| /* |
| * linux/arch/i386/kernel/process.c |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #include <stdarg.h> |
| |
| #include <linux/cpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/elfcore.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/stddef.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/user.h> |
| #include <linux/a.out.h> |
| #include <linux/interrupt.h> |
| #include <linux/config.h> |
| #include <linux/utsname.h> |
| #include <linux/delay.h> |
| #include <linux/reboot.h> |
| #include <linux/init.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/module.h> |
| #include <linux/kallsyms.h> |
| #include <linux/ptrace.h> |
| #include <linux/random.h> |
| #include <linux/kprobes.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/ldt.h> |
| #include <asm/processor.h> |
| #include <asm/i387.h> |
| #include <asm/desc.h> |
| #ifdef CONFIG_MATH_EMULATION |
| #include <asm/math_emu.h> |
| #endif |
| |
| #include <linux/err.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/cpu.h> |
| |
| asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); |
| |
| static int hlt_counter; |
| |
| unsigned long boot_option_idle_override = 0; |
| EXPORT_SYMBOL(boot_option_idle_override); |
| |
| /* |
| * Return saved PC of a blocked thread. |
| */ |
| unsigned long thread_saved_pc(struct task_struct *tsk) |
| { |
| return ((unsigned long *)tsk->thread.esp)[3]; |
| } |
| |
| /* |
| * Powermanagement idle function, if any.. |
| */ |
| void (*pm_idle)(void); |
| EXPORT_SYMBOL(pm_idle); |
| static DEFINE_PER_CPU(unsigned int, cpu_idle_state); |
| |
| void disable_hlt(void) |
| { |
| hlt_counter++; |
| } |
| |
| EXPORT_SYMBOL(disable_hlt); |
| |
| void enable_hlt(void) |
| { |
| hlt_counter--; |
| } |
| |
| EXPORT_SYMBOL(enable_hlt); |
| |
| /* |
| * We use this if we don't have any better |
| * idle routine.. |
| */ |
| void default_idle(void) |
| { |
| local_irq_enable(); |
| |
| if (!hlt_counter && boot_cpu_data.hlt_works_ok) { |
| clear_thread_flag(TIF_POLLING_NRFLAG); |
| smp_mb__after_clear_bit(); |
| while (!need_resched()) { |
| local_irq_disable(); |
| if (!need_resched()) |
| safe_halt(); |
| else |
| local_irq_enable(); |
| } |
| set_thread_flag(TIF_POLLING_NRFLAG); |
| } else { |
| while (!need_resched()) |
| cpu_relax(); |
| } |
| } |
| #ifdef CONFIG_APM_MODULE |
| EXPORT_SYMBOL(default_idle); |
| #endif |
| |
| /* |
| * On SMP it's slightly faster (but much more power-consuming!) |
| * to poll the ->work.need_resched flag instead of waiting for the |
| * cross-CPU IPI to arrive. Use this option with caution. |
| */ |
| static void poll_idle (void) |
| { |
| local_irq_enable(); |
| |
| asm volatile( |
| "2:" |
| "testl %0, %1;" |
| "rep; nop;" |
| "je 2b;" |
| : : "i"(_TIF_NEED_RESCHED), "m" (current_thread_info()->flags)); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| #include <asm/nmi.h> |
| /* We don't actually take CPU down, just spin without interrupts. */ |
| static inline void play_dead(void) |
| { |
| /* This must be done before dead CPU ack */ |
| cpu_exit_clear(); |
| wbinvd(); |
| mb(); |
| /* Ack it */ |
| __get_cpu_var(cpu_state) = CPU_DEAD; |
| |
| /* |
| * With physical CPU hotplug, we should halt the cpu |
| */ |
| local_irq_disable(); |
| while (1) |
| halt(); |
| } |
| #else |
| static inline void play_dead(void) |
| { |
| BUG(); |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| /* |
| * The idle thread. There's no useful work to be |
| * done, so just try to conserve power and have a |
| * low exit latency (ie sit in a loop waiting for |
