| /* irq.c: UltraSparc IRQ handling/init/registry. |
| * |
| * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) |
| * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) |
| * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/linkage.h> |
| #include <linux/ptrace.h> |
| #include <linux/errno.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/signal.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/ftrace.h> |
| #include <linux/irq.h> |
| #include <linux/kmemleak.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/processor.h> |
| #include <asm/atomic.h> |
| #include <asm/system.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/iommu.h> |
| #include <asm/upa.h> |
| #include <asm/oplib.h> |
| #include <asm/prom.h> |
| #include <asm/timer.h> |
| #include <asm/smp.h> |
| #include <asm/starfire.h> |
| #include <asm/uaccess.h> |
| #include <asm/cache.h> |
| #include <asm/cpudata.h> |
| #include <asm/auxio.h> |
| #include <asm/head.h> |
| #include <asm/hypervisor.h> |
| #include <asm/cacheflush.h> |
| |
| #include "entry.h" |
| #include "cpumap.h" |
| #include "kstack.h" |
| |
| #define NUM_IVECS (IMAP_INR + 1) |
| |
| struct ino_bucket *ivector_table; |
| unsigned long ivector_table_pa; |
| |
| /* On several sun4u processors, it is illegal to mix bypass and |
| * non-bypass accesses. Therefore we access all INO buckets |
| * using bypass accesses only. |
| */ |
| static unsigned long bucket_get_chain_pa(unsigned long bucket_pa) |
| { |
| unsigned long ret; |
| |
| __asm__ __volatile__("ldxa [%1] %2, %0" |
| : "=&r" (ret) |
| : "r" (bucket_pa + |
| offsetof(struct ino_bucket, |
| __irq_chain_pa)), |
| "i" (ASI_PHYS_USE_EC)); |
| |
| return ret; |
| } |
| |
| static void bucket_clear_chain_pa(unsigned long bucket_pa) |
| { |
| __asm__ __volatile__("stxa %%g0, [%0] %1" |
| : /* no outputs */ |
| : "r" (bucket_pa + |
| offsetof(struct ino_bucket, |
| __irq_chain_pa)), |
| "i" (ASI_PHYS_USE_EC)); |
| } |
| |
| static unsigned int bucket_get_irq(unsigned long bucket_pa) |
| { |
| unsigned int ret; |
| |
| __asm__ __volatile__("lduwa [%1] %2, %0" |
| : "=&r" (ret) |
| : "r" (bucket_pa + |
| offsetof(struct ino_bucket, |
| __irq)), |
| "i" (ASI_PHYS_USE_EC)); |
| |
| return ret; |
| } |
| |
| static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq) |
| { |
| __asm__ __volatile__("stwa %0, [%1] %2" |
| : /* no outputs */ |
| : "r" (irq), |
| "r" (bucket_pa + |
| offsetof(struct ino_bucket, |
| __irq)), |
| "i" (ASI_PHYS_USE_EC)); |
| } |
| |
| #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa) |
| |
| static struct { |
| unsigned int dev_handle; |
| unsigned int dev_ino; |
| unsigned int in_use; |
| } irq_table[NR_IRQS]; |
| static DEFINE_SPINLOCK(irq_alloc_lock); |
| |
| unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino) |
| { |
| unsigned long flags; |
| unsigned char ent; |
| |
| BUILD_BUG_ON(NR_IRQS >= 256); |
| |
| spin_lock_irqsave(&irq_alloc_lock, flags); |
| |
| for (ent = 1; ent < NR_IRQS; ent++) { |
| if (!irq_table[ent].in_use) |
| break; |
| } |
| if (ent >= NR_IRQS) { |
| printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); |
| ent = 0; |
| } else { |
| irq_table[ent].dev_handle = dev_handle; |
| irq_table[ent].dev_ino = dev_ino; |
| irq_table[ent].in_use = 1; |
| } |
| |
| spin_unlock_irqrestore(&irq_alloc_lock, flags); |
| |
| return ent; |
| } |
| |
| #ifdef CONFIG_PCI_MSI |
