| #ifndef _LINUX_SCHED_H |
| #define _LINUX_SCHED_H |
| |
| #include <asm/param.h> /* for HZ */ |
| |
| #include <linux/config.h> |
| #include <linux/capability.h> |
| #include <linux/threads.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/timex.h> |
| #include <linux/jiffies.h> |
| #include <linux/rbtree.h> |
| #include <linux/thread_info.h> |
| #include <linux/cpumask.h> |
| #include <linux/errno.h> |
| #include <linux/nodemask.h> |
| |
| #include <asm/system.h> |
| #include <asm/semaphore.h> |
| #include <asm/page.h> |
| #include <asm/ptrace.h> |
| #include <asm/mmu.h> |
| #include <asm/cputime.h> |
| |
| #include <linux/smp.h> |
| #include <linux/sem.h> |
| #include <linux/signal.h> |
| #include <linux/securebits.h> |
| #include <linux/fs_struct.h> |
| #include <linux/compiler.h> |
| #include <linux/completion.h> |
| #include <linux/pid.h> |
| #include <linux/percpu.h> |
| #include <linux/topology.h> |
| #include <linux/seccomp.h> |
| #include <linux/rcupdate.h> |
| |
| #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ |
| |
| struct exec_domain; |
| |
| /* |
| * cloning flags: |
| */ |
| #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ |
| #define CLONE_VM 0x00000100 /* set if VM shared between processes */ |
| #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ |
| #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ |
| #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ |
| #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ |
| #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ |
| #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ |
| #define CLONE_THREAD 0x00010000 /* Same thread group? */ |
| #define CLONE_NEWNS 0x00020000 /* New namespace group? */ |
| #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ |
| #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ |
| #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ |
| #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ |
| #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ |
| #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ |
| #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ |
| #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ |
| |
| /* |
| * List of flags we want to share for kernel threads, |
| * if only because they are not used by them anyway. |
| */ |
| #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) |
| |
| /* |
| * These are the constant used to fake the fixed-point load-average |
| * counting. Some notes: |
| * - 11 bit fractions expand to 22 bits by the multiplies: this gives |
| * a load-average precision of 10 bits integer + 11 bits fractional |
| * - if you want to count load-averages more often, you need more |
| * precision, or rounding will get you. With 2-second counting freq, |
| * the EXP_n values would be 1981, 2034 and 2043 if still using only |
| * 11 bit fractions. |
| */ |
| extern unsigned long avenrun[]; /* Load averages */ |
| |
| #define FSHIFT 11 /* nr of bits of precision */ |
| #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ |
| #define LOAD_FREQ (5*HZ) /* 5 sec intervals */ |
| #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ |
| #define EXP_5 2014 /* 1/exp(5sec/5min) */ |
| #define EXP_15 2037 /* 1/exp(5sec/15min) */ |
| |
| #define CALC_LOAD(load,exp,n) \ |
| load *= exp; \ |
| load += n*(FIXED_1-exp); \ |
| load >>= FSHIFT; |
| |
| extern unsigned long total_forks; |
| extern int nr_threads; |
| extern int last_pid; |
| DECLARE_PER_CPU(unsigned long, process_counts); |
| extern int nr_processes(void); |
| extern unsigned long nr_running(void); |
| extern unsigned long nr_uninterruptible(void); |
| extern unsigned long nr_iowait(void); |
| |
| #include <linux/time.h> |
| #include <linux/param.h> |
| #include <linux/resource.h> |
| #include <linux/timer.h> |
| #include <linux/hrtimer.h> |
| |
| #include <asm/processor.h> |
| |
| /* |
| * Task state bitmask. NOTE! These bits are also |
| * encoded in fs/proc/array.c: get_task_state(). |
| * |
| * We have two separate sets of flags: task->state |
| * is about runnability, while task->exit_state are |
| * about the task exiting. Confusing, but this way |
| * modifying one set can't modify the other one by |
| * mistake. |
| */ |
| #define TASK_RUNNING 0 |
| #define TASK_INTERRUPTIBLE 1 |
| #define TASK_UNINTERRUPTIBLE 2 |
| #define TASK_STOPPED 4 |
| #define TASK_TRACED 8 |
| /* in tsk->exit_state */ |
| #define EXIT_ZOMBIE 16 |
| #define EXIT_DEAD 32 |
| /* in tsk->state again */ |
| #define TASK_NONINTERACTIVE 64 |
| |
| #define __set_task_state(tsk, state_value) \ |
| do { (tsk)->state = (state_value); } while (0) |
| #define set_task_state(tsk, state_value) \ |
| set_mb((tsk)->state, (state_value)) |
| |
| /* |
| * set_current_state() includes a barrier so that the write of current->state |
| * is correctly serialised wrt the caller's subsequent test of whether to |
| * actually sleep: |
| * |
| * set_current_state(TASK_UNINTERRUPTIBLE); |
| * if (do_i_need_to_sleep()) |
| * schedule(); |
| * |
| * If the caller does not need such serialisation then use __set_current_state() |
| */ |
| #define __set_current_state(state_value) \ |
| do { current->state = (state_value); } while (0) |
| #define set_current_state(state_value) \ |
| set_mb(current->state, (state_value)) |
| |
| /* Task command name length */ |
| #define TASK_COMM_LEN 16 |
| |
| /* |
| * Scheduling policies |
| */ |
| #define SCHED_NORMAL 0 |
| #define SCHED_FIFO 1 |
| #define SCHED_RR 2 |
| #define SCHED_BATCH 3 |
| |
| struct sched_param { |
| int sched_priority; |
| }; |
| |
| #ifdef __KERNEL__ |
| |
| #include <linux/spinlock.h> |
| |
| /* |
| * This serializes "schedule()" and also protects |
| * the run-queue from deletions/modifications (but |
| * _adding_ to the beginning of the run-queue has |
| * a separate lock). |
| */ |
| extern rwlock_t tasklist_lock; |
| extern spinlock_t mmlist_lock; |
| |
| typedef struct task_struct task_t; |
| |
| extern void sched_init(void); |
| extern void sched_init_smp(void); |
| extern void init_idle(task_t *idle, int cpu); |