| * somebody to say that they'd like to reschedule) |
| */ |
| void cpu_idle(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| set_thread_flag(TIF_POLLING_NRFLAG); |
| |
| /* endless idle loop with no priority at all */ |
| while (1) { |
| while (!need_resched()) { |
| void (*idle)(void); |
| |
| if (__get_cpu_var(cpu_idle_state)) |
| __get_cpu_var(cpu_idle_state) = 0; |
| |
| rmb(); |
| idle = pm_idle; |
| |
| if (!idle) |
| idle = default_idle; |
| |
| if (cpu_is_offline(cpu)) |
| play_dead(); |
| |
| __get_cpu_var(irq_stat).idle_timestamp = jiffies; |
| idle(); |
| } |
| preempt_enable_no_resched(); |
| schedule(); |
| preempt_disable(); |
| } |
| } |
| |
| void cpu_idle_wait(void) |
| { |
| unsigned int cpu, this_cpu = get_cpu(); |
| cpumask_t map; |
| |
| set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); |
| put_cpu(); |
| |
| cpus_clear(map); |
| for_each_online_cpu(cpu) { |
| per_cpu(cpu_idle_state, cpu) = 1; |
| cpu_set(cpu, map); |
| } |
| |
| __get_cpu_var(cpu_idle_state) = 0; |
| |
| wmb(); |
| do { |
| ssleep(1); |
| for_each_online_cpu(cpu) { |
| if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) |
| cpu_clear(cpu, map); |
| } |
| cpus_and(map, map, cpu_online_map); |
| } while (!cpus_empty(map)); |
| } |
| EXPORT_SYMBOL_GPL(cpu_idle_wait); |
| |
| /* |
| * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, |
| * which can obviate IPI to trigger checking of need_resched. |
| * We execute MONITOR against need_resched and enter optimized wait state |
| * through MWAIT. Whenever someone changes need_resched, we would be woken |
| * up from MWAIT (without an IPI). |
| */ |
| static void mwait_idle(void) |
| { |
| local_irq_enable(); |
| |
| while (!need_resched()) { |
| __monitor((void *)¤t_thread_info()->flags, 0, 0); |
| smp_mb(); |
| if (need_resched()) |
| break; |
| __mwait(0, 0); |
| } |
| } |
| |
| void __devinit select_idle_routine(const struct cpuinfo_x86 *c) |
| { |
| if (cpu_has(c, X86_FEATURE_MWAIT)) { |
| printk("monitor/mwait feature present.\n"); |
| /* |
| * Skip, if setup has overridden idle. |
| * One CPU supports mwait => All CPUs supports mwait |
| */ |
| if (!pm_idle) { |
| printk("using mwait in idle threads.\n"); |
| pm_idle = mwait_idle; |
| } |
| } |
| } |
| |
| static int __init idle_setup (char *str) |
| { |
| if (!strncmp(str, "poll", 4)) { |
| printk("using polling idle threads.\n"); |
| pm_idle = poll_idle; |
| #ifdef CONFIG_X86_SMP |
| if (smp_num_siblings > 1) |
| printk("WARNING: polling idle and HT enabled, performance may degrade.\n"); |
| #endif |
| } else if (!strncmp(str, "halt", 4)) { |
| printk("using halt in idle threads.\n"); |
| pm_idle = default_idle; |
| } |
| |
| boot_option_idle_override = 1; |
| return 1; |
| } |
| |
| __setup("idle=", idle_setup); |
| |
| void show_regs(struct pt_regs * regs) |
| { |
| unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; |
| |
| printk("\n"); |
| printk("Pid: %d, comm: %20s\n", current->pid, current->comm); |
| printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id()); |
| print_symbol("EIP is at %s\n", regs->eip); |
| |
| if (user_mode(regs)) |
| printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp); |
| printk(" EFLAGS: %08lx %s (%s)\n", |
| regs->eflags, print_tainted(), system_utsname.release); |
| printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", |
| regs->eax,regs->ebx,regs->ecx,regs->edx); |
| printk("ESI: %08lx EDI: %08lx EBP: %08lx", |
| regs->esi, regs->edi, regs->ebp); |
| printk(" DS: %04x ES: %04x\n", |
| 0xffff & regs->xds,0xffff & regs->xes); |
| |
| cr0 = read_cr0(); |
| cr2 = read_cr2(); |
