| /* |
| * Debug Store support |
| * |
| * This provides a low-level interface to the hardware's Debug Store |
| * feature that is used for branch trace store (BTS) and |
| * precise-event based sampling (PEBS). |
| * |
| * It manages: |
| * - DS and BTS hardware configuration |
| * - buffer overflow handling (to be done) |
| * - buffer access |
| * |
| * It does not do: |
| * - security checking (is the caller allowed to trace the task) |
| * - buffer allocation (memory accounting) |
| * |
| * |
| * Copyright (C) 2007-2008 Intel Corporation. |
| * Markus Metzger <markus.t.metzger@intel.com>, 2007-2008 |
| */ |
| |
| |
| #include <asm/ds.h> |
| |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/kernel.h> |
| |
| |
| /* |
| * The configuration for a particular DS hardware implementation. |
| */ |
| struct ds_configuration { |
| /* the name of the configuration */ |
| const char *name; |
| /* the size of one pointer-typed field in the DS structure and |
| in the BTS and PEBS buffers in bytes; |
| this covers the first 8 DS fields related to buffer management. */ |
| unsigned char sizeof_field; |
| /* the size of a BTS/PEBS record in bytes */ |
| unsigned char sizeof_rec[2]; |
| /* a series of bit-masks to control various features indexed |
| * by enum ds_feature */ |
| unsigned long ctl[dsf_ctl_max]; |
| }; |
| static DEFINE_PER_CPU(struct ds_configuration, ds_cfg_array); |
| |
| #define ds_cfg per_cpu(ds_cfg_array, smp_processor_id()) |
| |
| #define MAX_SIZEOF_DS (12 * 8) /* maximal size of a DS configuration */ |
| #define MAX_SIZEOF_BTS (3 * 8) /* maximal size of a BTS record */ |
| #define DS_ALIGNMENT (1 << 3) /* BTS and PEBS buffer alignment */ |
| |
| #define BTS_CONTROL \ |
| (ds_cfg.ctl[dsf_bts] | ds_cfg.ctl[dsf_bts_kernel] | ds_cfg.ctl[dsf_bts_user] |\ |
| ds_cfg.ctl[dsf_bts_overflow]) |
| |
| |
| /* |
| * A BTS or PEBS tracer. |
| * |
| * This holds the configuration of the tracer and serves as a handle |
| * to identify tracers. |
| */ |
| struct ds_tracer { |
| /* the DS context (partially) owned by this tracer */ |
| struct ds_context *context; |
| /* the buffer provided on ds_request() and its size in bytes */ |
| void *buffer; |
| size_t size; |
| }; |
| |
| struct bts_tracer { |
| /* the common DS part */ |
| struct ds_tracer ds; |
| /* the trace including the DS configuration */ |
| struct bts_trace trace; |
| /* buffer overflow notification function */ |
| bts_ovfl_callback_t ovfl; |
| }; |
| |
| struct pebs_tracer { |
| /* the common DS part */ |
| struct ds_tracer ds; |
| /* the trace including the DS configuration */ |
| struct pebs_trace trace; |
| /* buffer overflow notification function */ |
| pebs_ovfl_callback_t ovfl; |
| }; |
| |
| /* |
| * Debug Store (DS) save area configuration (see Intel64 and IA32 |
| * Architectures Software Developer's Manual, section 18.5) |
| * |
| * The DS configuration consists of the following fields; different |
| * architetures vary in the size of those fields. |
| * - double-word aligned base linear address of the BTS buffer |
| * - write pointer into the BTS buffer |
| * - end linear address of the BTS buffer (one byte beyond the end of |
| * the buffer) |
| * - interrupt pointer into BTS buffer |
| * (interrupt occurs when write pointer passes interrupt pointer) |
| * - double-word aligned base linear address of the PEBS buffer |
| * - write pointer into the PEBS buffer |