| void irq_free(unsigned int irq) |
| { |
| unsigned long flags; |
| |
| if (irq >= NR_IRQS) |
| return; |
| |
| spin_lock_irqsave(&irq_alloc_lock, flags); |
| |
| irq_table[irq].in_use = 0; |
| |
| spin_unlock_irqrestore(&irq_alloc_lock, flags); |
| } |
| #endif |
| |
| /* |
| * /proc/interrupts printing: |
| */ |
| |
| int show_interrupts(struct seq_file *p, void *v) |
| { |
| int i = *(loff_t *) v, j; |
| struct irqaction * action; |
| unsigned long flags; |
| |
| if (i == 0) { |
| seq_printf(p, " "); |
| for_each_online_cpu(j) |
| seq_printf(p, "CPU%d ",j); |
| seq_putc(p, '\n'); |
| } |
| |
| if (i < NR_IRQS) { |
| raw_spin_lock_irqsave(&irq_desc[i].lock, flags); |
| action = irq_desc[i].action; |
| if (!action) |
| goto skip; |
| seq_printf(p, "%3d: ",i); |
| #ifndef CONFIG_SMP |
| seq_printf(p, "%10u ", kstat_irqs(i)); |
| #else |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); |
| #endif |
| seq_printf(p, " %9s", irq_desc[i].irq_data.chip->name); |
| seq_printf(p, " %s", action->name); |
| |
| for (action=action->next; action; action = action->next) |
| seq_printf(p, ", %s", action->name); |
| |
| seq_putc(p, '\n'); |
| skip: |
| raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags); |
| } else if (i == NR_IRQS) { |
| seq_printf(p, "NMI: "); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", cpu_data(j).__nmi_count); |
| seq_printf(p, " Non-maskable interrupts\n"); |
| } |
| return 0; |
| } |
| |
| static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) |
| { |
| unsigned int tid; |
| |
| if (this_is_starfire) { |
| tid = starfire_translate(imap, cpuid); |
| tid <<= IMAP_TID_SHIFT; |
| tid &= IMAP_TID_UPA; |
| } else { |
| if (tlb_type == cheetah || tlb_type == cheetah_plus) { |
| unsigned long ver; |
| |
| __asm__ ("rdpr %%ver, %0" : "=r" (ver)); |
| if ((ver >> 32UL) == __JALAPENO_ID || |
| (ver >> 32UL) == __SERRANO_ID) { |
| tid = cpuid << IMAP_TID_SHIFT; |
| tid &= IMAP_TID_JBUS; |
| } else { |
| unsigned int a = cpuid & 0x1f; |
| unsigned int n = (cpuid >> 5) & 0x1f; |
| |
| tid = ((a << IMAP_AID_SHIFT) | |
| (n << IMAP_NID_SHIFT)); |
| tid &= (IMAP_AID_SAFARI | |
| IMAP_NID_SAFARI); |
| } |
| } else { |
| tid = cpuid << IMAP_TID_SHIFT; |
| tid &= IMAP_TID_UPA; |
| } |
| } |
| |
| return tid; |
| } |
| |
| struct irq_handler_data { |
| unsigned long iclr; |
| unsigned long imap; |
| |
| void (*pre_handler)(unsigned int, void *, void *); |
| void *arg1; |
| void *arg2; |
| }; |
| |
| #ifdef CONFIG_SMP |
| static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity) |
| { |
| cpumask_t mask; |
| int cpuid; |
| |
| cpumask_copy(&mask, affinity); |
| if (cpus_equal(mask, cpu_online_map)) { |
| cpuid = map_to_cpu(irq); |
| } else { |
| cpumask_t tmp; |
| |
| cpus_and(tmp, cpu_online_map, mask); |
| cpuid = cpus_empty(tmp) ? map_to_cpu(irq) : first_cpu(tmp); |
| } |
| |
| return cpuid; |
| } |
| #else |
| #define irq_choose_cpu(irq, affinity) \ |
| real_hard_smp_processor_id() |
| #endif |
| |
| static void sun4u_irq_enable(struct irq_data *data) |
| { |
| struct irq_handler_data *handler_data = data->handler_data; |
| |
| if (likely(handler_data)) { |
| unsigned long cpuid, imap, val; |
| unsigned int tid; |
| |
| cpuid = irq_choose_cpu(data->irq, data->affinity); |
| imap = handler_data->imap; |
| |
| tid = sun4u_compute_tid(imap, cpuid); |
| |
| val = upa_readq(imap); |
| val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | |
| IMAP_AID_SAFARI | IMAP_NID_SAFARI); |
| val |= tid | IMAP_VALID; |
| upa_writeq(val, imap); |
| upa_writeq(ICLR_IDLE, handler_data->iclr); |
| } |
| } |
| |
| static int sun4u_set_affinity(struct irq_data *data, |
| const struct cpumask *mask, bool force) |
| { |
| struct irq_handler_data *handler_data = data->handler_data; |
| |
| if (likely(handler_data)) { |
| unsigned long cpuid, imap, val; |
| unsigned int tid; |
| |
| cpuid = irq_choose_cpu(data->irq, mask); |
| imap = handler_data->imap; |
| |
| tid = sun4u_compute_tid(imap, cpuid); |
| |
| val = upa_readq(imap); |
| val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | |
| IMAP_AID_SAFARI | IMAP_NID_SAFARI); |
| val |= tid | IMAP_VALID; |
| upa_writeq(val, imap); |
| upa_writeq(ICLR_IDLE, handler_data->iclr); |
| } |
| |
| return 0; |
| } |
| |
| /* Don't do anything. The desc->status check for IRQ_DISABLED in |
| * handler_irq() will skip the handler call and that will leave the |
| * interrupt in the sent state. The next ->enable() call will hit the |
| * ICLR register to reset the state machine. |
| * |
| * This scheme is necessary, instead of clearing the Valid bit in the |
| * IMAP register, to handle the case of IMAP registers being shared by |
| * multiple INOs (and thus ICLR registers). Since we use a different |
| * virtual IRQ for each shared IMAP instance, the generic code thinks |
| * there is only one user so it prematurely calls ->disable() on |
| * free_irq(). |
| * |
| * We have to provide an explicit ->disable() method instead of using |
| * NULL to get the default. The reason is that if the generic code |
| * sees that, it also hooks up a default ->shutdown method which |
| * invokes ->mask() which we do not want. See irq_chip_set_defaults(). |
| */ |
| static void sun4u_irq_disable(struct irq_data *data) |
| { |
| } |
| |
| static void sun4u_irq_eoi(struct irq_data *data) |
| { |
| struct irq_handler_data *handler_data = data->handler_data; |
| struct irq_desc *desc = irq_desc + data->irq; |
| |
| if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS))) |
| return; |
| |
| if (likely(handler_data)) |
| upa_writeq(ICLR_IDLE, handler_data->iclr); |
| } |
| |
| static void sun4v_irq_enable(struct irq_data *data) |
| { |
| unsigned int ino = irq_table[data->irq].dev_ino; |
| unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity); |
| int err; |
| |
| err = sun4v_intr_settarget(ino, cpuid); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " |
| "err(%d)\n", ino, cpuid, err); |
| err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_intr_setstate(%x): " |
| "err(%d)\n", ino, err); |
| err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n", |
| ino, err); |
| } |
| |
| static int sun4v_set_affinity(struct irq_data *data, |
| const struct cpumask *mask, bool force) |
| { |
| unsigned int ino = irq_table[data->irq].dev_ino; |
| unsigned long cpuid = irq_choose_cpu(data->irq, mask); |
| int err; |
| |
| err = sun4v_intr_settarget(ino, cpuid); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " |
| "err(%d)\n", ino, cpuid, err); |
| |
| return 0; |
| } |
| |
| static void sun4v_irq_disable(struct irq_data *data) |
| { |
| unsigned int ino = irq_table[data->irq].dev_ino; |
| int err; |
| |
| err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_intr_setenabled(%x): " |
| "err(%d)\n", ino, err); |
| } |
| |
| static void sun4v_irq_eoi(struct irq_data *data) |