| cr3 = read_cr3(); |
| if (current_cpu_data.x86 > 4) { |
| cr4 = read_cr4(); |
| } |
| printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4); |
| show_trace(NULL, ®s->esp); |
| } |
| |
| /* |
| * This gets run with %ebx containing the |
| * function to call, and %edx containing |
| * the "args". |
| */ |
| extern void kernel_thread_helper(void); |
| __asm__(".section .text\n" |
| ".align 4\n" |
| "kernel_thread_helper:\n\t" |
| "movl %edx,%eax\n\t" |
| "pushl %edx\n\t" |
| "call *%ebx\n\t" |
| "pushl %eax\n\t" |
| "call do_exit\n" |
| ".previous"); |
| |
| /* |
| * Create a kernel thread |
| */ |
| int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) |
| { |
| struct pt_regs regs; |
| |
| memset(®s, 0, sizeof(regs)); |
| |
| regs.ebx = (unsigned long) fn; |
| regs.edx = (unsigned long) arg; |
| |
| regs.xds = __USER_DS; |
| regs.xes = __USER_DS; |
| regs.orig_eax = -1; |
| regs.eip = (unsigned long) kernel_thread_helper; |
| regs.xcs = __KERNEL_CS; |
| regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; |
| |
| /* Ok, create the new process.. */ |
| return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); |
| } |
| EXPORT_SYMBOL(kernel_thread); |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| struct task_struct *tsk = current; |
| struct thread_struct *t = &tsk->thread; |
| |
| /* |
| * Remove function-return probe instances associated with this task |
| * and put them back on the free list. Do not insert an exit probe for |
| * this function, it will be disabled by kprobe_flush_task if you do. |
| */ |
| kprobe_flush_task(tsk); |
| |
| /* The process may have allocated an io port bitmap... nuke it. */ |
| if (unlikely(NULL != t->io_bitmap_ptr)) { |
| int cpu = get_cpu(); |
| struct tss_struct *tss = &per_cpu(init_tss, cpu); |
| |
| kfree(t->io_bitmap_ptr); |
| t->io_bitmap_ptr = NULL; |
| /* |
| * Careful, clear this in the TSS too: |
| */ |
| memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); |
| t->io_bitmap_max = 0; |
| tss->io_bitmap_owner = NULL; |
| tss->io_bitmap_max = 0; |
| tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET; |
| put_cpu(); |
| } |
| } |
| |
| void flush_thread(void) |
| { |
| struct task_struct *tsk = current; |
| |
| memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8); |
| memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); |
| /* |
| * Forget coprocessor state.. |
| */ |
| clear_fpu(tsk); |
| clear_used_math(); |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| if (dead_task->mm) { |
| // temporary debugging check |
| if (dead_task->mm->context.size) { |
| printk("WARNING: dead process %8s still has LDT? <%p/%d>\n", |
| dead_task->comm, |
| dead_task->mm->context.ldt, |
| dead_task->mm->context.size); |
| BUG(); |
| } |
| } |
| |
| release_vm86_irqs(dead_task); |
| } |
| |
| /* |
| * This gets called before we allocate a new thread and copy |
| * the current task into it. |
| */ |
| void prepare_to_copy(struct task_struct *tsk) |
| { |
| unlazy_fpu(tsk); |
| } |
| |
| int copy_thread(int nr, unsigned long clone_flags, unsigned long esp, |
| unsigned long unused, |
| struct task_struct * p, struct pt_regs * regs) |
| { |
| struct pt_regs * childregs; |
| struct task_struct *tsk; |
| int err; |
| |
| childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p->thread_info)) - 1; |
| /* |
| * The below -8 is to reserve 8 bytes on top of the ring0 stack. |
| * This is necessary to guarantee that the entire "struct pt_regs" |
| * is accessable even if the CPU haven't stored the SS/ESP registers |
| * on the stack (interrupt gate does not save these registers |