| * - end linear address of the PEBS buffer (one byte beyond the end of |
| * the buffer) |
| * - interrupt pointer into PEBS buffer |
| * (interrupt occurs when write pointer passes interrupt pointer) |
| * - value to which counter is reset following counter overflow |
| * |
| * Later architectures use 64bit pointers throughout, whereas earlier |
| * architectures use 32bit pointers in 32bit mode. |
| * |
| * |
| * We compute the base address for the first 8 fields based on: |
| * - the field size stored in the DS configuration |
| * - the relative field position |
| * - an offset giving the start of the respective region |
| * |
| * This offset is further used to index various arrays holding |
| * information for BTS and PEBS at the respective index. |
| * |
| * On later 32bit processors, we only access the lower 32bit of the |
| * 64bit pointer fields. The upper halves will be zeroed out. |
| */ |
| |
| enum ds_field { |
| ds_buffer_base = 0, |
| ds_index, |
| ds_absolute_maximum, |
| ds_interrupt_threshold, |
| }; |
| |
| enum ds_qualifier { |
| ds_bts = 0, |
| ds_pebs |
| }; |
| |
| static inline unsigned long ds_get(const unsigned char *base, |
| enum ds_qualifier qual, enum ds_field field) |
| { |
| base += (ds_cfg.sizeof_field * (field + (4 * qual))); |
| return *(unsigned long *)base; |
| } |
| |
| static inline void ds_set(unsigned char *base, enum ds_qualifier qual, |
| enum ds_field field, unsigned long value) |
| { |
| base += (ds_cfg.sizeof_field * (field + (4 * qual))); |
| (*(unsigned long *)base) = value; |
| } |
| |
| |
| /* |
| * Locking is done only for allocating BTS or PEBS resources. |
| */ |
| static DEFINE_SPINLOCK(ds_lock); |
| |
| |
| /* |
| * We either support (system-wide) per-cpu or per-thread allocation. |
| * We distinguish the two based on the task_struct pointer, where a |
| * NULL pointer indicates per-cpu allocation for the current cpu. |
| * |
| * Allocations are use-counted. As soon as resources are allocated, |
| * further allocations must be of the same type (per-cpu or |
| * per-thread). We model this by counting allocations (i.e. the number |
| * of tracers of a certain type) for one type negatively: |
| * =0 no tracers |
| * >0 number of per-thread tracers |
| * <0 number of per-cpu tracers |
| * |
| * Tracers essentially gives the number of ds contexts for a certain |
| * type of allocation. |
| */ |
| static atomic_t tracers = ATOMIC_INIT(0); |
| |
| static inline void get_tracer(struct task_struct *task) |
| { |
| if (task) |
| atomic_inc(&tracers); |
| else |
| atomic_dec(&tracers); |
| } |
| |
| static inline void put_tracer(struct task_struct *task) |
| { |
| if (task) |
| atomic_dec(&tracers); |
| else |
| atomic_inc(&tracers); |
| } |
| |
| static inline int check_tracer(struct task_struct *task) |
| { |
| return task ? |
| (atomic_read(&tracers) >= 0) : |
| (atomic_read(&tracers) <= 0); |
| } |
| |
| |
| /* |
| * The DS context is either attached to a thread or to a cpu: |
| * - in the former case, the thread_struct contains a pointer to the |
| * attached context. |
| * - in the latter case, we use a static array of per-cpu context |
| * pointers. |
| * |
| * Contexts are use-counted. They are allocated on first access and |
| * deallocated when the last user puts the context. |
| */ |
| struct ds_context { |
| /* pointer to the DS configuration; goes into MSR_IA32_DS_AREA */ |
| unsigned char ds[MAX_SIZEOF_DS]; |