| |
| extern cpumask_t nohz_cpu_mask; |
| |
| extern void show_state(void); |
| extern void show_regs(struct pt_regs *); |
| |
| /* |
| * TASK is a pointer to the task whose backtrace we want to see (or NULL for current |
| * task), SP is the stack pointer of the first frame that should be shown in the back |
| * trace (or NULL if the entire call-chain of the task should be shown). |
| */ |
| extern void show_stack(struct task_struct *task, unsigned long *sp); |
| |
| void io_schedule(void); |
| long io_schedule_timeout(long timeout); |
| |
| extern void cpu_init (void); |
| extern void trap_init(void); |
| extern void update_process_times(int user); |
| extern void scheduler_tick(void); |
| |
| #ifdef CONFIG_DETECT_SOFTLOCKUP |
| extern void softlockup_tick(struct pt_regs *regs); |
| extern void spawn_softlockup_task(void); |
| extern void touch_softlockup_watchdog(void); |
| #else |
| static inline void softlockup_tick(struct pt_regs *regs) |
| { |
| } |
| static inline void spawn_softlockup_task(void) |
| { |
| } |
| static inline void touch_softlockup_watchdog(void) |
| { |
| } |
| #endif |
| |
| |
| /* Attach to any functions which should be ignored in wchan output. */ |
| #define __sched __attribute__((__section__(".sched.text"))) |
| /* Is this address in the __sched functions? */ |
| extern int in_sched_functions(unsigned long addr); |
| |
| #define MAX_SCHEDULE_TIMEOUT LONG_MAX |
| extern signed long FASTCALL(schedule_timeout(signed long timeout)); |
| extern signed long schedule_timeout_interruptible(signed long timeout); |
| extern signed long schedule_timeout_uninterruptible(signed long timeout); |
| asmlinkage void schedule(void); |
| |
| struct namespace; |
| |
| /* Maximum number of active map areas.. This is a random (large) number */ |
| #define DEFAULT_MAX_MAP_COUNT 65536 |
| |
| extern int sysctl_max_map_count; |
| |
| #include <linux/aio.h> |
| |
| extern unsigned long |
| arch_get_unmapped_area(struct file *, unsigned long, unsigned long, |
| unsigned long, unsigned long); |
| extern unsigned long |
| arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, |
| unsigned long len, unsigned long pgoff, |
| unsigned long flags); |
| extern void arch_unmap_area(struct mm_struct *, unsigned long); |
| extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); |
| |
| #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS |
| /* |
| * The mm counters are not protected by its page_table_lock, |
| * so must be incremented atomically. |
| */ |
| #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) |
| #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) |
| #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) |
| #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) |
| #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) |
| typedef atomic_long_t mm_counter_t; |
| |
| #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ |
| /* |
| * The mm counters are protected by its page_table_lock, |
| * so can be incremented directly. |
| */ |
| #define set_mm_counter(mm, member, value) (mm)->_##member = (value) |
| #define get_mm_counter(mm, member) ((mm)->_##member) |
| #define add_mm_counter(mm, member, value) (mm)->_##member += (value) |
| #define inc_mm_counter(mm, member) (mm)->_##member++ |
| #define dec_mm_counter(mm, member) (mm)->_##member-- |
| typedef unsigned long mm_counter_t; |
| |
| #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ |
| |
| #define get_mm_rss(mm) \ |
| (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) |
| #define update_hiwater_rss(mm) do { \ |
| unsigned long _rss = get_mm_rss(mm); \ |
| if ((mm)->hiwater_rss < _rss) \ |
| (mm)->hiwater_rss = _rss; \ |
| } while (0) |
| #define update_hiwater_vm(mm) do { \ |
| if ((mm)->hiwater_vm < (mm)->total_vm) \ |
| (mm)->hiwater_vm = (mm)->total_vm; \ |
| } while (0) |
| |
| struct mm_struct { |
| struct vm_area_struct * mmap; /* list of VMAs */ |
| struct rb_root mm_rb; |
| struct vm_area_struct * mmap_cache; /* last find_vma result */ |
| unsigned long (*get_unmapped_area) (struct file *filp, |
| unsigned long addr, unsigned long len, |
| unsigned long pgoff, unsigned long flags); |
| void (*unmap_area) (struct mm_struct *mm, unsigned long addr); |
| unsigned long mmap_base; /* base of mmap area */ |
| unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ |
| unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ |
| pgd_t * pgd; |
| atomic_t mm_users; /* How many users with user space? */ |
| atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ |
| int map_count; /* number of VMAs */ |
| struct rw_semaphore mmap_sem; |
| spinlock_t page_table_lock; /* Protects page tables and some counters */ |
| |
| struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung |
| * together off init_mm.mmlist, and are protected |
| * by mmlist_lock |
| */ |
| |
| /* Special counters, in some configurations protected by the |
| * page_table_lock, in other configurations by being atomic. |
| */ |
| mm_counter_t _file_rss; |
| mm_counter_t _anon_rss; |
| |
| unsigned long hiwater_rss; /* High-watermark of RSS usage */ |
| unsigned long hiwater_vm; /* High-water virtual memory usage */ |
| |
| unsigned long total_vm, locked_vm, shared_vm, exec_vm; |
| unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; |
| unsigned long start_code, end_code, start_data, end_data; |
| unsigned long start_brk, brk, start_stack; |
| unsigned long arg_start, arg_end, env_start, env_end; |
| |
| unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ |
| |
| unsigned dumpable:2; |
| cpumask_t cpu_vm_mask; |
| |
| /* Architecture-specific MM context */ |
| mm_context_t context; |
| |
| /* Token based thrashing protection. */ |
| unsigned long swap_token_time; |
| char recent_pagein; |
| |
| /* coredumping support */ |
| int core_waiters; |
| struct completion *core_startup_done, core_done; |
| |
| /* aio bits */ |
| rwlock_t ioctx_list_lock; |
| struct kioctx *ioctx_list; |
| }; |
| |
| struct sighand_struct { |
| atomic_t count; |