| * when switching to the same priv ring). |
| * Therefore beware: accessing the xss/esp fields of the |
| * "struct pt_regs" is possible, but they may contain the |
| * completely wrong values. |
| */ |
| childregs = (struct pt_regs *) ((unsigned long) childregs - 8); |
| *childregs = *regs; |
| childregs->eax = 0; |
| childregs->esp = esp; |
| |
| p->thread.esp = (unsigned long) childregs; |
| p->thread.esp0 = (unsigned long) (childregs+1); |
| |
| p->thread.eip = (unsigned long) ret_from_fork; |
| |
| savesegment(fs,p->thread.fs); |
| savesegment(gs,p->thread.gs); |
| |
| tsk = current; |
| if (unlikely(NULL != tsk->thread.io_bitmap_ptr)) { |
| p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL); |
| if (!p->thread.io_bitmap_ptr) { |
| p->thread.io_bitmap_max = 0; |
| return -ENOMEM; |
| } |
| memcpy(p->thread.io_bitmap_ptr, tsk->thread.io_bitmap_ptr, |
| IO_BITMAP_BYTES); |
| } |
| |
| /* |
| * Set a new TLS for the child thread? |
| */ |
| if (clone_flags & CLONE_SETTLS) { |
| struct desc_struct *desc; |
| struct user_desc info; |
| int idx; |
| |
| err = -EFAULT; |
| if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info))) |
| goto out; |
| err = -EINVAL; |
| if (LDT_empty(&info)) |
| goto out; |
| |
| idx = info.entry_number; |
| if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) |
| goto out; |
| |
| desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN; |
| desc->a = LDT_entry_a(&info); |
| desc->b = LDT_entry_b(&info); |
| } |
| |
| err = 0; |
| out: |
| if (err && p->thread.io_bitmap_ptr) { |
| kfree(p->thread.io_bitmap_ptr); |
| p->thread.io_bitmap_max = 0; |
| } |
| return err; |
| } |
| |
| /* |
| * fill in the user structure for a core dump.. |
| */ |
| void dump_thread(struct pt_regs * regs, struct user * dump) |
| { |
| int i; |
| |
| /* changed the size calculations - should hopefully work better. lbt */ |
| dump->magic = CMAGIC; |
| dump->start_code = 0; |
| dump->start_stack = regs->esp & ~(PAGE_SIZE - 1); |
| dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT; |
| dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT; |
| dump->u_dsize -= dump->u_tsize; |
| dump->u_ssize = 0; |
| for (i = 0; i < 8; i++) |
| dump->u_debugreg[i] = current->thread.debugreg[i]; |
| |
| if (dump->start_stack < TASK_SIZE) |
| dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT; |
| |
| dump->regs.ebx = regs->ebx; |
| dump->regs.ecx = regs->ecx; |
| dump->regs.edx = regs->edx; |
| dump->regs.esi = regs->esi; |
| dump->regs.edi = regs->edi; |
| dump->regs.ebp = regs->ebp; |
| dump->regs.eax = regs->eax; |
| dump->regs.ds = regs->xds; |
| dump->regs.es = regs->xes; |
| savesegment(fs,dump->regs.fs); |
| savesegment(gs,dump->regs.gs); |
| dump->regs.orig_eax = regs->orig_eax; |
| dump->regs.eip = regs->eip; |
| dump->regs.cs = regs->xcs; |
| dump->regs.eflags = regs->eflags; |
| dump->regs.esp = regs->esp; |
| dump->regs.ss = regs->xss; |
| |
| dump->u_fpvalid = dump_fpu (regs, &dump->i387); |
| } |
| EXPORT_SYMBOL(dump_thread); |
| |
| /* |
| * Capture the user space registers if the task is not running (in user space) |
| */ |
| int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) |
| { |
| struct pt_regs ptregs; |
| |
| ptregs = *(struct pt_regs *) |
| ((unsigned long)tsk->thread_info + |
| /* see comments in copy_thread() about -8 */ |
| THREAD_SIZE - sizeof(ptregs) - 8); |
| ptregs.xcs &= 0xffff; |
| ptregs.xds &= 0xffff; |
| ptregs.xes &= 0xffff; |
| ptregs.xss &= 0xffff; |
| |
| elf_core_copy_regs(regs, &ptregs); |
| |
| return 1; |
| } |
| |
| static inline void |
