| /***************************************************************************\ |
| |* *| |
| |* Copyright 1993-1999 NVIDIA, Corporation. All rights reserved. *| |
| |* *| |
| |* NOTICE TO USER: The source code is copyrighted under U.S. and *| |
| |* international laws. Users and possessors of this source code are *| |
| |* hereby granted a nonexclusive, royalty-free copyright license to *| |
| |* use this code in individual and commercial software. *| |
| |* *| |
| |* Any use of this source code must include, in the user documenta- *| |
| |* tion and internal comments to the code, notices to the end user *| |
| |* as follows: *| |
| |* *| |
| |* Copyright 1993-1999 NVIDIA, Corporation. All rights reserved. *| |
| |* *| |
| |* NVIDIA, CORPORATION MAKES NO REPRESENTATION ABOUT THE SUITABILITY *| |
| |* OF THIS SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" *| |
| |* WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NVIDIA, CORPOR- *| |
| |* ATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE, *| |
| |* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGE- *| |
| |* MENT, AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL *| |
| |* NVIDIA, CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT, INCI- *| |
| |* DENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RE- *| |
| |* SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION *| |
| |* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF *| |
| |* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE. *| |
| |* *| |
| |* U.S. Government End Users. This source code is a "commercial *| |
| |* item," as that term is defined at 48 C.F.R. 2.101 (OCT 1995), *| |
| |* consisting of "commercial computer software" and "commercial *| |
| |* computer software documentation," as such terms are used in *| |
| |* 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Govern- *| |
| |* ment only as a commercial end item. Consistent with 48 C.F.R. *| |
| |* 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), *| |
| |* all U.S. Government End Users acquire the source code with only *| |
| |* those rights set forth herein. *| |
| |* *| |
| \***************************************************************************/ |
| |
| /* |
| * GPL licensing note -- nVidia is allowing a liberal interpretation of |
| * the documentation restriction above, to merely say that this nVidia's |
| * copyright and disclaimer should be included with all code derived |
| * from this source. -- Jeff Garzik <jgarzik@pobox.com>, 01/Nov/99 |
| */ |
| |
| /* $XFree86: xc/programs/Xserver/hw/xfree86/drivers/nv/riva_hw.c,v 1.33 2002/08/05 20:47:06 mvojkovi Exp $ */ |
| |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include "riva_hw.h" |
| #include "riva_tbl.h" |
| #include "nv_type.h" |
| |
| /* |
| * This file is an OS-agnostic file used to make RIVA 128 and RIVA TNT |
| * operate identically (except TNT has more memory and better 3D quality. |
| */ |
| static int nv3Busy |
| ( |
| RIVA_HW_INST *chip |
| ) |
| { |
| return ((NV_RD32(&chip->Rop->FifoFree, 0) < chip->FifoEmptyCount) || |
| NV_RD32(&chip->PGRAPH[0x000006B0/4], 0) & 0x01); |
| } |
| static int nv4Busy |
| ( |
| RIVA_HW_INST *chip |
| ) |
| { |
| return ((NV_RD32(&chip->Rop->FifoFree, 0) < chip->FifoEmptyCount) || |
| NV_RD32(&chip->PGRAPH[0x00000700/4], 0) & 0x01); |