| /* the owner of the BTS and PEBS configuration, respectively */ |
| struct bts_tracer *bts_master; |
| struct pebs_tracer *pebs_master; |
| /* use count */ |
| unsigned long count; |
| /* a pointer to the context location inside the thread_struct |
| * or the per_cpu context array */ |
| struct ds_context **this; |
| /* a pointer to the task owning this context, or NULL, if the |
| * context is owned by a cpu */ |
| struct task_struct *task; |
| }; |
| |
| static DEFINE_PER_CPU(struct ds_context *, system_context_array); |
| |
| #define system_context per_cpu(system_context_array, smp_processor_id()) |
| |
| static struct ds_context *ds_get_context(struct task_struct *task) |
| { |
| struct ds_context **p_context = |
| (task ? &task->thread.ds_ctx : &system_context); |
| struct ds_context *context = *p_context; |
| unsigned long irq; |
| |
| if (!context) { |
| context = kzalloc(sizeof(*context), GFP_KERNEL); |
| if (!context) |
| return NULL; |
| |
| spin_lock_irqsave(&ds_lock, irq); |
| |
| if (*p_context) { |
| kfree(context); |
| |
| context = *p_context; |
| } else { |
| *p_context = context; |
| |
| context->this = p_context; |
| context->task = task; |
| |
| if (task) |
| set_tsk_thread_flag(task, TIF_DS_AREA_MSR); |
| |
| if (!task || (task == current)) |
| wrmsrl(MSR_IA32_DS_AREA, |
| (unsigned long)context->ds); |
| } |
| |
| context->count++; |
| |
| spin_unlock_irqrestore(&ds_lock, irq); |
| } else { |
| spin_lock_irqsave(&ds_lock, irq); |
| |
| context = *p_context; |
| if (context) |
| context->count++; |
| |
| spin_unlock_irqrestore(&ds_lock, irq); |
| |
| if (!context) |
| context = ds_get_context(task); |
| } |
| |
| return context; |
| } |
| |
| static inline void ds_put_context(struct ds_context *context) |
| { |
| unsigned long irq; |
| |
| if (!context) |
| return; |
| |
| spin_lock_irqsave(&ds_lock, irq); |
| |
| if (--context->count) { |
| spin_unlock_irqrestore(&ds_lock, irq); |
| return; |
| } |
| |
| *(context->this) = NULL; |
| |
| if (context->task) |
| clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR); |
| |
| if (!context->task || (context->task == current)) |
| wrmsrl(MSR_IA32_DS_AREA, 0); |
| |
| spin_unlock_irqrestore(&ds_lock, irq); |
| |
| kfree(context); |
| } |
| |
| |
| /* |
| * Call the tracer's callback on a buffer overflow. |
| * |
| * context: the ds context |
| * qual: the buffer type |
| */ |
| static void ds_overflow(struct ds_context *context, enum ds_qualifier qual) |
| { |
| switch (qual) { |
| case ds_bts: |
| if (context->bts_master && |
| context->bts_master->ovfl) |
| context->bts_master->ovfl(context->bts_master); |
| break; |
| case ds_pebs: |
| if (context->pebs_master && |
| context->pebs_master->ovfl) |
| context->pebs_master->ovfl(context->pebs_master); |
| break; |
| } |
| } |
| |
| |
| /* |
| * Write raw data into the BTS or PEBS buffer. |
| * |
| * The remainder of any partially written record is zeroed out. |
| * |
| * context: the DS context |
| * qual: the buffer type |
| * record: the data to write |
| * size: the size of the data |
| */ |
| static int ds_write(struct ds_context *context, enum ds_qualifier qual, |
| const void *record, size_t size) |
| { |
| int bytes_written = 0; |
| |
| if (!record) |
| return -EINVAL; |
| |
| while (size) { |
| unsigned long base, index, end, write_end, int_th; |
| unsigned long write_size, adj_write_size; |
| |
| /* |
| * write as much as possible without producing an |