| handle_io_bitmap(struct thread_struct *next, struct tss_struct *tss) |
| { |
| if (!next->io_bitmap_ptr) { |
| /* |
| * Disable the bitmap via an invalid offset. We still cache |
| * the previous bitmap owner and the IO bitmap contents: |
| */ |
| tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET; |
| return; |
| } |
| if (likely(next == tss->io_bitmap_owner)) { |
| /* |
| * Previous owner of the bitmap (hence the bitmap content) |
| * matches the next task, we dont have to do anything but |
| * to set a valid offset in the TSS: |
| */ |
| tss->io_bitmap_base = IO_BITMAP_OFFSET; |
| return; |
| } |
| /* |
| * Lazy TSS's I/O bitmap copy. We set an invalid offset here |
| * and we let the task to get a GPF in case an I/O instruction |
| * is performed. The handler of the GPF will verify that the |
| * faulting task has a valid I/O bitmap and, it true, does the |
| * real copy and restart the instruction. This will save us |
| * redundant copies when the currently switched task does not |
| * perform any I/O during its timeslice. |
| */ |
| tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; |
| } |
| |
| /* |
| * This function selects if the context switch from prev to next |
| * has to tweak the TSC disable bit in the cr4. |
| */ |
| static inline void disable_tsc(struct task_struct *prev_p, |
| struct task_struct *next_p) |
| { |
| struct thread_info *prev, *next; |
| |
| /* |
| * gcc should eliminate the ->thread_info dereference if |
| * has_secure_computing returns 0 at compile time (SECCOMP=n). |
| */ |
| prev = prev_p->thread_info; |
| next = next_p->thread_info; |
| |
| if (has_secure_computing(prev) || has_secure_computing(next)) { |
| /* slow path here */ |
| if (has_secure_computing(prev) && |
| !has_secure_computing(next)) { |
| write_cr4(read_cr4() & ~X86_CR4_TSD); |
| } else if (!has_secure_computing(prev) && |
| has_secure_computing(next)) |
| write_cr4(read_cr4() | X86_CR4_TSD); |
| } |
| } |
| |
| /* |
| * switch_to(x,yn) should switch tasks from x to y. |
| * |
| * We fsave/fwait so that an exception goes off at the right time |
| * (as a call from the fsave or fwait in effect) rather than to |
| * the wrong process. Lazy FP saving no longer makes any sense |
| * with modern CPU's, and this simplifies a lot of things (SMP |
| * and UP become the same). |
| * |
| * NOTE! We used to use the x86 hardware context switching. The |
| * reason for not using it any more becomes apparent when you |
| * try to recover gracefully from saved state that is no longer |
| * valid (stale segment register values in particular). With the |
| * hardware task-switch, there is no way to fix up bad state in |
| * a reasonable manner. |
| * |
| * The fact that Intel documents the hardware task-switching to |
| * be slow is a fairly red herring - this code is not noticeably |
| * faster. However, there _is_ some room for improvement here, |
| * so the performance issues may eventually be a valid point. |
| * More important, however, is the fact that this allows us much |
| * more flexibility. |
| * |
| * The return value (in %eax) will be the "prev" task after |
| * the task-switch, and shows up in ret_from_fork in entry.S, |
| * for example. |
| */ |
| struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) |
| { |
| struct thread_struct *prev = &prev_p->thread, |
| *next = &next_p->thread; |
| int cpu = smp_processor_id(); |
| struct tss_struct *tss = &per_cpu(init_tss, cpu); |
| |
| /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ |
| |
| __unlazy_fpu(prev_p); |
| |
| /* |
| * Reload esp0. |
