task_struct *task = t ? t : current; |
| |
| return(CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task)); |
| } |
| |
| int pid_to_processor_id(int pid) |
| { |
| int i; |
| |
| for(i = 0; i < ncpus; i++){ |
| if(cpu_tasks[i].pid == pid) return(i); |
| } |
| return(-1); |
| } |
| |
| void free_stack(unsigned long stack, int order) |
| { |
| free_pages(stack, order); |
| } |
| |
| unsigned long alloc_stack(int order, int atomic) |
| { |
| unsigned long page; |
| int flags = GFP_KERNEL; |
| |
| if(atomic) flags |= GFP_ATOMIC; |
| page = __get_free_pages(flags, order); |
| if(page == 0) |
| return(0); |
| stack_protections(page); |
| return(page); |
| } |
| |
| int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) |
| { |
| int pid; |
| |
| current->thread.request.u.thread.proc = fn; |
| current->thread.request.u.thread.arg = arg; |
| pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0, NULL, 0, NULL, |
| NULL); |
| if(pid < 0) |
| panic("do_fork failed in kernel_thread, errno = %d", pid); |
| return(pid); |
| } |
| |
| void set_current(void *t) |
| { |
| struct task_struct *task = t; |
| |
| cpu_tasks[task->thread_info->cpu] = ((struct cpu_task) |
| { external_pid(task), task }); |
| } |
| |
| void *_switch_to(void *prev, void *next, void *last) |
| { |
| return(CHOOSE_MODE(switch_to_tt(prev, next), |
| switch_to_skas(prev, next))); |
| } |
| |
| void interrupt_end(void) |
| { |
| if(need_resched()) schedule(); |
| if(test_tsk_thread_flag(current, TIF_SIGPENDING)) do_signal(); |
| } |
| |
| void release_thread(struct task_struct *task) |
| { |
| CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task)); |
| } |
| |
| void exit_thread(void) |
| { |
| unprotect_stack((unsigned long) current_thread); |
| } |
| |
| void *get_current(void) |
| { |
| return(current); |
| } |
| |
| int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, |
| unsigned long stack_top, struct task_struct * p, |
| struct pt_regs *regs) |
| { |
| p->thread = (struct thread_struct) INIT_THREAD; |
| return(CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr, |
| clone_flags, sp, stack_top, p, regs)); |
| } |
| |
| void initial_thread_cb(void (*proc)(void *), void *arg) |
| { |
| int save_kmalloc_ok = kmalloc_ok; |
| |
| kmalloc_ok = 0; |
| CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc, |
| arg); |
| kmalloc_ok = save_kmalloc_ok; |
| } |
| |
| unsigned long stack_sp(unsigned long page) |
| { |
| return(page + PAGE_SIZE - sizeof(void *)); |
| } |
| |
| int current_pid(void) |
| { |
| return(current->pid); |
| } |
| |
| void default_idle(void) |
| { |
| uml_idle_timer(); |
| |
| atomic_inc(&init_mm.mm_count); |
| current->mm = &init_mm; |
| current->active_mm = &init_mm; |
| |
| while(1){ |
| /* endless idle loop with no priority at all */ |
| |
| /* |
| * although we are an idle CPU, we do not want to |
| * get into the scheduler unnecessarily. |
| */ |
| if(need_resched()) |
| schedule(); |
| |
| idle_sleep(10); |
| } |
| } |
| |
| void cpu_idle(void) |
| { |
| CHOOSE_MODE(init_idle_tt(), init_idle_skas()); |
| } |
| |
| int page_size(void) |
| { |
| return(PAGE_SIZE); |
| } |
| |
| unsigned long page_mask(void) |
| { |
| return(PAGE_MASK); |
| } |
| |
| void *um_virt_to_phys(struct task_struct *task, unsigned long addr, |
| pte_t *pte_out) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| if(task->mm == NULL) |
| return(ERR_PTR(-EINVAL)); |
| pgd = pgd_offset(task->mm, addr); |
| if(!pgd_present(*pgd)) |
| return(ERR_PTR(-EINVAL)); |
| |
| pud = pud_offset(pgd, addr); |
| if(!pud_present(*pud)) |
| return(ERR_PTR(-EINVAL)); |
| |
| pmd = pmd_offset(pud, addr); |
| if(!pmd_present(*pmd)) |
| return(ERR_PTR(-EINVAL)); |
| |
| pte = pte_offset_kernel(pmd, addr); |
| if(!pte_present(*pte)) |
| return(ERR_PTR(-EINVAL)); |
| |
| if(pte_out != NULL) |
| *pte_out = *pte; |
| return((void *) (pte_val(*pte) & PAGE_MASK) + (addr & ~PAGE_MASK)); |
| } |
| |
| char *current_cmd(void) |
| { |
| #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM) |
| return("(Unknown)"); |
| #else |
| void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL); |
| return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr); |
| #endif |
| } |
| |
| void force_sigbus(void) |
| { |
| printk(KERN_ERR "Killing pid %d because of a lack of memory\n", |
| current->pid); |
| lock_kernel(); |
| sigaddset(¤t->pending.signal, SIGBUS); |
| recalc_sigpending(); |
| current->flags |= PF_SIGNALED; |
| do_exit(SIGBUS | 0x80); |
| } |
| |
| void dump_thread(struct pt_regs *regs, struct user *u) |
| { |
| } |
| |
| void enable_hlt(void) |
| { |
| panic("enable_hlt"); |
| } |
| |