| { |
| unsigned int ino = irq_table[data->irq].dev_ino; |
| struct irq_desc *desc = irq_desc + data->irq; |
| int err; |
| |
| if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS))) |
| return; |
| |
| err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_intr_setstate(%x): " |
| "err(%d)\n", ino, err); |
| } |
| |
| static void sun4v_virq_enable(struct irq_data *data) |
| { |
| unsigned long cpuid, dev_handle, dev_ino; |
| int err; |
| |
| cpuid = irq_choose_cpu(data->irq, data->affinity); |
| |
| dev_handle = irq_table[data->irq].dev_handle; |
| dev_ino = irq_table[data->irq].dev_ino; |
| |
| err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " |
| "err(%d)\n", |
| dev_handle, dev_ino, cpuid, err); |
| err = sun4v_vintr_set_state(dev_handle, dev_ino, |
| HV_INTR_STATE_IDLE); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," |
| "HV_INTR_STATE_IDLE): err(%d)\n", |
| dev_handle, dev_ino, err); |
| err = sun4v_vintr_set_valid(dev_handle, dev_ino, |
| HV_INTR_ENABLED); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," |
| "HV_INTR_ENABLED): err(%d)\n", |
| dev_handle, dev_ino, err); |
| } |
| |
| static int sun4v_virt_set_affinity(struct irq_data *data, |
| const struct cpumask *mask, bool force) |
| { |
| unsigned long cpuid, dev_handle, dev_ino; |
| int err; |
| |
| cpuid = irq_choose_cpu(data->irq, mask); |
| |
| dev_handle = irq_table[data->irq].dev_handle; |
| dev_ino = irq_table[data->irq].dev_ino; |
| |
| err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " |
| "err(%d)\n", |
| dev_handle, dev_ino, cpuid, err); |
| |
| return 0; |
| } |
| |
| static void sun4v_virq_disable(struct irq_data *data) |
| { |
| unsigned long dev_handle, dev_ino; |
| int err; |
| |
| dev_handle = irq_table[data->irq].dev_handle; |
| dev_ino = irq_table[data->irq].dev_ino; |
| |
| err = sun4v_vintr_set_valid(dev_handle, dev_ino, |
| HV_INTR_DISABLED); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," |
| "HV_INTR_DISABLED): err(%d)\n", |
| dev_handle, dev_ino, err); |
| } |
| |
| static void sun4v_virq_eoi(struct irq_data *data) |
| { |
| struct irq_desc *desc = irq_desc + data->irq; |
| unsigned long dev_handle, dev_ino; |
| int err; |
| |
| if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS))) |
| return; |
| |
| dev_handle = irq_table[data->irq].dev_handle; |
| dev_ino = irq_table[data->irq].dev_ino; |
| |
| err = sun4v_vintr_set_state(dev_handle, dev_ino, |
| HV_INTR_STATE_IDLE); |
| if (err != HV_EOK) |
| printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," |
| "HV_INTR_STATE_IDLE): err(%d)\n", |
| dev_handle, dev_ino, err); |
| } |
| |
| static struct irq_chip sun4u_irq = { |
| .name = "sun4u", |
| .irq_enable = sun4u_irq_enable, |
| .irq_disable = sun4u_irq_disable, |
| .irq_eoi = sun4u_irq_eoi, |
| .irq_set_affinity = sun4u_set_affinity, |
| }; |
| |
| static struct irq_chip sun4v_irq = { |
| .name = "sun4v", |
| .irq_enable = sun4v_irq_enable, |
| .irq_disable = sun4v_irq_disable, |
| .irq_eoi = sun4v_irq_eoi, |
| .irq_set_affinity = sun4v_set_affinity, |
| }; |
| |
| static struct irq_chip sun4v_virq = { |
| .name = "vsun4v", |
| .irq_enable = sun4v_virq_enable, |
| .irq_disable = sun4v_virq_disable, |
| .irq_eoi = sun4v_virq_eoi, |
| .irq_set_affinity = sun4v_virt_set_affinity, |
| }; |
| |
| static void pre_flow_handler(unsigned int irq, struct irq_desc *desc) |
| { |