| * overflow interrupt. |
| * |
| * interrupt_threshold must either be |
| * - bigger than absolute_maximum or |
| * - point to a record between buffer_base and absolute_maximum |
| * |
| * index points to a valid record. |
| */ |
| base = ds_get(context->ds, qual, ds_buffer_base); |
| index = ds_get(context->ds, qual, ds_index); |
| end = ds_get(context->ds, qual, ds_absolute_maximum); |
| int_th = ds_get(context->ds, qual, ds_interrupt_threshold); |
| |
| write_end = min(end, int_th); |
| |
| /* if we are already beyond the interrupt threshold, |
| * we fill the entire buffer */ |
| if (write_end <= index) |
| write_end = end; |
| |
| if (write_end <= index) |
| break; |
| |
| write_size = min((unsigned long) size, write_end - index); |
| memcpy((void *)index, record, write_size); |
| |
| record = (const char *)record + write_size; |
| size -= write_size; |
| bytes_written += write_size; |
| |
| adj_write_size = write_size / ds_cfg.sizeof_rec[qual]; |
| adj_write_size *= ds_cfg.sizeof_rec[qual]; |
| |
| /* zero out trailing bytes */ |
| memset((char *)index + write_size, 0, |
| adj_write_size - write_size); |
| index += adj_write_size; |
| |
| if (index >= end) |
| index = base; |
| ds_set(context->ds, qual, ds_index, index); |
| |
| if (index >= int_th) |
| ds_overflow(context, qual); |
| } |
| |
| return bytes_written; |
| } |
| |
| |
| /* |
| * Branch Trace Store (BTS) uses the following format. Different |
| * architectures vary in the size of those fields. |
| * - source linear address |
| * - destination linear address |
| * - flags |
| * |
| * Later architectures use 64bit pointers throughout, whereas earlier |
| * architectures use 32bit pointers in 32bit mode. |
| * |
| * We compute the base address for the first 8 fields based on: |
| * - the field size stored in the DS configuration |
| * - the relative field position |
| * |
| * In order to store additional information in the BTS buffer, we use |
| * a special source address to indicate that the record requires |
| * special interpretation. |
| * |
| * Netburst indicated via a bit in the flags field whether the branch |
| * was predicted; this is ignored. |
| * |
| * We use two levels of abstraction: |
| * - the raw data level defined here |
| * - an arch-independent level defined in ds.h |
| */ |
| |
| enum bts_field { |
| bts_from, |
| bts_to, |
| bts_flags, |
| |
| bts_qual = bts_from, |
| bts_jiffies = bts_to, |
| bts_pid = bts_flags, |
| |
| bts_qual_mask = (bts_qual_max - 1), |
| bts_escape = ((unsigned long)-1 & ~bts_qual_mask) |
| }; |
| |
| static inline unsigned long bts_get(const char *base, enum bts_field field) |
| { |
| base += (ds_cfg.sizeof_field * field); |
| return *(unsigned long *)base; |
| } |
| |
| static inline void bts_set(char *base, enum bts_field field, unsigned long val) |
| { |
| base += (ds_cfg.sizeof_field * field);; |
| (*(unsigned long *)base) = val; |
| } |
| |
| |
| /* |
| * The raw BTS data is architecture dependent. |
| * |
| * For higher-level users, we give an arch-independent view. |
| * - ds.h defines struct bts_struct |
| * - bts_read translates one raw bts record into a bts_struct |
| * - bts_write translates one bts_struct into the raw format and |
| * writes it into the top of the parameter tracer's buffer. |
| * |
| * return: bytes read/written on success; -Eerrno, otherwise |
| */ |
| static int bts_read(struct bts_tracer *tracer, const void *at, |
