| /* |
| * linux/include/asm-xtensa/pgtable.h |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version2 as |
| * published by the Free Software Foundation. |
| * |
| * Copyright (C) 2001 - 2005 Tensilica Inc. |
| */ |
| |
| #ifndef _XTENSA_PGTABLE_H |
| #define _XTENSA_PGTABLE_H |
| |
| #include <asm-generic/pgtable-nopmd.h> |
| #include <asm/page.h> |
| |
| /* |
| * We only use two ring levels, user and kernel space. |
| */ |
| |
| #define USER_RING 1 /* user ring level */ |
| #define KERNEL_RING 0 /* kernel ring level */ |
| |
| /* |
| * The Xtensa architecture port of Linux has a two-level page table system, |
| * i.e. the logical three-level Linux page table layout are folded. |
| * Each task has the following memory page tables: |
| * |
| * PGD table (page directory), ie. 3rd-level page table: |
| * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables |
| * (Architectures that don't have the PMD folded point to the PMD tables) |
| * |
| * The pointer to the PGD table for a given task can be retrieved from |
| * the task structure (struct task_struct*) t, e.g. current(): |
| * (t->mm ? t->mm : t->active_mm)->pgd |
| * |
| * PMD tables (page middle-directory), ie. 2nd-level page tables: |
| * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). |
| * |
| * PTE tables (page table entry), ie. 1st-level page tables: |
| * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE |
| * invalid_pte_table for absent mappings. |
| * |
| * The individual pages are 4 kB big with special pages for the empty_zero_page. |
| */ |
| #define PGDIR_SHIFT 22 |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * Entries per page directory level: we use two-level, so |
| * we don't really have any PMD directory physically. |
| */ |
| #define PTRS_PER_PTE 1024 |
| #define PTRS_PER_PTE_SHIFT 10 |
| #define PTRS_PER_PMD 1 |
| #define PTRS_PER_PGD 1024 |
| #define PGD_ORDER 0 |
| #define PMD_ORDER 0 |
| #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0 |
| #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) |
| |
| /* virtual memory area. We keep a distance to other memory regions to be |
| * on the safe side. We also use this area for cache aliasing. |
| */ |
| |
| // FIXME: virtual memory area must be configuration-dependent |
| |
| #define VMALLOC_START 0xC0000000 |
| #define VMALLOC_END 0xC7FF0000 |
| |
| /* Xtensa Linux config PTE layout (when present): |
| * 31-12: PPN |
| * 11-6: Software |
| * 5-4: RING |
| * 3-0: CA |
| * |
| * Similar to the Alpha and MIPS ports, we need to keep track of the ref |
| * and mod bits in software. We have a software "you can read |
| * from this page" bit, and a hardware one which actually lets the |
| * process read from the page. On the same token we have a software |
| * writable bit and the real hardware one which actually lets the |
| * process write to the page. |
| * |
| * See further below for PTE layout for swapped-out pages. |
| */ |
| |
| #define _PAGE_VALID (1<<0) /* hardware: page is accessible */ |
| #define _PAGE_WRENABLE (1<<1) /* hardware: page is writable */ |
| |
| /* None of these cache modes include MP coherency: */ |
| #define _PAGE_NO_CACHE (0<<2) /* bypass, non-speculative */ |
| #if XCHAL_DCACHE_IS_WRITEBACK |
| # define _PAGE_WRITEBACK (1<<2) /* write back */ |
| # define _PAGE_WRITETHRU (2<<2) /* write through */ |
| #else |
| # define _PAGE_WRITEBACK (1<<2) /* assume write through */ |
| # define _PAGE_WRITETHRU (1<<2) |
| #endif |
| #define _PAGE_NOALLOC (3<<2) /* don't allocate cache,if not cached */ |
| #define _CACHE_MASK (3<<2) |
| |
| #define _PAGE_USER (1<<4) /* user access (ring=1) */ |
| #define _PAGE_KERNEL (0<<4) /* kernel access (ring=0) */ |
| |
| /* Software */ |
| #define _PAGE_RW (1<<6) /* software: page writable */ |
| #define _PAGE_DIRTY (1<<7) /* software: page dirty */ |
| #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ |
| #define _PAGE_FILE (1<<9) /* nonlinear file mapping*/ |
| |
| #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY) |
| #define _PAGE_PRESENT ( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED) |
| |
| #ifdef CONFIG_MMU |
| |
| # define PAGE_NONE __pgprot(_PAGE_PRESENT) |
| # define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW) |
| # define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) |
| # define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) |
| # define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE) |
| # define PAGE_INVALID __pgprot(_PAGE_USER) |
| |
| # if (DCACHE_WAY_SIZE > PAGE_SIZE) |
| # define PAGE_DIRECTORY __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL) |
| # else |
| # define PAGE_DIRECTORY __pgprot(_PAGE_PRESENT | _PAGE_KERNEL) |
| # endif |
| |
| #else /* no mmu */ |
| |
| # define PAGE_NONE __pgprot(0) |