| struct irq_handler_data *handler_data = get_irq_data(irq); |
| unsigned int ino = irq_table[irq].dev_ino; |
| |
| handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2); |
| |
| handle_fasteoi_irq(irq, desc); |
| } |
| |
| void irq_install_pre_handler(int irq, |
| void (*func)(unsigned int, void *, void *), |
| void *arg1, void *arg2) |
| { |
| struct irq_handler_data *handler_data = get_irq_data(irq); |
| struct irq_desc *desc = irq_desc + irq; |
| |
| handler_data->pre_handler = func; |
| handler_data->arg1 = arg1; |
| handler_data->arg2 = arg2; |
| |
| desc->handle_irq = pre_flow_handler; |
| } |
| |
| unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) |
| { |
| struct ino_bucket *bucket; |
| struct irq_handler_data *handler_data; |
| unsigned int irq; |
| int ino; |
| |
| BUG_ON(tlb_type == hypervisor); |
| |
| ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; |
| bucket = &ivector_table[ino]; |
| irq = bucket_get_irq(__pa(bucket)); |
| if (!irq) { |
| irq = irq_alloc(0, ino); |
| bucket_set_irq(__pa(bucket), irq); |
| set_irq_chip_and_handler_name(irq, |
| &sun4u_irq, |
| handle_fasteoi_irq, |
| "IVEC"); |
| } |
| |
| handler_data = get_irq_data(irq); |
| if (unlikely(handler_data)) |
| goto out; |
| |
| handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); |
| if (unlikely(!handler_data)) { |
| prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); |
| prom_halt(); |
| } |
| set_irq_data(irq, handler_data); |
| |
| handler_data->imap = imap; |
| handler_data->iclr = iclr; |
| |
| out: |
| return irq; |
| } |
| |
| static unsigned int sun4v_build_common(unsigned long sysino, |
| struct irq_chip *chip) |
| { |
| struct ino_bucket *bucket; |
| struct irq_handler_data *handler_data; |
| unsigned int irq; |
| |
| BUG_ON(tlb_type != hypervisor); |
| |
| bucket = &ivector_table[sysino]; |
| irq = bucket_get_irq(__pa(bucket)); |
| if (!irq) { |
| irq = irq_alloc(0, sysino); |
| bucket_set_irq(__pa(bucket), irq); |
| set_irq_chip_and_handler_name(irq, chip, |
| handle_fasteoi_irq, |
| "IVEC"); |
| } |
| |
| handler_data = get_irq_data(irq); |
| if (unlikely(handler_data)) |
| goto out; |
| |
| handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); |
| if (unlikely(!handler_data)) { |
| prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); |
| prom_halt(); |
| } |
| set_irq_data(irq, handler_data); |
| |
| /* Catch accidental accesses to these things. IMAP/ICLR handling |
| * is done by hypervisor calls on sun4v platforms, not by direct |
| * register accesses. |
| */ |
| handler_data->imap = ~0UL; |
| handler_data->iclr = ~0UL; |
| |
| out: |
| return irq; |
| } |
| |
| unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) |
| { |
| unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); |
| |
| return sun4v_build_common(sysino, &sun4v_irq); |
| } |
| |
| unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) |
| { |
| struct irq_handler_data *handler_data; |
| unsigned long hv_err, cookie; |
| struct ino_bucket *bucket; |
| struct irq_desc *desc; |
| unsigned int irq; |
| |
| bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC); |
| if (unlikely(!bucket)) |
| return 0; |
| |
| /* The only reference we store to the IRQ bucket is |
| * by physical address which kmemleak can't see, tell |
| * it that this object explicitly is not a leak and |
| * should be scanned. |
| */ |
| kmemleak_not_leak(bucket); |
| |