| struct bts_struct *out) |
| { |
| if (!tracer) |
| return -EINVAL; |
| |
| if (at < tracer->trace.ds.begin) |
| return -EINVAL; |
| |
| if (tracer->trace.ds.end < (at + tracer->trace.ds.size)) |
| return -EINVAL; |
| |
| memset(out, 0, sizeof(*out)); |
| if ((bts_get(at, bts_qual) & ~bts_qual_mask) == bts_escape) { |
| out->qualifier = (bts_get(at, bts_qual) & bts_qual_mask); |
| out->variant.timestamp.jiffies = bts_get(at, bts_jiffies); |
| out->variant.timestamp.pid = bts_get(at, bts_pid); |
| } else { |
| out->qualifier = bts_branch; |
| out->variant.lbr.from = bts_get(at, bts_from); |
| out->variant.lbr.to = bts_get(at, bts_to); |
| } |
| |
| return ds_cfg.sizeof_rec[ds_bts]; |
| } |
| |
| static int bts_write(struct bts_tracer *tracer, const struct bts_struct *in) |
| { |
| unsigned char raw[MAX_SIZEOF_BTS]; |
| |
| if (!tracer) |
| return -EINVAL; |
| |
| if (MAX_SIZEOF_BTS < ds_cfg.sizeof_rec[ds_bts]) |
| return -EOVERFLOW; |
| |
| switch (in->qualifier) { |
| case bts_invalid: |
| bts_set(raw, bts_from, 0); |
| bts_set(raw, bts_to, 0); |
| bts_set(raw, bts_flags, 0); |
| break; |
| case bts_branch: |
| bts_set(raw, bts_from, in->variant.lbr.from); |
| bts_set(raw, bts_to, in->variant.lbr.to); |
| bts_set(raw, bts_flags, 0); |
| break; |
| case bts_task_arrives: |
| case bts_task_departs: |
| bts_set(raw, bts_qual, (bts_escape | in->qualifier)); |
| bts_set(raw, bts_jiffies, in->variant.timestamp.jiffies); |
| bts_set(raw, bts_pid, in->variant.timestamp.pid); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return ds_write(tracer->ds.context, ds_bts, raw, |
| ds_cfg.sizeof_rec[ds_bts]); |
| } |
| |
| |
| static void ds_write_config(struct ds_context *context, |
| struct ds_trace *cfg, enum ds_qualifier qual) |
| { |
| unsigned char *ds = context->ds; |
| |
| ds_set(ds, qual, ds_buffer_base, (unsigned long)cfg->begin); |
| ds_set(ds, qual, ds_index, (unsigned long)cfg->top); |
| ds_set(ds, qual, ds_absolute_maximum, (unsigned long)cfg->end); |
| ds_set(ds, qual, ds_interrupt_threshold, (unsigned long)cfg->ith); |
| } |
| |
| static void ds_read_config(struct ds_context *context, |
| struct ds_trace *cfg, enum ds_qualifier qual) |
| { |
| unsigned char *ds = context->ds; |
| |
| cfg->begin = (void *)ds_get(ds, qual, ds_buffer_base); |
| cfg->top = (void *)ds_get(ds, qual, ds_index); |
| cfg->end = (void *)ds_get(ds, qual, ds_absolute_maximum); |
| cfg->ith = (void *)ds_get(ds, qual, ds_interrupt_threshold); |
| } |
| |
| static void ds_init_ds_trace(struct ds_trace *trace, enum ds_qualifier qual, |
| void *base, size_t size, size_t ith, |
| unsigned int flags) { |
| unsigned long buffer, adj; |
| |
| /* adjust the buffer address and size to meet alignment |
| * constraints: |
| * - buffer is double-word aligned |
| * - size is multiple of record size |
| * |
| * We checked the size at the very beginning; we have enough |
| * space to do the adjustment. |
| */ |
| buffer = (unsigned long)base; |
| |
| adj = ALIGN(buffer, DS_ALIGNMENT) - buffer; |
| buffer += adj; |
| size -= adj; |
| |
| trace->n = size / ds_cfg.sizeof_rec[qual]; |
| trace->size = ds_cfg.sizeof_rec[qual]; |
| |
| size = (trace->n * trace->size); |
| |
| trace->begin = (void *)buffer; |
| trace->top = trace->begin; |
| trace->end = (void *)(buffer + size); |
| /* The value for 'no threshold' is -1, which will set the |