| # define PAGE_SHARED __pgprot(0) |
| # define PAGE_COPY __pgprot(0) |
| # define PAGE_READONLY __pgprot(0) |
| # define PAGE_KERNEL __pgprot(0) |
| |
| #endif |
| |
| /* |
| * On certain configurations of Xtensa MMUs (eg. the initial Linux config), |
| * the MMU can't do page protection for execute, and considers that the same as |
| * read. Also, write permissions may imply read permissions. |
| * What follows is the closest we can get by reasonable means.. |
| * See linux/mm/mmap.c for protection_map[] array that uses these definitions. |
| */ |
| #define __P000 PAGE_NONE /* private --- */ |
| #define __P001 PAGE_READONLY /* private --r */ |
| #define __P010 PAGE_COPY /* private -w- */ |
| #define __P011 PAGE_COPY /* private -wr */ |
| #define __P100 PAGE_READONLY /* private x-- */ |
| #define __P101 PAGE_READONLY /* private x-r */ |
| #define __P110 PAGE_COPY /* private xw- */ |
| #define __P111 PAGE_COPY /* private xwr */ |
| |
| #define __S000 PAGE_NONE /* shared --- */ |
| #define __S001 PAGE_READONLY /* shared --r */ |
| #define __S010 PAGE_SHARED /* shared -w- */ |
| #define __S011 PAGE_SHARED /* shared -wr */ |
| #define __S100 PAGE_READONLY /* shared x-- */ |
| #define __S101 PAGE_READONLY /* shared x-r */ |
| #define __S110 PAGE_SHARED /* shared xw- */ |
| #define __S111 PAGE_SHARED /* shared xwr */ |
| |
| #ifndef __ASSEMBLY__ |
| |
| #define pte_ERROR(e) \ |
| printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) |
| #define pgd_ERROR(e) \ |
| printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| extern unsigned long empty_zero_page[1024]; |
| |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; |
| |
| /* |
| * The pmd contains the kernel virtual address of the pte page. |
| */ |
| #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) |
| #define pmd_page(pmd) virt_to_page(pmd_val(pmd)) |
| |
| /* |
| * The following only work if pte_present() is true. |
| */ |
| #define pte_none(pte) (!(pte_val(pte) ^ _PAGE_USER)) |
| #define pte_present(pte) (pte_val(pte) & _PAGE_VALID) |
| #define pte_clear(mm,addr,ptep) \ |
| do { update_pte(ptep, __pte(_PAGE_USER)); } while(0) |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) |
| #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) |
| #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) |
| |
| /* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */ |
| |
| static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } |
| static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; } |
| static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; } |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) |
| #define pte_same(a,b) (pte_val(a) == pte_val(b)) |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) |
| #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); |
| } |
| |
| /* |
| * Certain architectures need to do special things when pte's |
| * within a page table are directly modified. Thus, the following |
| * hook is made available. |
| */ |
| static inline void update_pte(pte_t *ptep, pte_t pteval) |
| { |
| *ptep = pteval; |
| #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK |
| __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep)); |
| #endif |
| } |
| |
| struct mm_struct; |
| |
| static inline void |
| set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) |
| { |
| update_pte(ptep, pteval); |
| } |
| |
| |
| static inline void |
| set_pmd(pmd_t *pmdp, pmd_t pmdval) |
| { |
| *pmdp = pmdval; |
| #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK |
| __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp)); |
| #endif |
| } |
| |
| struct vm_area_struct; |
| |
| static inline int |
| ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, |
| pte_t *ptep) |
| { |
| pte_t pte = *ptep; |
| if (!pte_young(pte)) |
| return 0; |
| update_pte(ptep, pte_mkold(pte)); |
| return 1; |
| } |
| |
| static inline int |
| ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, |
| pte_t *ptep) |
| { |
| pte_t pte = *ptep; |
| if (!pte_dirty(pte)) |
| return 0; |
| update_pte(ptep, pte_mkclean(pte)); |
| return 1; |
| } |
| |
| static inline pte_t |
| ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| pte_t pte = *ptep; |
| pte_clear(mm, addr, ptep); |
| return pte; |
| } |
| |
| static inline void |
| ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| pte_t pte = *ptep; |
| update_pte(ptep, pte_wrprotect(pte)); |
| } |
| |
| /* to find an entry in a kernel page-table-directory */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* to find an entry in a page-table-directory */ |
| #define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address)) |
| |
| #define pgd_index(address) ((address) >> PGDIR_SHIFT) |
| |
| /* Find an entry in the second-level page table.. */ |