| } |
| static int nv10Busy |
| ( |
| RIVA_HW_INST *chip |
| ) |
| { |
| return ((NV_RD32(&chip->Rop->FifoFree, 0) < chip->FifoEmptyCount) || |
| NV_RD32(&chip->PGRAPH[0x00000700/4], 0) & 0x01); |
| } |
| |
| static void vgaLockUnlock |
| ( |
| RIVA_HW_INST *chip, |
| int Lock |
| ) |
| { |
| U008 cr11; |
| VGA_WR08(chip->PCIO, 0x3D4, 0x11); |
| cr11 = VGA_RD08(chip->PCIO, 0x3D5); |
| if(Lock) cr11 |= 0x80; |
| else cr11 &= ~0x80; |
| VGA_WR08(chip->PCIO, 0x3D5, cr11); |
| } |
| static void nv3LockUnlock |
| ( |
| RIVA_HW_INST *chip, |
| int Lock |
| ) |
| { |
| VGA_WR08(chip->PVIO, 0x3C4, 0x06); |
| VGA_WR08(chip->PVIO, 0x3C5, Lock ? 0x99 : 0x57); |
| vgaLockUnlock(chip, Lock); |
| } |
| static void nv4LockUnlock |
| ( |
| RIVA_HW_INST *chip, |
| int Lock |
| ) |
| { |
| VGA_WR08(chip->PCIO, 0x3D4, 0x1F); |
| VGA_WR08(chip->PCIO, 0x3D5, Lock ? 0x99 : 0x57); |
| vgaLockUnlock(chip, Lock); |
| } |
| |
| static int ShowHideCursor |
| ( |
| RIVA_HW_INST *chip, |
| int ShowHide |
| ) |
| { |
| int cursor; |
| cursor = chip->CurrentState->cursor1; |
| chip->CurrentState->cursor1 = (chip->CurrentState->cursor1 & 0xFE) | |
| (ShowHide & 0x01); |
| VGA_WR08(chip->PCIO, 0x3D4, 0x31); |
| VGA_WR08(chip->PCIO, 0x3D5, chip->CurrentState->cursor1); |
| return (cursor & 0x01); |
| } |
| |
| /****************************************************************************\ |
| * * |
| * The video arbitration routines calculate some "magic" numbers. Fixes * |
| * the snow seen when accessing the framebuffer without it. * |
| * It just works (I hope). * |
| * * |
| \****************************************************************************/ |
| |
| #define DEFAULT_GR_LWM 100 |
| #define DEFAULT_VID_LWM 100 |
| #define DEFAULT_GR_BURST_SIZE 256 |
| #define DEFAULT_VID_BURST_SIZE 128 |
| #define VIDEO 0 |
| #define GRAPHICS 1 |
| #define MPORT 2 |
| #define ENGINE 3 |
| #define GFIFO_SIZE 320 |
| #define GFIFO_SIZE_128 256 |
| #define MFIFO_SIZE 120 |
| #define VFIFO_SIZE 256 |
| |
| typedef struct { |
| int gdrain_rate; |
| int vdrain_rate; |
| int mdrain_rate; |
| int gburst_size; |
| int vburst_size; |
| char vid_en; |
| char gr_en; |
| int wcmocc, wcgocc, wcvocc, wcvlwm, wcglwm; |
| int by_gfacc; |
| char vid_only_once; |
| char gr_only_once; |
| char first_vacc; |
| char first_gacc; |
| char first_macc; |
| int vocc; |
| int gocc; |
| int mocc; |
| char cur; |
| char engine_en; |
| char converged; |
| int priority; |
| } nv3_arb_info; |
| typedef struct { |
| int graphics_lwm; |
| int video_lwm; |
| int graphics_burst_size; |
| int video_burst_size; |
| int graphics_hi_priority; |
| int media_hi_priority; |
| int rtl_values; |
| int valid; |
| } nv3_fifo_info; |
| typedef struct { |
| char pix_bpp; |
| char enable_video; |
| char gr_during_vid; |
| char enable_mp; |
| int memory_width; |
| int video_scale; |
| int pclk_khz; |
| int mclk_khz; |
| int mem_page_miss; |
| int mem_latency; |
| char mem_aligned; |
| } nv3_sim_state; |
| typedef struct { |
| int graphics_lwm; |
| int video_lwm; |
| int graphics_burst_size; |
| int video_burst_size; |
| int valid; |
| } nv4_fifo_info; |
| typedef struct { |
| int pclk_khz; |
| int mclk_khz; |
| int nvclk_khz; |
| char mem_page_miss; |
| char mem_latency; |
| int memory_width; |
| char enable_video; |
| char gr_during_vid; |