| * threshold outside of the buffer, just like we want it. |
| */ |
| trace->ith = (void *)(buffer + size - ith); |
| |
| trace->flags = flags; |
| } |
| |
| |
| static int ds_request(struct ds_tracer *tracer, struct ds_trace *trace, |
| enum ds_qualifier qual, struct task_struct *task, |
| void *base, size_t size, size_t th, unsigned int flags) |
| { |
| struct ds_context *context; |
| int error; |
| |
| error = -EINVAL; |
| if (!base) |
| goto out; |
| |
| /* we require some space to do alignment adjustments below */ |
| error = -EINVAL; |
| if (size < (DS_ALIGNMENT + ds_cfg.sizeof_rec[qual])) |
| goto out; |
| |
| if (th != (size_t)-1) { |
| th *= ds_cfg.sizeof_rec[qual]; |
| |
| error = -EINVAL; |
| if (size <= th) |
| goto out; |
| } |
| |
| tracer->buffer = base; |
| tracer->size = size; |
| |
| error = -ENOMEM; |
| context = ds_get_context(task); |
| if (!context) |
| goto out; |
| tracer->context = context; |
| |
| ds_init_ds_trace(trace, qual, base, size, th, flags); |
| |
| error = 0; |
| out: |
| return error; |
| } |
| |
| struct bts_tracer *ds_request_bts(struct task_struct *task, |
| void *base, size_t size, |
| bts_ovfl_callback_t ovfl, size_t th, |
| unsigned int flags) |
| { |
| struct bts_tracer *tracer; |
| unsigned long irq; |
| int error; |
| |
| error = -EOPNOTSUPP; |
| if (!ds_cfg.ctl[dsf_bts]) |
| goto out; |
| |
| /* buffer overflow notification is not yet implemented */ |
| error = -EOPNOTSUPP; |
| if (ovfl) |
| goto out; |
| |
| error = -ENOMEM; |
| tracer = kzalloc(sizeof(*tracer), GFP_KERNEL); |
| if (!tracer) |
| goto out; |
| tracer->ovfl = ovfl; |
| |
| error = ds_request(&tracer->ds, &tracer->trace.ds, |
| ds_bts, task, base, size, th, flags); |
| if (error < 0) |
| goto out_tracer; |
| |
| |
| spin_lock_irqsave(&ds_lock, irq); |
| |
| error = -EPERM; |
| if (!check_tracer(task)) |
| goto out_unlock; |
| get_tracer(task); |
| |
| error = -EPERM; |
| if (tracer->ds.context->bts_master) |
| goto out_put_tracer; |
| tracer->ds.context->bts_master = tracer; |
| |
| spin_unlock_irqrestore(&ds_lock, irq); |
| |
| |
| tracer->trace.read = bts_read; |
| tracer->trace.write = bts_write; |
| |
| ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts); |
| ds_resume_bts(tracer); |
| |
| return tracer; |
| |
| out_put_tracer: |
| put_tracer(task); |
| out_unlock: |
| spin_unlock_irqrestore(&ds_lock, irq); |
| ds_put_context(tracer->ds.context); |
| out_tracer: |
| kfree(tracer); |
| out: |
| return ERR_PTR(error); |
| } |
| |
| struct pebs_tracer *ds_request_pebs(struct task_struct *task, |
| void *base, size_t size, |
| pebs_ovfl_callback_t ovfl, size_t th, |
| unsigned int flags) |
| { |
| struct pebs_tracer *tracer; |
| unsigned long irq; |
| int error; |
| |
| /* buffer overflow notification is not yet implemented */ |
| error = -EOPNOTSUPP; |
| if (ovfl) |
| goto out; |
| |
| error = -ENOMEM; |
| tracer = kzalloc(sizeof(*tracer), GFP_KERNEL); |
| if (!tracer) |
| goto out; |
| tracer->ovfl = ovfl; |
| |
| error = ds_request(&tracer->ds, &tracer->trace.ds, |
| ds_pebs, task, base, size, th, flags); |
| if (error < 0) |
| goto out_tracer; |
| |
| spin_lock_irqsave(&ds_lock, irq); |
| |
| error = -EPERM; |
| if (!check_tracer(task)) |
| goto out_unlock; |
| get_tracer(task); |
| |
| error = -EPERM; |
| if (tracer->ds.context->pebs_master) |
| goto out_put_tracer; |
| tracer->ds.context->pebs_master = tracer; |
| |
| spin_unlock_irqrestore(&ds_lock, irq); |