| struct k_sigaction action[_NSIG]; |
| spinlock_t siglock; |
| struct rcu_head rcu; |
| }; |
| |
| extern void sighand_free_cb(struct rcu_head *rhp); |
| |
| static inline void sighand_free(struct sighand_struct *sp) |
| { |
| call_rcu(&sp->rcu, sighand_free_cb); |
| } |
| |
| /* |
| * NOTE! "signal_struct" does not have it's own |
| * locking, because a shared signal_struct always |
| * implies a shared sighand_struct, so locking |
| * sighand_struct is always a proper superset of |
| * the locking of signal_struct. |
| */ |
| struct signal_struct { |
| atomic_t count; |
| atomic_t live; |
| |
| wait_queue_head_t wait_chldexit; /* for wait4() */ |
| |
| /* current thread group signal load-balancing target: */ |
| task_t *curr_target; |
| |
| /* shared signal handling: */ |
| struct sigpending shared_pending; |
| |
| /* thread group exit support */ |
| int group_exit_code; |
| /* overloaded: |
| * - notify group_exit_task when ->count is equal to notify_count |
| * - everyone except group_exit_task is stopped during signal delivery |
| * of fatal signals, group_exit_task processes the signal. |
| */ |
| struct task_struct *group_exit_task; |
| int notify_count; |
| |
| /* thread group stop support, overloads group_exit_code too */ |
| int group_stop_count; |
| unsigned int flags; /* see SIGNAL_* flags below */ |
| |
| /* POSIX.1b Interval Timers */ |
| struct list_head posix_timers; |
| |
| /* ITIMER_REAL timer for the process */ |
| struct hrtimer real_timer; |
| ktime_t it_real_incr; |
| |
| /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ |
| cputime_t it_prof_expires, it_virt_expires; |
| cputime_t it_prof_incr, it_virt_incr; |
| |
| /* job control IDs */ |
| pid_t pgrp; |
| pid_t tty_old_pgrp; |
| pid_t session; |
| /* boolean value for session group leader */ |
| int leader; |
| |
| struct tty_struct *tty; /* NULL if no tty */ |
| |
| /* |
| * Cumulative resource counters for dead threads in the group, |
| * and for reaped dead child processes forked by this group. |
| * Live threads maintain their own counters and add to these |
| * in __exit_signal, except for the group leader. |
| */ |
| cputime_t utime, stime, cutime, cstime; |
| unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; |
| unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; |
| |
| /* |
| * Cumulative ns of scheduled CPU time for dead threads in the |
| * group, not including a zombie group leader. (This only differs |
| * from jiffies_to_ns(utime + stime) if sched_clock uses something |
| * other than jiffies.) |
| */ |
| unsigned long long sched_time; |
| |
| /* |
| * We don't bother to synchronize most readers of this at all, |
| * because there is no reader checking a limit that actually needs |
| * to get both rlim_cur and rlim_max atomically, and either one |
| * alone is a single word that can safely be read normally. |
| * getrlimit/setrlimit use task_lock(current->group_leader) to |
| * protect this instead of the siglock, because they really |
| * have no need to disable irqs. |
| */ |
| struct rlimit rlim[RLIM_NLIMITS]; |
| |
| struct list_head cpu_timers[3]; |
| |
| /* keep the process-shared keyrings here so that they do the right |
| * thing in threads created with CLONE_THREAD */ |
| #ifdef CONFIG_KEYS |
| struct key *session_keyring; /* keyring inherited over fork */ |
| struct key *process_keyring; /* keyring private to this process */ |
| #endif |
| }; |
| |
| /* Context switch must be unlocked if interrupts are to be enabled */ |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
| # define __ARCH_WANT_UNLOCKED_CTXSW |
| #endif |
| |
| /* |
| * Bits in flags field of signal_struct. |
| */ |
| #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ |
| #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ |
| #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ |
| #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ |
| |
| |
| /* |
| * Priority of a process goes from 0..MAX_PRIO-1, valid RT |
| * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH |
| * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority |
| * values are inverted: lower p->prio value means higher priority. |
| * |
| * The MAX_USER_RT_PRIO value allows the actual maximum |
| * RT priority to be separate from the value exported to |
| * user-space. This allows kernel threads to set their |
| * priority to a value higher than any user task. Note: |
| * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. |
| */ |
| |
| #define MAX_USER_RT_PRIO 100 |
| #define MAX_RT_PRIO MAX_USER_RT_PRIO |
| |
| #define MAX_PRIO (MAX_RT_PRIO + 40) |
| |
| #define rt_task(p) (unlikely((p)->prio < MAX_RT_PRIO)) |
| |
| /* |
| * Some day this will be a full-fledged user tracking system.. |
| */ |
| struct user_struct { |
| atomic_t __count; /* reference count */ |
| atomic_t processes; /* How many processes does this user have? */ |
| atomic_t files; /* How many open files does this user have? */ |
| atomic_t sigpending; /* How many pending signals does this user have? */ |
| #ifdef CONFIG_INOTIFY |
| atomic_t inotify_watches; /* How many inotify watches does this user have? */ |
| atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ |
| #endif |
| /* protected by mq_lock */ |
| unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ |
| unsigned long locked_shm; /* How many pages of mlocked shm ? */ |
| |
| #ifdef CONFIG_KEYS |
| struct key *uid_keyring; /* UID specific keyring */ |
| struct key *session_keyring; /* UID's default session keyring */ |
| #endif |
| |
| /* Hash table maintenance information */ |
| struct list_head uidhash_list; |
| uid_t uid; |
| }; |
| |
| extern struct user_struct *find_user(uid_t); |
| |
| extern struct user_struct root_user; |
| #define INIT_USER (&root_user) |
| |
| typedef struct prio_array prio_array_t; |
| struct backing_dev_info; |
| struct reclaim_state; |
| |
| #ifdef CONFIG_SCHEDSTATS |
| struct sched_info { |
| /* cumulative counters */ |
| unsigned long cpu_time, /* time spent on the cpu */ |
| run_delay, /* time spent waiting on a runqueue */ |