| char pix_bpp; |
| char mem_aligned; |
| char enable_mp; |
| } nv4_sim_state; |
| typedef struct { |
| int graphics_lwm; |
| int video_lwm; |
| int graphics_burst_size; |
| int video_burst_size; |
| int valid; |
| } nv10_fifo_info; |
| typedef struct { |
| int pclk_khz; |
| int mclk_khz; |
| int nvclk_khz; |
| char mem_page_miss; |
| char mem_latency; |
| int memory_type; |
| int memory_width; |
| char enable_video; |
| char gr_during_vid; |
| char pix_bpp; |
| char mem_aligned; |
| char enable_mp; |
| } nv10_sim_state; |
| static int nv3_iterate(nv3_fifo_info *res_info, nv3_sim_state * state, nv3_arb_info *ainfo) |
| { |
| int iter = 0; |
| int tmp; |
| int vfsize, mfsize, gfsize; |
| int mburst_size = 32; |
| int mmisses, gmisses, vmisses; |
| int misses; |
| int vlwm, glwm, mlwm; |
| int last, next, cur; |
| int max_gfsize ; |
| long ns; |
| |
| vlwm = 0; |
| glwm = 0; |
| mlwm = 0; |
| vfsize = 0; |
| gfsize = 0; |
| cur = ainfo->cur; |
| mmisses = 2; |
| gmisses = 2; |
| vmisses = 2; |
| if (ainfo->gburst_size == 128) max_gfsize = GFIFO_SIZE_128; |
| else max_gfsize = GFIFO_SIZE; |
| max_gfsize = GFIFO_SIZE; |
| while (1) |
| { |
| if (ainfo->vid_en) |
| { |
| if (ainfo->wcvocc > ainfo->vocc) ainfo->wcvocc = ainfo->vocc; |
| if (ainfo->wcvlwm > vlwm) ainfo->wcvlwm = vlwm ; |
| ns = 1000000 * ainfo->vburst_size/(state->memory_width/8)/state->mclk_khz; |
| vfsize = ns * ainfo->vdrain_rate / 1000000; |
| vfsize = ainfo->wcvlwm - ainfo->vburst_size + vfsize; |
| } |
| if (state->enable_mp) |
| { |
| if (ainfo->wcmocc > ainfo->mocc) ainfo->wcmocc = ainfo->mocc; |
| } |
| if (ainfo->gr_en) |
| { |
| if (ainfo->wcglwm > glwm) ainfo->wcglwm = glwm ; |
| if (ainfo->wcgocc > ainfo->gocc) ainfo->wcgocc = ainfo->gocc; |
| ns = 1000000 * (ainfo->gburst_size/(state->memory_width/8))/state->mclk_khz; |
| gfsize = (ns * (long) ainfo->gdrain_rate)/1000000; |
| gfsize = ainfo->wcglwm - ainfo->gburst_size + gfsize; |
| } |
| mfsize = 0; |
| if (!state->gr_during_vid && ainfo->vid_en) |
| if (ainfo->vid_en && (ainfo->vocc < 0) && !ainfo->vid_only_once) |
| next = VIDEO; |
| else if (ainfo->mocc < 0) |
| next = MPORT; |
| else if (ainfo->gocc< ainfo->by_gfacc) |
| next = GRAPHICS; |
| else return (0); |
| else switch (ainfo->priority) |
| { |
| case VIDEO: |
| if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once) |
| next = VIDEO; |
| else if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once) |
| next = GRAPHICS; |
| else if (ainfo->mocc<0) |
| next = MPORT; |
| else return (0); |
| break; |
| case GRAPHICS: |
| if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once) |
| next = GRAPHICS; |
| else if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once) |
| next = VIDEO; |
| else if (ainfo->mocc<0) |
| next = MPORT; |
| else return (0); |
| break; |
| default: |
| if (ainfo->mocc<0) |
| next = MPORT; |
| else if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once) |
| next = GRAPHICS; |
| else if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once) |
| next = VIDEO; |
| else return (0); |
| break; |
| } |
| last = cur; |
| cur = next; |
| iter++; |
| switch (cur) |
| { |
| case VIDEO: |
| if (last==cur) misses = 0; |
| else if (ainfo->first_vacc) misses = vmisses; |
| else misses = 1; |
| ainfo->first_vacc = 0; |
| if (last!=cur) |
| { |