| #define pmd_offset(dir,address) ((pmd_t*)(dir)) |
| |
| /* Find an entry in the third-level page table.. */ |
| #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| #define pte_offset_kernel(dir,addr) \ |
| ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr)) |
| #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr)) |
| #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr)) |
| |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| |
| |
| /* |
| * Encode and decode a swap entry. |
| * Each PTE in a process VM's page table is either: |
| * "present" -- valid and not swapped out, protection bits are meaningful; |
| * "not present" -- which further subdivides in these two cases: |
| * "none" -- no mapping at all; identified by pte_none(), set by pte_clear( |
| * "swapped out" -- the page is swapped out, and the SWP macros below |
| * are used to store swap file info in the PTE itself. |
| * |
| * In the Xtensa processor MMU, any PTE entries in user space (or anywhere |
| * in virtual memory that can map differently across address spaces) |
| * must have a correct ring value that represents the RASID field that |
| * is changed when switching address spaces. Eg. such PTE entries cannot |
| * be set to ring zero, because that can cause a (global) kernel ASID |
| * entry to be created in the TLBs (even with invalid cache attribute), |
| * potentially causing a multihit exception when going back to another |
| * address space that mapped the same virtual address at another ring. |
| * |
| * SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs. |
| * We also avoid using the _PAGE_VALID bit which must be zero for non-present |
| * pages. |
| * |
| * We end up with the following available bits: 1..3 and 7..31. |
| * We don't bother with 1..3 for now (we can use them later if needed), |
| * and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits |
| * for SWP_OFFSET. At least 5 bits are needed for SWP_TYPE, because it |
| * is currently implemented as an index into swap_info[MAX_SWAPFILES] |
| * and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>. |
| * However, for some reason all other architectures in the 2.4 kernel |
| * reserve either 6, 7, or 8 bits so I'll not detract from that for now. :) |
| * SWP_OFFSET is an offset into the swap file in page-size units, so |
| * with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB. |
| * |
| * FIXME: 2 GB isn't very big. Other bits can be used to allow |
| * larger swap sizes. In the meantime, it appears relatively easy to get |
| * around the 2 GB limitation by simply using multiple swap files. |
| */ |
| |
| #define __swp_type(entry) (((entry).val >> 7) & 0x3f) |
| #define __swp_offset(entry) ((entry).val >> 13) |
| #define __swp_entry(type,offs) ((swp_entry_t) {((type) << 7) | ((offs) << 13)}) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #define PTE_FILE_MAX_BITS 29 |
| #define pte_to_pgoff(pte) (pte_val(pte) >> 3) |
| #define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) |
| |
| |
| #endif /* !defined (__ASSEMBLY__) */ |
| |
| |
| #ifdef __ASSEMBLY__ |
| |
| /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), |
| * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), |
| * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) |
| * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) |
| * |
| * Note: We require an additional temporary register which can be the same as |
| * the register that holds the address. |
| * |
| * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) |
| * |
| */ |
| #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT |
| #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT |
| |
| #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ |
| _PGD_INDEX(tmp, adr); \ |
| addx4 mm, tmp, mm |
| |
| #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ |
| srli pmd, pmd, PAGE_SHIFT; \ |
| slli pmd, pmd, PAGE_SHIFT; \ |
| addx4 pmd, tmp, pmd |
| |
| #else |
| |
| extern void paging_init(void); |
| |
| #define kern_addr_valid(addr) (1) |
| |
| extern void update_mmu_cache(struct vm_area_struct * vma, |
| unsigned long address, pte_t pte); |
| |
| /* |
| * remap a physical page `pfn' of size `size' with page protection `prot' |
| * into virtual address `from' |
| */ |
| #define io_remap_pfn_range(vma,from,pfn,size,prot) \ |
| remap_pfn_range(vma, from, pfn, size, prot) |
| |
| |
| /* No page table caches to init */ |
| |
| #define pgtable_cache_init() do { } while (0) |
| |
| typedef pte_t *pte_addr_t; |
| |
| #endif /* !defined (__ASSEMBLY__) */ |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| #define __HAVE_ARCH_PTEP_MKDIRTY |
| #define __HAVE_ARCH_PTE_SAME |
| |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* _XTENSA_PGTABLE_H */ |