| pcnt; /* # of timeslices run on this cpu */ |
| |
| /* timestamps */ |
| unsigned long last_arrival, /* when we last ran on a cpu */ |
| last_queued; /* when we were last queued to run */ |
| }; |
| |
| extern struct file_operations proc_schedstat_operations; |
| #endif |
| |
| enum idle_type |
| { |
| SCHED_IDLE, |
| NOT_IDLE, |
| NEWLY_IDLE, |
| MAX_IDLE_TYPES |
| }; |
| |
| /* |
| * sched-domains (multiprocessor balancing) declarations: |
| */ |
| #ifdef CONFIG_SMP |
| #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ |
| |
| #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ |
| #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ |
| #define SD_BALANCE_EXEC 4 /* Balance on exec */ |
| #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ |
| #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ |
| #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ |
| #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ |
| #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ |
| |
| struct sched_group { |
| struct sched_group *next; /* Must be a circular list */ |
| cpumask_t cpumask; |
| |
| /* |
| * CPU power of this group, SCHED_LOAD_SCALE being max power for a |
| * single CPU. This is read only (except for setup, hotplug CPU). |
| */ |
| unsigned long cpu_power; |
| }; |
| |
| struct sched_domain { |
| /* These fields must be setup */ |
| struct sched_domain *parent; /* top domain must be null terminated */ |
| struct sched_group *groups; /* the balancing groups of the domain */ |
| cpumask_t span; /* span of all CPUs in this domain */ |
| unsigned long min_interval; /* Minimum balance interval ms */ |
| unsigned long max_interval; /* Maximum balance interval ms */ |
| unsigned int busy_factor; /* less balancing by factor if busy */ |
| unsigned int imbalance_pct; /* No balance until over watermark */ |
| unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ |
| unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ |
| unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ |
| unsigned int busy_idx; |
| unsigned int idle_idx; |
| unsigned int newidle_idx; |
| unsigned int wake_idx; |
| unsigned int forkexec_idx; |
| int flags; /* See SD_* */ |
| |
| /* Runtime fields. */ |
| unsigned long last_balance; /* init to jiffies. units in jiffies */ |
| unsigned int balance_interval; /* initialise to 1. units in ms. */ |
| unsigned int nr_balance_failed; /* initialise to 0 */ |
| |
| #ifdef CONFIG_SCHEDSTATS |
| /* load_balance() stats */ |
| unsigned long lb_cnt[MAX_IDLE_TYPES]; |
| unsigned long lb_failed[MAX_IDLE_TYPES]; |
| unsigned long lb_balanced[MAX_IDLE_TYPES]; |
| unsigned long lb_imbalance[MAX_IDLE_TYPES]; |
| unsigned long lb_gained[MAX_IDLE_TYPES]; |
| unsigned long lb_hot_gained[MAX_IDLE_TYPES]; |
| unsigned long lb_nobusyg[MAX_IDLE_TYPES]; |
| unsigned long lb_nobusyq[MAX_IDLE_TYPES]; |
| |
| /* Active load balancing */ |
| unsigned long alb_cnt; |
| unsigned long alb_failed; |
| unsigned long alb_pushed; |
| |
| /* SD_BALANCE_EXEC stats */ |
| unsigned long sbe_cnt; |
| unsigned long sbe_balanced; |
| unsigned long sbe_pushed; |
| |
| /* SD_BALANCE_FORK stats */ |
| unsigned long sbf_cnt; |
| unsigned long sbf_balanced; |
| unsigned long sbf_pushed; |
| |
| /* try_to_wake_up() stats */ |
| unsigned long ttwu_wake_remote; |
| unsigned long ttwu_move_affine; |
| unsigned long ttwu_move_balance; |
| #endif |
| }; |
| |
| extern void partition_sched_domains(cpumask_t *partition1, |
| cpumask_t *partition2); |
| |
| /* |
| * Maximum cache size the migration-costs auto-tuning code will |
| * search from: |
| */ |
| extern unsigned int max_cache_size; |
| |
| #endif /* CONFIG_SMP */ |
| |
| |
| struct io_context; /* See blkdev.h */ |
| void exit_io_context(void); |
| struct cpuset; |
| |
| #define NGROUPS_SMALL 32 |
| #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) |
| struct group_info { |
| int ngroups; |
| atomic_t usage; |
| gid_t small_block[NGROUPS_SMALL]; |
| int nblocks; |
| gid_t *blocks[0]; |
| }; |
| |
| /* |
| * get_group_info() must be called with the owning task locked (via task_lock()) |
| * when task != current. The reason being that the vast majority of callers are |
| * looking at current->group_info, which can not be changed except by the |
| * current task. Changing current->group_info requires the task lock, too. |
| */ |
| #define get_group_info(group_info) do { \ |
| atomic_inc(&(group_info)->usage); \ |
| } while (0) |
| |
| #define put_group_info(group_info) do { \ |
| if (atomic_dec_and_test(&(group_info)->usage)) \ |
| groups_free(group_info); \ |
| } while (0) |
| |
| extern struct group_info *groups_alloc(int gidsetsize); |
| extern void groups_free(struct group_info *group_info); |
| extern int set_current_groups(struct group_info *group_info); |
| extern int groups_search(struct group_info *group_info, gid_t grp); |
| /* access the groups "array" with this macro */ |
| #define GROUP_AT(gi, i) \ |
| ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) |
| |
| #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK |
| extern void prefetch_stack(struct task_struct*); |
| #else |
| static inline void prefetch_stack(struct task_struct *t) { } |
| #endif |
| |
| struct audit_context; /* See audit.c */ |
| struct mempolicy; |
| |
| struct task_struct { |
| volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ |
| struct thread_info *thread_info; |
| atomic_t usage; |
| unsigned long flags; /* per process flags, defined below */ |
| unsigned long ptrace; |
| |
| int lock_depth; /* BKL lock depth */ |
| |
| #if defined(CONFIG_SMP) |
| int last_waker_cpu; /* CPU that last woke this task up */ |
| #if defined(__ARCH_WANT_UNLOCKED_CTXSW) |
| int oncpu; |
| #endif |
| #endif |
| int prio, static_prio; |
| struct list_head run_list; |
| prio_array_t *array; |
| |
| unsigned short ioprio; |
| |
| unsigned long sleep_avg; |
| unsigned long long timestamp, last_ran; |
| unsigned long long sched_time; /* sched_clock time spent running */ |
| int activated; |
| |
| unsigned long policy; |