| ns = 1000000 * (vmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz; |
| vlwm = ns * ainfo->vdrain_rate/ 1000000; |
| vlwm = ainfo->vocc - vlwm; |
| } |
| ns = 1000000*(misses*state->mem_page_miss + ainfo->vburst_size)/(state->memory_width/8)/state->mclk_khz; |
| ainfo->vocc = ainfo->vocc + ainfo->vburst_size - ns*ainfo->vdrain_rate/1000000; |
| ainfo->gocc = ainfo->gocc - ns*ainfo->gdrain_rate/1000000; |
| ainfo->mocc = ainfo->mocc - ns*ainfo->mdrain_rate/1000000; |
| break; |
| case GRAPHICS: |
| if (last==cur) misses = 0; |
| else if (ainfo->first_gacc) misses = gmisses; |
| else misses = 1; |
| ainfo->first_gacc = 0; |
| if (last!=cur) |
| { |
| ns = 1000000*(gmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz ; |
| glwm = ns * ainfo->gdrain_rate/1000000; |
| glwm = ainfo->gocc - glwm; |
| } |
| ns = 1000000*(misses*state->mem_page_miss + ainfo->gburst_size/(state->memory_width/8))/state->mclk_khz; |
| ainfo->vocc = ainfo->vocc + 0 - ns*ainfo->vdrain_rate/1000000; |
| ainfo->gocc = ainfo->gocc + ainfo->gburst_size - ns*ainfo->gdrain_rate/1000000; |
| ainfo->mocc = ainfo->mocc + 0 - ns*ainfo->mdrain_rate/1000000; |
| break; |
| default: |
| if (last==cur) misses = 0; |
| else if (ainfo->first_macc) misses = mmisses; |
| else misses = 1; |
| ainfo->first_macc = 0; |
| ns = 1000000*(misses*state->mem_page_miss + mburst_size/(state->memory_width/8))/state->mclk_khz; |
| ainfo->vocc = ainfo->vocc + 0 - ns*ainfo->vdrain_rate/1000000; |
| ainfo->gocc = ainfo->gocc + 0 - ns*ainfo->gdrain_rate/1000000; |
| ainfo->mocc = ainfo->mocc + mburst_size - ns*ainfo->mdrain_rate/1000000; |
| break; |
| } |
| if (iter>100) |
| { |
| ainfo->converged = 0; |
| return (1); |
| } |
| ns = 1000000*ainfo->gburst_size/(state->memory_width/8)/state->mclk_khz; |
| tmp = ns * ainfo->gdrain_rate/1000000; |
| if (abs(ainfo->gburst_size) + ((abs(ainfo->wcglwm) + 16 ) & ~0x7) - tmp > max_gfsize) |
| { |
| ainfo->converged = 0; |
| return (1); |
| } |
| ns = 1000000*ainfo->vburst_size/(state->memory_width/8)/state->mclk_khz; |
| tmp = ns * ainfo->vdrain_rate/1000000; |
| if (abs(ainfo->vburst_size) + (abs(ainfo->wcvlwm + 32) & ~0xf) - tmp> VFIFO_SIZE) |
| { |
| ainfo->converged = 0; |
| return (1); |
| } |
| if (abs(ainfo->gocc) > max_gfsize) |
| { |
| ainfo->converged = 0; |
| return (1); |
| } |
| if (abs(ainfo->vocc) > VFIFO_SIZE) |
| { |
| ainfo->converged = 0; |
| return (1); |
| } |
| if (abs(ainfo->mocc) > MFIFO_SIZE) |
| { |
| ainfo->converged = 0; |
| return (1); |
| } |
| if (abs(vfsize) > VFIFO_SIZE) |
| { |
| ainfo->converged = 0; |
| return (1); |
| } |
| if (abs(gfsize) > max_gfsize) |
| { |
| ainfo->converged = 0; |
| return (1); |
| } |
| if (abs(mfsize) > MFIFO_SIZE) |
| { |
| ainfo->converged = 0; |
| return (1); |
| } |
| } |
| } |
| static char nv3_arb(nv3_fifo_info * res_info, nv3_sim_state * state, nv3_arb_info *ainfo) |
| { |
| long ens, vns, mns, gns; |
| int mmisses, gmisses, vmisses, eburst_size, mburst_size; |
| int refresh_cycle; |
| |
| refresh_cycle = 0; |
| refresh_cycle = 2*(state->mclk_khz/state->pclk_khz) + 5; |
| mmisses = 2; |
| if (state->mem_aligned) gmisses = 2; |
| else gmisses = 3; |
| vmisses = 2; |
| eburst_size = state->memory_width * 1; |
| mburst_size = 32; |
| gns = 1000000 * (gmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz; |
| ainfo->by_gfacc = gns*ainfo->gdrain_rate/1000000; |