| |
| ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts); |
| ds_resume_pebs(tracer); |
| |
| return tracer; |
| |
| out_put_tracer: |
| put_tracer(task); |
| out_unlock: |
| spin_unlock_irqrestore(&ds_lock, irq); |
| ds_put_context(tracer->ds.context); |
| out_tracer: |
| kfree(tracer); |
| out: |
| return ERR_PTR(error); |
| } |
| |
| void ds_release_bts(struct bts_tracer *tracer) |
| { |
| if (!tracer) |
| return; |
| |
| ds_suspend_bts(tracer); |
| |
| WARN_ON_ONCE(tracer->ds.context->bts_master != tracer); |
| tracer->ds.context->bts_master = NULL; |
| |
| put_tracer(tracer->ds.context->task); |
| ds_put_context(tracer->ds.context); |
| |
| kfree(tracer); |
| } |
| |
| void ds_suspend_bts(struct bts_tracer *tracer) |
| { |
| struct task_struct *task; |
| |
| if (!tracer) |
| return; |
| |
| task = tracer->ds.context->task; |
| |
| if (!task || (task == current)) |
| update_debugctlmsr(get_debugctlmsr() & ~BTS_CONTROL); |
| |
| if (task) { |
| task->thread.debugctlmsr &= ~BTS_CONTROL; |
| |
| if (!task->thread.debugctlmsr) |
| clear_tsk_thread_flag(task, TIF_DEBUGCTLMSR); |
| } |
| } |
| |
| void ds_resume_bts(struct bts_tracer *tracer) |
| { |
| struct task_struct *task; |
| unsigned long control; |
| |
| if (!tracer) |
| return; |
| |
| task = tracer->ds.context->task; |
| |
| control = ds_cfg.ctl[dsf_bts]; |
| if (!(tracer->trace.ds.flags & BTS_KERNEL)) |
| control |= ds_cfg.ctl[dsf_bts_kernel]; |
| if (!(tracer->trace.ds.flags & BTS_USER)) |
| control |= ds_cfg.ctl[dsf_bts_user]; |
| |
| if (task) { |
| task->thread.debugctlmsr |= control; |
| set_tsk_thread_flag(task, TIF_DEBUGCTLMSR); |
| } |
| |
| if (!task || (task == current)) |
| update_debugctlmsr(get_debugctlmsr() | control); |
| } |
| |
| void ds_release_pebs(struct pebs_tracer *tracer) |
| { |
| if (!tracer) |
| return; |
| |
| ds_suspend_pebs(tracer); |
| |
| WARN_ON_ONCE(tracer->ds.context->pebs_master != tracer); |
| tracer->ds.context->pebs_master = NULL; |
| |
| put_tracer(tracer->ds.context->task); |
| ds_put_context(tracer->ds.context); |
| |
| kfree(tracer); |
| } |
| |
| void ds_suspend_pebs(struct pebs_tracer *tracer) |
| { |
| |
| } |
| |
| void ds_resume_pebs(struct pebs_tracer *tracer) |
| { |
| |
| } |
| |
| const struct bts_trace *ds_read_bts(struct bts_tracer *tracer) |
| { |
| if (!tracer) |
| return NULL; |
| |
| ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_bts); |
| return &tracer->trace; |
| } |
| |
| const struct pebs_trace *ds_read_pebs(struct pebs_tracer *tracer) |
| { |
| if (!tracer) |
| return NULL; |
| |
| ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_pebs); |
| tracer->trace.reset_value = |
| *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8)); |
| |
| return &tracer->trace; |
| } |
| |
| int ds_reset_bts(struct bts_tracer *tracer) |
| { |
| if (!tracer) |
| return -EINVAL; |
| |
| tracer->trace.ds.top = tracer->trace.ds.begin; |
| |
| ds_set(tracer->ds.context->ds, ds_bts, ds_index, |
| (unsigned long)tracer->trace.ds.top); |
| |
| return 0; |
| } |
| |
| int ds_reset_pebs(struct pebs_tracer *tracer) |
| { |
| if (!tracer) |
| return -EINVAL; |
| |
| tracer->trace.ds.top = tracer->trace.ds.begin; |
| |
| ds_set(tracer->ds.context->ds, ds_bts, ds_index, |
| (unsigned long)tracer->trace.ds.top); |
| |
| return 0; |
| } |
| |
| int ds_set_pebs_reset(struct pebs_tracer *tracer, u64 value) |
| { |
| if (!tracer) |
| return -EINVAL; |