| */ |
| load_esp0(tss, next); |
| |
| /* |
| * Save away %fs and %gs. No need to save %es and %ds, as |
| * those are always kernel segments while inside the kernel. |
| * Doing this before setting the new TLS descriptors avoids |
| * the situation where we temporarily have non-reloadable |
| * segments in %fs and %gs. This could be an issue if the |
| * NMI handler ever used %fs or %gs (it does not today), or |
| * if the kernel is running inside of a hypervisor layer. |
| */ |
| savesegment(fs, prev->fs); |
| savesegment(gs, prev->gs); |
| |
| /* |
| * Load the per-thread Thread-Local Storage descriptor. |
| */ |
| load_TLS(next, cpu); |
| |
| /* |
| * Restore %fs and %gs if needed. |
| * |
| * Glibc normally makes %fs be zero, and %gs is one of |
| * the TLS segments. |
| */ |
| if (unlikely(prev->fs | next->fs)) |
| loadsegment(fs, next->fs); |
| |
| if (prev->gs | next->gs) |
| loadsegment(gs, next->gs); |
| |
| /* |
| * Restore IOPL if needed. |
| */ |
| if (unlikely(prev->iopl != next->iopl)) |
| set_iopl_mask(next->iopl); |
| |
| /* |
| * Now maybe reload the debug registers |
| */ |
| if (unlikely(next->debugreg[7])) { |
| set_debugreg(next->debugreg[0], 0); |
| set_debugreg(next->debugreg[1], 1); |
| set_debugreg(next->debugreg[2], 2); |
| set_debugreg(next->debugreg[3], 3); |
| /* no 4 and 5 */ |
| set_debugreg(next->debugreg[6], 6); |
| set_debugreg(next->debugreg[7], 7); |
| } |
| |
| if (unlikely(prev->io_bitmap_ptr || next->io_bitmap_ptr)) |
| handle_io_bitmap(next, tss); |
| |
| disable_tsc(prev_p, next_p); |
| |
| return prev_p; |
| } |
| |
| asmlinkage int sys_fork(struct pt_regs regs) |
| { |
| return do_fork(SIGCHLD, regs.esp, ®s, 0, NULL, NULL); |
| } |
| |
| asmlinkage int sys_clone(struct pt_regs regs) |
| { |
| unsigned long clone_flags; |
| unsigned long newsp; |
| int __user *parent_tidptr, *child_tidptr; |
| |
| clone_flags = regs.ebx; |
| newsp = regs.ecx; |
| parent_tidptr = (int __user *)regs.edx; |
| child_tidptr = (int __user *)regs.edi; |
| if (!newsp) |
| newsp = regs.esp; |
| return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); |
| } |
| |
| /* |
| * This is trivial, and on the face of it looks like it |
| * could equally well be done in user mode. |
| * |
| * Not so, for quite unobvious reasons - register pressure. |
| * In user mode vfork() cannot have a stack frame, and if |
| * done by calling the "clone()" system call directly, you |
| * do not have enough call-clobbered registers to hold all |
| * the information you need. |
| */ |
| asmlinkage int sys_vfork(struct pt_regs regs) |
| { |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, ®s, 0, NULL, NULL); |
| } |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| asmlinkage int sys_execve(struct pt_regs regs) |
| { |
| int error; |
| char * filename; |
| |
| filename = getname((char __user *) regs.ebx); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| error = do_execve(filename, |
| (char __user * __user *) regs.ecx, |
| (char __user * __user *) regs.edx, |
| ®s); |
| if (error == 0) { |
| task_lock(current); |
| current->ptrace &= ~PT_DTRACE; |
| task_unlock(current); |
| /* Make sure we don't return using sysenter.. */ |
| set_thread_flag(TIF_IRET); |
| } |
| putname(filename); |
| out: |
| return error; |
| } |
| |
| #define top_esp (THREAD_SIZE - sizeof(unsigned long)) |
| #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long ebp, esp, eip; |
| unsigned long stack_page; |
| int count = 0; |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| stack_page = (unsigned long)p->thread_info; |