| cpumask_t cpus_allowed; |
| unsigned int time_slice, first_time_slice; |
| |
| #ifdef CONFIG_SCHEDSTATS |
| struct sched_info sched_info; |
| #endif |
| |
| struct list_head tasks; |
| /* |
| * ptrace_list/ptrace_children forms the list of my children |
| * that were stolen by a ptracer. |
| */ |
| struct list_head ptrace_children; |
| struct list_head ptrace_list; |
| |
| struct mm_struct *mm, *active_mm; |
| |
| /* task state */ |
| struct linux_binfmt *binfmt; |
| long exit_state; |
| int exit_code, exit_signal; |
| int pdeath_signal; /* The signal sent when the parent dies */ |
| /* ??? */ |
| unsigned long personality; |
| unsigned did_exec:1; |
| pid_t pid; |
| pid_t tgid; |
| /* |
| * pointers to (original) parent process, youngest child, younger sibling, |
| * older sibling, respectively. (p->father can be replaced with |
| * p->parent->pid) |
| */ |
| struct task_struct *real_parent; /* real parent process (when being debugged) */ |
| struct task_struct *parent; /* parent process */ |
| /* |
| * children/sibling forms the list of my children plus the |
| * tasks I'm ptracing. |
| */ |
| struct list_head children; /* list of my children */ |
| struct list_head sibling; /* linkage in my parent's children list */ |
| struct task_struct *group_leader; /* threadgroup leader */ |
| |
| /* PID/PID hash table linkage. */ |
| struct pid pids[PIDTYPE_MAX]; |
| |
| struct completion *vfork_done; /* for vfork() */ |
| int __user *set_child_tid; /* CLONE_CHILD_SETTID */ |
| int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ |
| |
| unsigned long rt_priority; |
| cputime_t utime, stime; |
| unsigned long nvcsw, nivcsw; /* context switch counts */ |
| struct timespec start_time; |
| /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ |
| unsigned long min_flt, maj_flt; |
| |
| cputime_t it_prof_expires, it_virt_expires; |
| unsigned long long it_sched_expires; |
| struct list_head cpu_timers[3]; |
| |
| /* process credentials */ |
| uid_t uid,euid,suid,fsuid; |
| gid_t gid,egid,sgid,fsgid; |
| struct group_info *group_info; |
| kernel_cap_t cap_effective, cap_inheritable, cap_permitted; |
| unsigned keep_capabilities:1; |
| struct user_struct *user; |
| #ifdef CONFIG_KEYS |
| struct key *request_key_auth; /* assumed request_key authority */ |
| struct key *thread_keyring; /* keyring private to this thread */ |
| unsigned char jit_keyring; /* default keyring to attach requested keys to */ |
| #endif |
| int oomkilladj; /* OOM kill score adjustment (bit shift). */ |
| char comm[TASK_COMM_LEN]; /* executable name excluding path |
| - access with [gs]et_task_comm (which lock |
| it with task_lock()) |
| - initialized normally by flush_old_exec */ |
| /* file system info */ |
| int link_count, total_link_count; |
| /* ipc stuff */ |
| struct sysv_sem sysvsem; |
| /* CPU-specific state of this task */ |
| struct thread_struct thread; |
| /* filesystem information */ |
| struct fs_struct *fs; |
| /* open file information */ |
| struct files_struct *files; |
| /* namespace */ |
| struct namespace *namespace; |
| /* signal handlers */ |
| struct signal_struct *signal; |
| struct sighand_struct *sighand; |
| |
| sigset_t blocked, real_blocked; |
| sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ |
| struct sigpending pending; |
| |
| unsigned long sas_ss_sp; |
| size_t sas_ss_size; |
| int (*notifier)(void *priv); |
| void *notifier_data; |
| sigset_t *notifier_mask; |
| |
| void *security; |
| struct audit_context *audit_context; |
| seccomp_t seccomp; |
| |
| /* Thread group tracking */ |
| u32 parent_exec_id; |
| u32 self_exec_id; |
| /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ |
| spinlock_t alloc_lock; |
| /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */ |
| spinlock_t proc_lock; |
| |
| #ifdef CONFIG_DEBUG_MUTEXES |
| /* mutex deadlock detection */ |
| struct mutex_waiter *blocked_on; |
| #endif |
| |
| /* journalling filesystem info */ |
| void *journal_info; |
| |
| /* VM state */ |
| struct reclaim_state *reclaim_state; |
| |
| struct dentry *proc_dentry; |
| struct backing_dev_info *backing_dev_info; |
| |
| struct io_context *io_context; |
| |
| unsigned long ptrace_message; |
| siginfo_t *last_siginfo; /* For ptrace use. */ |
| /* |
| * current io wait handle: wait queue entry to use for io waits |
| * If this thread is processing aio, this points at the waitqueue |
| * inside the currently handled kiocb. It may be NULL (i.e. default |
| * to a stack based synchronous wait) if its doing sync IO. |
| */ |
| wait_queue_t *io_wait; |
| /* i/o counters(bytes read/written, #syscalls */ |
| u64 rchar, wchar, syscr, syscw; |
| #if defined(CONFIG_BSD_PROCESS_ACCT) |
| u64 acct_rss_mem1; /* accumulated rss usage */ |
| u64 acct_vm_mem1; /* accumulated virtual memory usage */ |
| clock_t acct_stimexpd; /* clock_t-converted stime since last update */ |
| #endif |
| #ifdef CONFIG_NUMA |
| struct mempolicy *mempolicy; |
| short il_next; |
| #endif |
| #ifdef CONFIG_CPUSETS |
| struct cpuset *cpuset; |
| nodemask_t mems_allowed; |
| int cpuset_mems_generation; |
| #endif |
| atomic_t fs_excl; /* holding fs exclusive resources */ |
| struct rcu_head rcu; |
| }; |
| |
| static inline pid_t process_group(struct task_struct *tsk) |
| { |
| return tsk->signal->pgrp; |
| } |
| |
| /** |
| * pid_alive - check that a task structure is not stale |
| * @p: Task structure to be checked. |
| * |
| * Test if a process is not yet dead (at most zombie state) |
| * If pid_alive fails, then pointers within the task structure |
| * can be stale and must not be dereferenced. |
| */ |
| static inline int pid_alive(struct task_struct *p) |
| { |
| return p->pids[PIDTYPE_PID].nr != 0; |
| } |
| |
| extern void free_task(struct task_struct *tsk); |
| extern void __put_task_struct(struct task_struct *tsk); |
| #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) |
| |
| extern void __put_task_struct_cb(struct rcu_head *rhp); |
| |
| static inline void put_task_struct(struct task_struct *t) |
| { |
| if (atomic_dec_and_test(&t->usage)) |