| |
| *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8)) = value; |
| |
| return 0; |
| } |
| |
| static const struct ds_configuration ds_cfg_netburst = { |
| .name = "netburst", |
| .ctl[dsf_bts] = (1 << 2) | (1 << 3), |
| .ctl[dsf_bts_kernel] = (1 << 5), |
| .ctl[dsf_bts_user] = (1 << 6), |
| |
| .sizeof_field = sizeof(long), |
| .sizeof_rec[ds_bts] = sizeof(long) * 3, |
| #ifdef __i386__ |
| .sizeof_rec[ds_pebs] = sizeof(long) * 10, |
| #else |
| .sizeof_rec[ds_pebs] = sizeof(long) * 18, |
| #endif |
| }; |
| static const struct ds_configuration ds_cfg_pentium_m = { |
| .name = "pentium m", |
| .ctl[dsf_bts] = (1 << 6) | (1 << 7), |
| |
| .sizeof_field = sizeof(long), |
| .sizeof_rec[ds_bts] = sizeof(long) * 3, |
| #ifdef __i386__ |
| .sizeof_rec[ds_pebs] = sizeof(long) * 10, |
| #else |
| .sizeof_rec[ds_pebs] = sizeof(long) * 18, |
| #endif |
| }; |
| static const struct ds_configuration ds_cfg_core2 = { |
| .name = "core 2", |
| .ctl[dsf_bts] = (1 << 6) | (1 << 7), |
| .ctl[dsf_bts_kernel] = (1 << 9), |
| .ctl[dsf_bts_user] = (1 << 10), |
| |
| .sizeof_field = 8, |
| .sizeof_rec[ds_bts] = 8 * 3, |
| .sizeof_rec[ds_pebs] = 8 * 18, |
| }; |
| |
| static void |
| ds_configure(const struct ds_configuration *cfg) |
| { |
| memset(&ds_cfg, 0, sizeof(ds_cfg)); |
| ds_cfg = *cfg; |
| |
| printk(KERN_INFO "[ds] using %s configuration\n", ds_cfg.name); |
| |
| if (!cpu_has_bts) { |
| ds_cfg.ctl[dsf_bts] = 0; |
| printk(KERN_INFO "[ds] bts not available\n"); |
| } |
| if (!cpu_has_pebs) |
| printk(KERN_INFO "[ds] pebs not available\n"); |
| |
| WARN_ON_ONCE(MAX_SIZEOF_DS < (12 * ds_cfg.sizeof_field)); |
| } |
| |
| void __cpuinit ds_init_intel(struct cpuinfo_x86 *c) |
| { |
| switch (c->x86) { |
| case 0x6: |
| switch (c->x86_model) { |
| case 0 ... 0xC: |
| /* sorry, don't know about them */ |
| break; |
| case 0xD: |
| case 0xE: /* Pentium M */ |
| ds_configure(&ds_cfg_pentium_m); |
| break; |
| default: /* Core2, Atom, ... */ |
| ds_configure(&ds_cfg_core2); |
| break; |
| } |
| break; |
| case 0xF: |
| switch (c->x86_model) { |
| case 0x0: |
| case 0x1: |
| case 0x2: /* Netburst */ |
| ds_configure(&ds_cfg_netburst); |
| break; |
| default: |
| /* sorry, don't know about them */ |
| break; |
| } |
| break; |
| default: |
| /* sorry, don't know about them */ |
| break; |
| } |
| } |
| |
| /* |
| * Change the DS configuration from tracing prev to tracing next. |
| */ |
| void ds_switch_to(struct task_struct *prev, struct task_struct *next) |
| { |
| struct ds_context *prev_ctx = prev->thread.ds_ctx; |
| struct ds_context *next_ctx = next->thread.ds_ctx; |
| |
| if (prev_ctx) { |
| update_debugctlmsr(0); |
| |
| if (prev_ctx->bts_master && |
| (prev_ctx->bts_master->trace.ds.flags & BTS_TIMESTAMPS)) { |
| struct bts_struct ts = { |
| .qualifier = bts_task_departs, |
| .variant.timestamp.jiffies = jiffies_64, |
| .variant.timestamp.pid = prev->pid |
| }; |
| bts_write(prev_ctx->bts_master, &ts); |
| } |
| } |
| |
| if (next_ctx) { |
| if (next_ctx->bts_master && |
| (next_ctx->bts_master->trace.ds.flags & BTS_TIMESTAMPS)) { |
| struct bts_struct ts = { |
| .qualifier = bts_task_arrives, |
| .variant.timestamp.jiffies = jiffies_64, |
| .variant.timestamp.pid = next->pid |
| }; |
| bts_write(next_ctx->bts_master, &ts); |
| } |
| |
| wrmsrl(MSR_IA32_DS_AREA, (unsigned long)next_ctx->ds); |
| } |
| |
| update_debugctlmsr(next->thread.debugctlmsr); |
| } |