| esp = p->thread.esp; |
| if (!stack_page || esp < stack_page || esp > top_esp+stack_page) |
| return 0; |
| /* include/asm-i386/system.h:switch_to() pushes ebp last. */ |
| ebp = *(unsigned long *) esp; |
| do { |
| if (ebp < stack_page || ebp > top_ebp+stack_page) |
| return 0; |
| eip = *(unsigned long *) (ebp+4); |
| if (!in_sched_functions(eip)) |
| return eip; |
| ebp = *(unsigned long *) ebp; |
| } while (count++ < 16); |
| return 0; |
| } |
| EXPORT_SYMBOL(get_wchan); |
| |
| /* |
| * sys_alloc_thread_area: get a yet unused TLS descriptor index. |
| */ |
| static int get_free_idx(void) |
| { |
| struct thread_struct *t = ¤t->thread; |
| int idx; |
| |
| for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++) |
| if (desc_empty(t->tls_array + idx)) |
| return idx + GDT_ENTRY_TLS_MIN; |
| return -ESRCH; |
| } |
| |
| /* |
| * Set a given TLS descriptor: |
| */ |
| asmlinkage int sys_set_thread_area(struct user_desc __user *u_info) |
| { |
| struct thread_struct *t = ¤t->thread; |
| struct user_desc info; |
| struct desc_struct *desc; |
| int cpu, idx; |
| |
| if (copy_from_user(&info, u_info, sizeof(info))) |
| return -EFAULT; |
| idx = info.entry_number; |
| |
| /* |
| * index -1 means the kernel should try to find and |
| * allocate an empty descriptor: |
| */ |
| if (idx == -1) { |
| idx = get_free_idx(); |
| if (idx < 0) |
| return idx; |
| if (put_user(idx, &u_info->entry_number)) |
| return -EFAULT; |
| } |
| |
| if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) |
| return -EINVAL; |
| |
| desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN; |
| |
| /* |
| * We must not get preempted while modifying the TLS. |
| */ |
| cpu = get_cpu(); |
| |
| if (LDT_empty(&info)) { |
| desc->a = 0; |
| desc->b = 0; |
| } else { |
| desc->a = LDT_entry_a(&info); |
| desc->b = LDT_entry_b(&info); |
| } |
| load_TLS(t, cpu); |
| |
| put_cpu(); |
| |
| return 0; |
| } |
| |
| /* |
| * Get the current Thread-Local Storage area: |
| */ |
| |
| #define GET_BASE(desc) ( \ |
| (((desc)->a >> 16) & 0x0000ffff) | \ |
| (((desc)->b << 16) & 0x00ff0000) | \ |
| ( (desc)->b & 0xff000000) ) |
| |
| #define GET_LIMIT(desc) ( \ |
| ((desc)->a & 0x0ffff) | \ |
| ((desc)->b & 0xf0000) ) |
| |
| #define GET_32BIT(desc) (((desc)->b >> 22) & 1) |
| #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3) |
| #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1) |
| #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1) |
| #define GET_PRESENT(desc) (((desc)->b >> 15) & 1) |
| #define GET_USEABLE(desc) (((desc)->b >> 20) & 1) |
| |
| asmlinkage int sys_get_thread_area(struct user_desc __user *u_info) |
| { |
| struct user_desc info; |
| struct desc_struct *desc; |
| int idx; |
| |
| if (get_user(idx, &u_info->entry_number)) |
| return -EFAULT; |
| if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) |
| return -EINVAL; |
| |
| memset(&info, 0, sizeof(info)); |
| |
| desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN; |
| |
| info.entry_number = idx; |
| info.base_addr = GET_BASE(desc); |
| info.limit = GET_LIMIT(desc); |
| info.seg_32bit = GET_32BIT(desc); |
| info.contents = GET_CONTENTS(desc); |
| info.read_exec_only = !GET_WRITABLE(desc); |
| info.limit_in_pages = GET_LIMIT_PAGES(desc); |
| info.seg_not_present = !GET_PRESENT(desc); |
| info.useable = GET_USEABLE(desc); |
| |
| if (copy_to_user(u_info, &info, sizeof(info))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| unsigned long arch_align_stack(unsigned long sp) |
| { |
| if (randomize_va_space) |
| sp -= get_random_int() % 8192; |
| return sp & ~0xf; |
| } |