| __flush_dcache_range((unsigned long) bucket, |
| ((unsigned long) bucket + |
| sizeof(struct ino_bucket))); |
| |
| irq = irq_alloc(devhandle, devino); |
| bucket_set_irq(__pa(bucket), irq); |
| |
| set_irq_chip_and_handler_name(irq, &sun4v_virq, |
| handle_fasteoi_irq, |
| "IVEC"); |
| |
| handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); |
| if (unlikely(!handler_data)) |
| return 0; |
| |
| /* In order to make the LDC channel startup sequence easier, |
| * especially wrt. locking, we do not let request_irq() enable |
| * the interrupt. |
| */ |
| desc = irq_desc + irq; |
| desc->status |= IRQ_NOAUTOEN; |
| |
| set_irq_data(irq, handler_data); |
| |
| /* Catch accidental accesses to these things. IMAP/ICLR handling |
| * is done by hypervisor calls on sun4v platforms, not by direct |
| * register accesses. |
| */ |
| handler_data->imap = ~0UL; |
| handler_data->iclr = ~0UL; |
| |
| cookie = ~__pa(bucket); |
| hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie); |
| if (hv_err) { |
| prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] " |
| "err=%lu\n", devhandle, devino, hv_err); |
| prom_halt(); |
| } |
| |
| return irq; |
| } |
| |
| void ack_bad_irq(unsigned int irq) |
| { |
| unsigned int ino = irq_table[irq].dev_ino; |
| |
| if (!ino) |
| ino = 0xdeadbeef; |
| |
| printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n", |
| ino, irq); |
| } |
| |
| void *hardirq_stack[NR_CPUS]; |
| void *softirq_stack[NR_CPUS]; |
| |
| void __irq_entry handler_irq(int pil, struct pt_regs *regs) |
| { |
| unsigned long pstate, bucket_pa; |
| struct pt_regs *old_regs; |
| void *orig_sp; |
| |
| clear_softint(1 << pil); |
| |
| old_regs = set_irq_regs(regs); |
| irq_enter(); |
| |
| /* Grab an atomic snapshot of the pending IVECs. */ |
| __asm__ __volatile__("rdpr %%pstate, %0\n\t" |
| "wrpr %0, %3, %%pstate\n\t" |
| "ldx [%2], %1\n\t" |
| "stx %%g0, [%2]\n\t" |
| "wrpr %0, 0x0, %%pstate\n\t" |
| : "=&r" (pstate), "=&r" (bucket_pa) |
| : "r" (irq_work_pa(smp_processor_id())), |
| "i" (PSTATE_IE) |
| : "memory"); |
| |
| orig_sp = set_hardirq_stack(); |
| |
| while (bucket_pa) { |
| struct irq_desc *desc; |
| unsigned long next_pa; |
| unsigned int irq; |
| |
| next_pa = bucket_get_chain_pa(bucket_pa); |
| irq = bucket_get_irq(bucket_pa); |
| bucket_clear_chain_pa(bucket_pa); |
| |
| desc = irq_desc + irq; |
| |
| if (!(desc->status & IRQ_DISABLED)) |
| desc->handle_irq(irq, desc); |
| |
| bucket_pa = next_pa; |
| } |
| |
| restore_hardirq_stack(orig_sp); |
| |
| irq_exit(); |
| set_irq_regs(old_regs); |
| } |
| |
| void do_softirq(void) |
| { |
| unsigned long flags; |
| |
| if (in_interrupt()) |
| return; |
| |
| local_irq_save(flags); |
| |
| if (local_softirq_pending()) { |
| void *orig_sp, *sp = softirq_stack[smp_processor_id()]; |
| |
| sp += THREAD_SIZE - 192 - STACK_BIAS; |
| |
| __asm__ __volatile__("mov %%sp, %0\n\t" |
| "mov %1, %%sp" |
| : "=&r" (orig_sp) |
| : "r" (sp)); |
| __do_softirq(); |
| __asm__ __volatile__("mov %0, %%sp" |
| : : "r" (orig_sp)); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| void fixup_irqs(void) |
| { |
| unsigned int irq; |
| |
| for (irq = 0; irq < NR_IRQS; irq++) { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&irq_desc[irq].lock, flags); |
| if (irq_desc[irq].action && |
| !(irq_desc[irq].status & IRQ_PER_CPU)) { |
| struct irq_data *data = irq_get_irq_data(irq); |
| |