| ainfo->wcmocc = 0; |
| ainfo->wcgocc = 0; |
| ainfo->wcvocc = 0; |
| ainfo->wcvlwm = 0; |
| ainfo->wcglwm = 0; |
| ainfo->engine_en = 1; |
| ainfo->converged = 1; |
| if (ainfo->engine_en) |
| { |
| ens = 1000000*(state->mem_page_miss + eburst_size/(state->memory_width/8) +refresh_cycle)/state->mclk_khz; |
| ainfo->mocc = state->enable_mp ? 0-ens*ainfo->mdrain_rate/1000000 : 0; |
| ainfo->vocc = ainfo->vid_en ? 0-ens*ainfo->vdrain_rate/1000000 : 0; |
| ainfo->gocc = ainfo->gr_en ? 0-ens*ainfo->gdrain_rate/1000000 : 0; |
| ainfo->cur = ENGINE; |
| ainfo->first_vacc = 1; |
| ainfo->first_gacc = 1; |
| ainfo->first_macc = 1; |
| nv3_iterate(res_info, state,ainfo); |
| } |
| if (state->enable_mp) |
| { |
| mns = 1000000 * (mmisses*state->mem_page_miss + mburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz; |
| ainfo->mocc = state->enable_mp ? 0 : mburst_size - mns*ainfo->mdrain_rate/1000000; |
| ainfo->vocc = ainfo->vid_en ? 0 : 0- mns*ainfo->vdrain_rate/1000000; |
| ainfo->gocc = ainfo->gr_en ? 0: 0- mns*ainfo->gdrain_rate/1000000; |
| ainfo->cur = MPORT; |
| ainfo->first_vacc = 1; |
| ainfo->first_gacc = 1; |
| ainfo->first_macc = 0; |
| nv3_iterate(res_info, state,ainfo); |
| } |
| if (ainfo->gr_en) |
| { |
| ainfo->first_vacc = 1; |
| ainfo->first_gacc = 0; |
| ainfo->first_macc = 1; |
| gns = 1000000*(gmisses*state->mem_page_miss + ainfo->gburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz; |
| ainfo->gocc = ainfo->gburst_size - gns*ainfo->gdrain_rate/1000000; |
| ainfo->vocc = ainfo->vid_en? 0-gns*ainfo->vdrain_rate/1000000 : 0; |
| ainfo->mocc = state->enable_mp ? 0-gns*ainfo->mdrain_rate/1000000: 0; |
| ainfo->cur = GRAPHICS; |
| nv3_iterate(res_info, state,ainfo); |
| } |
| if (ainfo->vid_en) |
| { |
| ainfo->first_vacc = 0; |
| ainfo->first_gacc = 1; |
| ainfo->first_macc = 1; |
| vns = 1000000*(vmisses*state->mem_page_miss + ainfo->vburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz; |
| ainfo->vocc = ainfo->vburst_size - vns*ainfo->vdrain_rate/1000000; |
| ainfo->gocc = ainfo->gr_en? (0-vns*ainfo->gdrain_rate/1000000) : 0; |
| ainfo->mocc = state->enable_mp? 0-vns*ainfo->mdrain_rate/1000000 :0 ; |
| ainfo->cur = VIDEO; |
| nv3_iterate(res_info, state, ainfo); |
| } |
| if (ainfo->converged) |
| { |
| res_info->graphics_lwm = (int)abs(ainfo->wcglwm) + 16; |
| res_info->video_lwm = (int)abs(ainfo->wcvlwm) + 32; |
| res_info->graphics_burst_size = ainfo->gburst_size; |
| res_info->video_burst_size = ainfo->vburst_size; |
| res_info->graphics_hi_priority = (ainfo->priority == GRAPHICS); |
| res_info->media_hi_priority = (ainfo->priority == MPORT); |
| if (res_info->video_lwm > 160) |
| { |
| res_info->graphics_lwm = 256; |
| res_info->video_lwm = 128; |
| res_info->graphics_burst_size = 64; |
| res_info->video_burst_size = 64; |
| res_info->graphics_hi_priority = 0; |
| res_info->media_hi_priority = 0; |
| ainfo->converged = 0; |
| return (0); |
| } |
| if (res_info->video_lwm > 128) |
| { |
| res_info->video_lwm = 128; |
| } |
| return (1); |
| } |
| else |
| { |
| res_info->graphics_lwm = 256; |
| res_info->video_lwm = 128; |
| res_info->graphics_burst_size = 64; |
| res_info->video_burst_size = 64; |
| res_info->graphics_hi_priority = 0; |
| res_info->media_hi_priority = 0; |
| return (0); |
| } |
| } |