| EXPORT_SYMBOL(enable_hlt); |
| |
| void disable_hlt(void) |
| { |
| panic("disable_hlt"); |
| } |
| |
| EXPORT_SYMBOL(disable_hlt); |
| |
| void *um_kmalloc(int size) |
| { |
| return(kmalloc(size, GFP_KERNEL)); |
| } |
| |
| void *um_kmalloc_atomic(int size) |
| { |
| return(kmalloc(size, GFP_ATOMIC)); |
| } |
| |
| void *um_vmalloc(int size) |
| { |
| return(vmalloc(size)); |
| } |
| |
| unsigned long get_fault_addr(void) |
| { |
| return((unsigned long) current->thread.fault_addr); |
| } |
| |
| EXPORT_SYMBOL(get_fault_addr); |
| |
| void not_implemented(void) |
| { |
| printk(KERN_DEBUG "Something isn't implemented in here\n"); |
| } |
| |
| EXPORT_SYMBOL(not_implemented); |
| |
| int user_context(unsigned long sp) |
| { |
| unsigned long stack; |
| |
| stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); |
| return(stack != (unsigned long) current_thread); |
| } |
| |
| extern void remove_umid_dir(void); |
| |
| __uml_exitcall(remove_umid_dir); |
| |
| extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; |
| |
| void do_uml_exitcalls(void) |
| { |
| exitcall_t *call; |
| |
| call = &__uml_exitcall_end; |
| while (--call >= &__uml_exitcall_begin) |
| (*call)(); |
| } |
| |
| char *uml_strdup(char *string) |
| { |
| char *new; |
| |
| new = kmalloc(strlen(string) + 1, GFP_KERNEL); |
| if(new == NULL) return(NULL); |
| strcpy(new, string); |
| return(new); |
| } |
| |
| void *get_init_task(void) |
| { |
| return(&init_thread_union.thread_info.task); |
| } |
| |
| int copy_to_user_proc(void __user *to, void *from, int size) |
| { |
| return(copy_to_user(to, from, size)); |
| } |
| |
| int copy_from_user_proc(void *to, void __user *from, int size) |
| { |
| return(copy_from_user(to, from, size)); |
| } |
| |
| int clear_user_proc(void __user *buf, int size) |
| { |
| return(clear_user(buf, size)); |
| } |
| |
| int strlen_user_proc(char __user *str) |
| { |
| return(strlen_user(str)); |
| } |
| |
| int smp_sigio_handler(void) |
| { |
| #ifdef CONFIG_SMP |
| int cpu = current_thread->cpu; |
| IPI_handler(cpu); |
| if(cpu != 0) |
| return(1); |
| #endif |
| return(0); |
| } |
| |
| int um_in_interrupt(void) |
| { |
| return(in_interrupt()); |
| } |
| |
| int cpu(void) |
| { |
| return(current_thread->cpu); |
| } |
| |
| static atomic_t using_sysemu = ATOMIC_INIT(0); |
| int sysemu_supported; |
| |
| void set_using_sysemu(int value) |
| { |
| if (value > sysemu_supported) |
| return; |
| atomic_set(&using_sysemu, value); |
| } |
| |
| int get_using_sysemu(void) |
| { |
| return atomic_read(&using_sysemu); |
| } |
| |
| static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data) |
| { |
| if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/ |
| *eof = 1; |
| |
| return strlen(buf); |
| } |
| |
| static int proc_write_sysemu(struct file *file,const char *buf, unsigned long count,void *data) |
| { |
| char tmp[2]; |
| |
| if (copy_from_user(tmp, buf, 1)) |
| return -EFAULT; |
| |
| if (tmp[0] >= '0' && tmp[0] <= '2') |
| set_using_sysemu(tmp[0] - '0'); |
| return count; /*We use the first char, but pretend to write everything*/ |
| } |
| |
| int __init make_proc_sysemu(void) |
| { |
| struct proc_dir_entry *ent; |
| if (!sysemu_supported) |
| return 0; |
| |
| ent = create_proc_entry("sysemu", 0600, &proc_root); |
| |
| if (ent == NULL) |
| { |
| printk("Failed to register /proc/sysemu\n"); |
| return(0); |
| } |
| |
| ent->read_proc = proc_read_sysemu; |
| ent->write_proc = proc_write_sysemu; |
| |
| return 0; |
| } |
| |
| late_initcall(make_proc_sysemu); |
| |
| int singlestepping(void * t) |
| { |
| struct task_struct *task = t ? t : current; |
| |
| if ( ! (task->ptrace & PT_DTRACE) ) |
| return(0); |
| |
| if (task->thread.singlestep_syscall) |
| return(1); |
| |
| return 2; |
| } |
| |
| /* |
| * Only x86 and x86_64 have an arch_align_stack(). |
| * All other arches have "#define arch_align_stack(x) (x)" |
| * in their asm/system.h |
| * As this is included in UML from asm-um/system-generic.h, |
| * we can use it to behave as the subarch does. |
| */ |
| #ifndef arch_align_stack |
| unsigned long arch_align_stack(unsigned long sp) |
| { |
| if (randomize_va_space) |
| sp -= get_random_int() % 8192; |
| return sp & ~0xf; |
| } |
| #endif |
| |
| |
| /* |
| * Overrides for Emacs so that we follow Linus's tabbing style. |
| * Emacs will notice this stuff at the end of the file and automatically |
| * adjust the settings for this buffer only. This must remain at the end |
| * of the file. |
| * --------------------------------------------------------------------------- |
| * Local variables: |
| * c-file-style: "linux" |
| * End: |
| */ |