| if (data->chip->irq_set_affinity) |
| data->chip->irq_set_affinity(data, |
| data->affinity, |
| false); |
| } |
| raw_spin_unlock_irqrestore(&irq_desc[irq].lock, flags); |
| } |
| |
| tick_ops->disable_irq(); |
| } |
| #endif |
| |
| struct sun5_timer { |
| u64 count0; |
| u64 limit0; |
| u64 count1; |
| u64 limit1; |
| }; |
| |
| static struct sun5_timer *prom_timers; |
| static u64 prom_limit0, prom_limit1; |
| |
| static void map_prom_timers(void) |
| { |
| struct device_node *dp; |
| const unsigned int *addr; |
| |
| /* PROM timer node hangs out in the top level of device siblings... */ |
| dp = of_find_node_by_path("/"); |
| dp = dp->child; |
| while (dp) { |
| if (!strcmp(dp->name, "counter-timer")) |
| break; |
| dp = dp->sibling; |
| } |
| |
| /* Assume if node is not present, PROM uses different tick mechanism |
| * which we should not care about. |
| */ |
| if (!dp) { |
| prom_timers = (struct sun5_timer *) 0; |
| return; |
| } |
| |
| /* If PROM is really using this, it must be mapped by him. */ |
| addr = of_get_property(dp, "address", NULL); |
| if (!addr) { |
| prom_printf("PROM does not have timer mapped, trying to continue.\n"); |
| prom_timers = (struct sun5_timer *) 0; |
| return; |
| } |
| prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); |
| } |
| |
| static void kill_prom_timer(void) |
| { |
| if (!prom_timers) |
| return; |
| |
| /* Save them away for later. */ |
| prom_limit0 = prom_timers->limit0; |
| prom_limit1 = prom_timers->limit1; |
| |
| /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14. |
| * We turn both off here just to be paranoid. |
| */ |
| prom_timers->limit0 = 0; |
| prom_timers->limit1 = 0; |
| |
| /* Wheee, eat the interrupt packet too... */ |
| __asm__ __volatile__( |
| " mov 0x40, %%g2\n" |
| " ldxa [%%g0] %0, %%g1\n" |
| " ldxa [%%g2] %1, %%g1\n" |
| " stxa %%g0, [%%g0] %0\n" |
| " membar #Sync\n" |
| : /* no outputs */ |
| : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) |
| : "g1", "g2"); |
| } |
| |
| void notrace init_irqwork_curcpu(void) |
| { |
| int cpu = hard_smp_processor_id(); |
| |
| trap_block[cpu].irq_worklist_pa = 0UL; |
| } |
| |
| /* Please be very careful with register_one_mondo() and |
| * sun4v_register_mondo_queues(). |
| * |
| * On SMP this gets invoked from the CPU trampoline before |
| * the cpu has fully taken over the trap table from OBP, |
| * and it's kernel stack + %g6 thread register state is |
| * not fully cooked yet. |
| * |
| * Therefore you cannot make any OBP calls, not even prom_printf, |
| * from these two routines. |
| */ |
| static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask) |
| { |
| unsigned long num_entries = (qmask + 1) / 64; |
| unsigned long status; |
| |
| status = sun4v_cpu_qconf(type, paddr, num_entries); |
| if (status != HV_EOK) { |
| prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " |
| "err %lu\n", type, paddr, num_entries, status); |
| prom_halt(); |
| } |
| } |
| |
| void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu) |
| { |
| struct trap_per_cpu *tb = &trap_block[this_cpu]; |
| |
| register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, |
| tb->cpu_mondo_qmask); |
| register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, |
| tb->dev_mondo_qmask); |
| register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, |
| tb->resum_qmask); |
| register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, |