| call_rcu(&t->rcu, __put_task_struct_cb); |
| } |
| |
| /* |
| * Per process flags |
| */ |
| #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ |
| /* Not implemented yet, only for 486*/ |
| #define PF_STARTING 0x00000002 /* being created */ |
| #define PF_EXITING 0x00000004 /* getting shut down */ |
| #define PF_DEAD 0x00000008 /* Dead */ |
| #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ |
| #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ |
| #define PF_DUMPCORE 0x00000200 /* dumped core */ |
| #define PF_SIGNALED 0x00000400 /* killed by a signal */ |
| #define PF_MEMALLOC 0x00000800 /* Allocating memory */ |
| #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ |
| #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ |
| #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ |
| #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ |
| #define PF_FROZEN 0x00010000 /* frozen for system suspend */ |
| #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ |
| #define PF_KSWAPD 0x00040000 /* I am kswapd */ |
| #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ |
| #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ |
| #define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */ |
| #define PF_BORROWED_MM 0x00400000 /* I am a kthread doing use_mm */ |
| #define PF_RANDOMIZE 0x00800000 /* randomize virtual address space */ |
| #define PF_SWAPWRITE 0x01000000 /* Allowed to write to swap */ |
| |
| /* |
| * Only the _current_ task can read/write to tsk->flags, but other |
| * tasks can access tsk->flags in readonly mode for example |
| * with tsk_used_math (like during threaded core dumping). |
| * There is however an exception to this rule during ptrace |
| * or during fork: the ptracer task is allowed to write to the |
| * child->flags of its traced child (same goes for fork, the parent |
| * can write to the child->flags), because we're guaranteed the |
| * child is not running and in turn not changing child->flags |
| * at the same time the parent does it. |
| */ |
| #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) |
| #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) |
| #define clear_used_math() clear_stopped_child_used_math(current) |
| #define set_used_math() set_stopped_child_used_math(current) |
| #define conditional_stopped_child_used_math(condition, child) \ |
| do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) |
| #define conditional_used_math(condition) \ |
| conditional_stopped_child_used_math(condition, current) |
| #define copy_to_stopped_child_used_math(child) \ |
| do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) |
| /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ |
| #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) |
| #define used_math() tsk_used_math(current) |
| |
| #ifdef CONFIG_SMP |
| extern int set_cpus_allowed(task_t *p, cpumask_t new_mask); |
| #else |
| static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask) |
| { |
| if (!cpu_isset(0, new_mask)) |
| return -EINVAL; |
| return 0; |
| } |
| #endif |
| |
| extern unsigned long long sched_clock(void); |
| extern unsigned long long current_sched_time(const task_t *current_task); |
| |
| /* sched_exec is called by processes performing an exec */ |
| #ifdef CONFIG_SMP |
| extern void sched_exec(void); |
| #else |
| #define sched_exec() {} |
| #endif |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| extern void idle_task_exit(void); |
| #else |
| static inline void idle_task_exit(void) {} |
| #endif |
| |
| extern void sched_idle_next(void); |
| extern void set_user_nice(task_t *p, long nice); |
| extern int task_prio(const task_t *p); |
| extern int task_nice(const task_t *p); |
| extern int can_nice(const task_t *p, const int nice); |
| extern int task_curr(const task_t *p); |
| extern int idle_cpu(int cpu); |
| extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); |
| extern task_t *idle_task(int cpu); |
| extern task_t *curr_task(int cpu); |
| extern void set_curr_task(int cpu, task_t *p); |
| |
| void yield(void); |
| |
| /* |
| * The default (Linux) execution domain. |
| */ |
| extern struct exec_domain default_exec_domain; |
| |
| union thread_union { |
| struct thread_info thread_info; |
| unsigned long stack[THREAD_SIZE/sizeof(long)]; |
| }; |
| |
| #ifndef __HAVE_ARCH_KSTACK_END |
| static inline int kstack_end(void *addr) |
| { |
| /* Reliable end of stack detection: |
| * Some APM bios versions misalign the stack |
| */ |
| return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); |
| } |
| #endif |
| |
| extern union thread_union init_thread_union; |
| extern struct task_struct init_task; |
| |
| extern struct mm_struct init_mm; |
| |
| #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) |
| extern struct task_struct *find_task_by_pid_type(int type, int pid); |
| extern void set_special_pids(pid_t session, pid_t pgrp); |
| extern void __set_special_pids(pid_t session, pid_t pgrp); |
| |
| /* per-UID process charging. */ |
| extern struct user_struct * alloc_uid(uid_t); |
| static inline struct user_struct *get_uid(struct user_struct *u) |
| { |
| atomic_inc(&u->__count); |
| return u; |
| } |
| extern void free_uid(struct user_struct *); |
| extern void switch_uid(struct user_struct *); |
| |
| #include <asm/current.h> |
| |
| extern void do_timer(struct pt_regs *); |
| |
| extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); |
| extern int FASTCALL(wake_up_process(struct task_struct * tsk)); |
| extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, |
| unsigned long clone_flags)); |
| #ifdef CONFIG_SMP |
| extern void kick_process(struct task_struct *tsk); |
| #else |
| static inline void kick_process(struct task_struct *tsk) { } |
| #endif |
| extern void FASTCALL(sched_fork(task_t * p, int clone_flags)); |
| extern void FASTCALL(sched_exit(task_t * p)); |
| |
| extern int in_group_p(gid_t); |
| extern int in_egroup_p(gid_t); |
| |
| extern void proc_caches_init(void); |
| extern void flush_signals(struct task_struct *); |
| extern void flush_signal_handlers(struct task_struct *, int force_default); |
| extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); |
| |
| static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&tsk->sighand->siglock, flags); |
| ret = dequeue_signal(tsk, mask, info); |
| spin_unlock_irqrestore(&tsk->sighand->siglock, flags); |
| |
| return ret; |
| } |
| |
| extern void block_all_signals(int (*notifier)(void *priv), void *priv, |
| sigset_t *mask); |
| extern void unblock_all_signals(void); |
| extern void release_task(struct task_struct * p); |
| extern int send_sig_info(int, struct siginfo *, struct task_struct *); |
| extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); |
| extern int force_sigsegv(int, struct task_struct *); |
| extern int force_sig_info(int, struct siginfo *, struct task_struct *); |
| extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); |
| extern int kill_pg_info(int, struct siginfo *, pid_t); |
| extern int kill_proc_info(int, struct siginfo *, pid_t); |
| extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t); |
| extern void do_notify_parent(struct task_struct *, int); |
| extern void force_sig(int, struct task_struct *); |
| extern void force_sig_specific(int, struct task_struct *); |
| extern int send_sig(int, struct task_struct *, int); |
| extern void zap_other_threads(struct task_struct *p); |
| extern int kill_pg(pid_t, int, int); |
| extern int kill_sl(pid_t, int, int); |
| extern int kill_proc(pid_t, int, int); |
| extern struct sigqueue *sigqueue_alloc(void); |
| extern void sigqueue_free(struct sigqueue *); |
| extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); |
| extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); |
| extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); |
| extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); |
| |
| /* These can be the second arg to send_sig_info/send_group_sig_info. */ |
| #define SEND_SIG_NOINFO ((struct siginfo *) 0) |
| #define SEND_SIG_PRIV ((struct siginfo *) 1) |
| #define SEND_SIG_FORCED ((struct siginfo *) 2) |
| |
| static inline int is_si_special(const struct siginfo *info) |
| { |
| return info <= SEND_SIG_FORCED; |
| } |
| |
| /* True if we are on the alternate signal stack. */ |
| |
| static inline int on_sig_stack(unsigned long sp) |
| { |
| return (sp - current->sas_ss_sp < current->sas_ss_size); |
| } |
| |
| static inline int sas_ss_flags(unsigned long sp) |
| { |
| return (current->sas_ss_size == 0 ? SS_DISABLE |
| : on_sig_stack(sp) ? SS_ONSTACK : 0); |
| } |
| |
| /* |
| * Routines for handling mm_structs |
| */ |
| extern struct mm_struct * mm_alloc(void); |
| |
| /* mmdrop drops the mm and the page tables */ |
| extern void FASTCALL(__mmdrop(struct mm_struct *)); |
| static inline void mmdrop(struct mm_struct * mm) |
| { |
| if (atomic_dec_and_test(&mm->mm_count)) |
| __mmdrop(mm); |
| } |
| |
| /* mmput gets rid of the mappings and all user-space */ |
| extern void mmput(struct mm_struct *); |
| /* Grab a reference to a task's mm, if it is not already going away */ |
| extern struct mm_struct *get_task_mm(struct task_struct *task); |
| /* Remove the current tasks stale references to the old mm_struct */ |
| extern void mm_release(struct task_struct *, struct mm_struct *); |
| |
| extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); |
| extern void flush_thread(void); |
| extern void exit_thread(void); |
| |
| extern void exit_files(struct task_struct *); |
| extern void exit_signal(struct task_struct *); |
| extern void __exit_signal(struct task_struct *); |
| extern void exit_sighand(struct task_struct *); |
| extern void __exit_sighand(struct task_struct *); |
| extern void exit_itimers(struct signal_struct *); |
| |
| extern NORET_TYPE void do_group_exit(int); |
| |
| extern void daemonize(const char *, ...); |
| extern int allow_signal(int); |
| extern int disallow_signal(int); |
| extern task_t *child_reaper; |
| |
| extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); |
| extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); |
| task_t *fork_idle(int); |
| |
| extern void set_task_comm(struct task_struct *tsk, char *from); |
| extern void get_task_comm(char *to, struct task_struct *tsk); |
| |
| #ifdef CONFIG_SMP |
| extern void wait_task_inactive(task_t * p); |
| #else |
| #define wait_task_inactive(p) do { } while (0) |
| #endif |
| |
| #define remove_parent(p) list_del_init(&(p)->sibling) |
| #define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children) |
| |
| #define REMOVE_LINKS(p) do { \ |
| if (thread_group_leader(p)) \ |
| list_del_init(&(p)->tasks); \ |
| remove_parent(p); \ |
| } while (0) |
| |
| #define SET_LINKS(p) do { \ |
| if (thread_group_leader(p)) \ |
| list_add_tail(&(p)->tasks,&init_task.tasks); \ |
| add_parent(p, (p)->parent); \ |
| } while (0) |
| |
| #define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks) |
| #define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks) |
| |
| #define for_each_process(p) \ |
| for (p = &init_task ; (p = next_task(p)) != &init_task ; ) |
| |
| /* |
| * Careful: do_each_thread/while_each_thread is a double loop so |
| * 'break' will not work as expected - use goto instead. |
| */ |
| #define do_each_thread(g, t) \ |
| for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do |
| |
| #define while_each_thread(g, t) \ |
| while ((t = next_thread(t)) != g) |
| |
| extern task_t * FASTCALL(next_thread(const task_t *p)); |
| |
| #define thread_group_leader(p) (p->pid == p->tgid) |
| |
| static inline int thread_group_empty(task_t *p) |
| { |
| return list_empty(&p->pids[PIDTYPE_TGID].pid_list); |
| } |
| |
| #define delay_group_leader(p) \ |
| (thread_group_leader(p) && !thread_group_empty(p)) |
| |
| extern void unhash_process(struct task_struct *p); |
| |
| /* |
| * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring |
| * subscriptions and synchronises with wait4(). Also used in procfs. Also |
| * pins the final release of task.io_context. Also protects ->cpuset. |
| * |
| * Nests both inside and outside of read_lock(&tasklist_lock). |