| tb->nonresum_qmask); |
| } |
| |
| /* Each queue region must be a power of 2 multiple of 64 bytes in |
| * size. The base real address must be aligned to the size of the |
| * region. Thus, an 8KB queue must be 8KB aligned, for example. |
| */ |
| static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask) |
| { |
| unsigned long size = PAGE_ALIGN(qmask + 1); |
| unsigned long order = get_order(size); |
| unsigned long p; |
| |
| p = __get_free_pages(GFP_KERNEL, order); |
| if (!p) { |
| prom_printf("SUN4V: Error, cannot allocate queue.\n"); |
| prom_halt(); |
| } |
| |
| *pa_ptr = __pa(p); |
| } |
| |
| static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb) |
| { |
| #ifdef CONFIG_SMP |
| unsigned long page; |
| |
| BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64)); |
| |
| page = get_zeroed_page(GFP_KERNEL); |
| if (!page) { |
| prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n"); |
| prom_halt(); |
| } |
| |
| tb->cpu_mondo_block_pa = __pa(page); |
| tb->cpu_list_pa = __pa(page + 64); |
| #endif |
| } |
| |
| /* Allocate mondo and error queues for all possible cpus. */ |
| static void __init sun4v_init_mondo_queues(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct trap_per_cpu *tb = &trap_block[cpu]; |
| |
| alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask); |
| alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask); |
| alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask); |
| alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask); |
| alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask); |
| alloc_one_queue(&tb->nonresum_kernel_buf_pa, |
| tb->nonresum_qmask); |
| } |
| } |
| |
| static void __init init_send_mondo_info(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct trap_per_cpu *tb = &trap_block[cpu]; |
| |
| init_cpu_send_mondo_info(tb); |
| } |
| } |
| |
| static struct irqaction timer_irq_action = { |
| .name = "timer", |
| }; |
| |
| /* Only invoked on boot processor. */ |
| void __init init_IRQ(void) |
| { |
| unsigned long size; |
| |
| map_prom_timers(); |
| kill_prom_timer(); |
| |
| size = sizeof(struct ino_bucket) * NUM_IVECS; |
| ivector_table = kzalloc(size, GFP_KERNEL); |
| if (!ivector_table) { |
| prom_printf("Fatal error, cannot allocate ivector_table\n"); |
| prom_halt(); |
| } |
| __flush_dcache_range((unsigned long) ivector_table, |
| ((unsigned long) ivector_table) + size); |
| |
| ivector_table_pa = __pa(ivector_table); |
| |
| if (tlb_type == hypervisor) |
| sun4v_init_mondo_queues(); |
| |
| init_send_mondo_info(); |
| |
| if (tlb_type == hypervisor) { |
| /* Load up the boot cpu's entries. */ |
| sun4v_register_mondo_queues(hard_smp_processor_id()); |
| } |
| |
| /* We need to clear any IRQ's pending in the soft interrupt |
| * registers, a spurious one could be left around from the |
| * PROM timer which we just disabled. |
| */ |
| clear_softint(get_softint()); |
| |
| /* Now that ivector table is initialized, it is safe |
| * to receive IRQ vector traps. We will normally take |
| * one or two right now, in case some device PROM used |
| * to boot us wants to speak to us. We just ignore them. |
| */ |
| __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" |
| "or %%g1, %0, %%g1\n\t" |
| "wrpr %%g1, 0x0, %%pstate" |
| : /* No outputs */ |
| : "i" (PSTATE_IE) |
| : "g1"); |
| |
| irq_desc[0].action = &timer_irq_action; |
| } |