| * It must not be nested with write_lock_irq(&tasklist_lock), |
| * neither inside nor outside. |
| */ |
| static inline void task_lock(struct task_struct *p) |
| { |
| spin_lock(&p->alloc_lock); |
| } |
| |
| static inline void task_unlock(struct task_struct *p) |
| { |
| spin_unlock(&p->alloc_lock); |
| } |
| |
| #ifndef __HAVE_THREAD_FUNCTIONS |
| |
| #define task_thread_info(task) (task)->thread_info |
| #define task_stack_page(task) ((void*)((task)->thread_info)) |
| |
| static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) |
| { |
| *task_thread_info(p) = *task_thread_info(org); |
| task_thread_info(p)->task = p; |
| } |
| |
| static inline unsigned long *end_of_stack(struct task_struct *p) |
| { |
| return (unsigned long *)(p->thread_info + 1); |
| } |
| |
| #endif |
| |
| /* set thread flags in other task's structures |
| * - see asm/thread_info.h for TIF_xxxx flags available |
| */ |
| static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| set_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| clear_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| return test_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline void set_tsk_need_resched(struct task_struct *tsk) |
| { |
| set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); |
| } |
| |
| static inline void clear_tsk_need_resched(struct task_struct *tsk) |
| { |
| clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); |
| } |
| |
| static inline int signal_pending(struct task_struct *p) |
| { |
| return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); |
| } |
| |
| static inline int need_resched(void) |
| { |
| return unlikely(test_thread_flag(TIF_NEED_RESCHED)); |
| } |
| |
| /* |
| * cond_resched() and cond_resched_lock(): latency reduction via |
| * explicit rescheduling in places that are safe. The return |
| * value indicates whether a reschedule was done in fact. |
| * cond_resched_lock() will drop the spinlock before scheduling, |
| * cond_resched_softirq() will enable bhs before scheduling. |
| */ |
| extern int cond_resched(void); |
| extern int cond_resched_lock(spinlock_t * lock); |
| extern int cond_resched_softirq(void); |
| |
| /* |
| * Does a critical section need to be broken due to another |
| * task waiting?: |
| */ |
| #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) |
| # define need_lockbreak(lock) ((lock)->break_lock) |
| #else |
| # define need_lockbreak(lock) 0 |
| #endif |
| |
| /* |
| * Does a critical section need to be broken due to another |
| * task waiting or preemption being signalled: |
| */ |
| static inline int lock_need_resched(spinlock_t *lock) |
| { |
| if (need_lockbreak(lock) || need_resched()) |
| return 1; |
| return 0; |
| } |
| |
| /* Reevaluate whether the task has signals pending delivery. |
| This is required every time the blocked sigset_t changes. |
| callers must hold sighand->siglock. */ |
| |
| extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); |
| extern void recalc_sigpending(void); |
| |
| extern void signal_wake_up(struct task_struct *t, int resume_stopped); |
| |
| /* |
| * Wrappers for p->thread_info->cpu access. No-op on UP. |
| */ |
| #ifdef CONFIG_SMP |
| |
| static inline unsigned int task_cpu(const struct task_struct *p) |
| { |
| return task_thread_info(p)->cpu; |
| } |
| |
| static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) |
| { |
| task_thread_info(p)->cpu = cpu; |
| } |
| |
| #else |
| |
| static inline unsigned int task_cpu(const struct task_struct *p) |
| { |
| return 0; |
| } |
| |
| static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) |
| { |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT |
| extern void arch_pick_mmap_layout(struct mm_struct *mm); |
| #else |
| static inline void arch_pick_mmap_layout(struct mm_struct *mm) |
| { |
| mm->mmap_base = TASK_UNMAPPED_BASE; |
| mm->get_unmapped_area = arch_get_unmapped_area; |
| mm->unmap_area = arch_unmap_area; |
| } |
| #endif |
| |
| extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); |
| extern long sched_getaffinity(pid_t pid, cpumask_t *mask); |
| |
| extern void normalize_rt_tasks(void); |
| |
| #ifdef CONFIG_PM |
| /* |
| * Check if a process has been frozen |
| */ |
| static inline int frozen(struct task_struct *p) |
| { |
| return p->flags & PF_FROZEN; |
| } |
| |
| /* |
| * Check if there is a request to freeze a process |
| */ |
| static inline int freezing(struct task_struct *p) |
| { |
| return p->flags & PF_FREEZE; |
| } |
| |
| /* |
| * Request that a process be frozen |
| * FIXME: SMP problem. We may not modify other process' flags! |
| */ |
| static inline void freeze(struct task_struct *p) |
| { |
| p->flags |= PF_FREEZE; |
| } |
| |
| /* |
| * Wake up a frozen process |
| */ |
| static inline int thaw_process(struct task_struct *p) |
| { |
| if (frozen(p)) { |
| p->flags &= ~PF_FROZEN; |
| wake_up_process(p); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * freezing is complete, mark process as frozen |
| */ |
| static inline void frozen_process(struct task_struct *p) |
| { |
| p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN; |
| } |
| |
| extern void refrigerator(void); |
| extern int freeze_processes(void); |
| extern void thaw_processes(void); |
| |
| static inline int try_to_freeze(void) |
| { |
| if (freezing(current)) { |
| refrigerator(); |
| return 1; |
| } else |
| return 0; |
| } |
| #else |
| static inline int frozen(struct task_struct *p) { return 0; } |
| static inline int freezing(struct task_struct *p) { return 0; } |
| static inline void freeze(struct task_struct *p) { BUG(); } |
| static inline int thaw_process(struct task_struct *p) { return 1; } |
| static inline void frozen_process(struct task_struct *p) { BUG(); } |
| |
| static inline void refrigerator(void) {} |
| static inline int freeze_processes(void) { BUG(); return 0; } |
| static inline void thaw_processes(void) {} |
| |
| static inline int try_to_freeze(void) { return 0; } |
| |
| #endif /* CONFIG_PM */ |
| #endif /* __KERNEL__ */ |
| |
| #endif |