| static char nv3_get_param(nv3_fifo_info *res_info, nv3_sim_state * state, nv3_arb_info *ainfo) |
| { |
| int done, g,v, p; |
| |
| done = 0; |
| for (p=0; p < 2; p++) |
| { |
| for (g=128 ; g > 32; g= g>> 1) |
| { |
| for (v=128; v >=32; v = v>> 1) |
| { |
| ainfo->priority = p; |
| ainfo->gburst_size = g; |
| ainfo->vburst_size = v; |
| done = nv3_arb(res_info, state,ainfo); |
| if (done && (g==128)) |
| if ((res_info->graphics_lwm + g) > 256) |
| done = 0; |
| if (done) |
| goto Done; |
| } |
| } |
| } |
| |
| Done: |
| return done; |
| } |
| static void nv3CalcArbitration |
| ( |
| nv3_fifo_info * res_info, |
| nv3_sim_state * state |
| ) |
| { |
| nv3_fifo_info save_info; |
| nv3_arb_info ainfo; |
| char res_gr, res_vid; |
| |
| ainfo.gr_en = 1; |
| ainfo.vid_en = state->enable_video; |
| ainfo.vid_only_once = 0; |
| ainfo.gr_only_once = 0; |
| ainfo.gdrain_rate = (int) state->pclk_khz * (state->pix_bpp/8); |
| ainfo.vdrain_rate = (int) state->pclk_khz * 2; |
| if (state->video_scale != 0) |
| ainfo.vdrain_rate = ainfo.vdrain_rate/state->video_scale; |
| ainfo.mdrain_rate = 33000; |
| res_info->rtl_values = 0; |
| if (!state->gr_during_vid && state->enable_video) |
| { |
| ainfo.gr_only_once = 1; |
| ainfo.gr_en = 1; |
| ainfo.gdrain_rate = 0; |
| res_vid = nv3_get_param(res_info, state, &ainfo); |
| res_vid = ainfo.converged; |
| save_info.video_lwm = res_info->video_lwm; |
| save_info.video_burst_size = res_info->video_burst_size; |
| ainfo.vid_en = 1; |
| ainfo.vid_only_once = 1; |
| ainfo.gr_en = 1; |
| ainfo.gdrain_rate = (int) state->pclk_khz * (state->pix_bpp/8); |
| ainfo.vdrain_rate = 0; |
| res_gr = nv3_get_param(res_info, state, &ainfo); |
| res_gr = ainfo.converged; |
| res_info->video_lwm = save_info.video_lwm; |
| res_info->video_burst_size = save_info.video_burst_size; |
| res_info->valid = res_gr & res_vid; |
| } |
| else |
| { |
| if (!ainfo.gr_en) ainfo.gdrain_rate = 0; |
| if (!ainfo.vid_en) ainfo.vdrain_rate = 0; |
| res_gr = nv3_get_param(res_info, state, &ainfo); |
| res_info->valid = ainfo.converged; |
| } |
| } |
| static void nv3UpdateArbitrationSettings |
| ( |
| unsigned VClk, |
| unsigned pixelDepth, |
| unsigned *burst, |
| unsigned *lwm, |
| RIVA_HW_INST *chip |
| ) |
| { |
| nv3_fifo_info fifo_data; |
| nv3_sim_state sim_data; |
| unsigned int M, N, P, pll, MClk; |
| |
| pll = NV_RD32(&chip->PRAMDAC0[0x00000504/4], 0); |
| M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; |
| MClk = (N * chip->CrystalFreqKHz / M) >> P; |
| sim_data.pix_bpp = (char)pixelDepth; |
| sim_data.enable_video = 0; |
| sim_data.enable_mp = 0; |
| sim_data.video_scale = 1; |
| sim_data.memory_width = (NV_RD32(&chip->PEXTDEV[0x00000000/4], 0) & 0x10) ? |
| 128 : 64; |
| sim_data.memory_width = 128; |
| |
| sim_data.mem_latency = 9; |
| sim_data.mem_aligned = 1; |
| sim_data.mem_page_miss = 11; |
| sim_data.gr_during_vid = 0; |
| sim_data.pclk_khz = VClk; |
| sim_data.mclk_khz = MClk; |
| nv3CalcArbitration(&fifo_data, &sim_data); |
| if (fifo_data.valid) |
| { |
| int b = fifo_data.graphics_burst_size >> 4; |
| *burst = 0; |
| while (b >>= 1) |
| (*burst)++; |
| *lwm = fifo_data.graphics_lwm >> 3; |
| } |
| else |
| { |
| *lwm = 0x24; |
| *burst = 0x2; |
| } |
| } |
| static void nv4CalcArbitration |
| ( |
| nv4_fifo_info *fifo, |
| nv4_sim_state *arb |
| ) |
| { |
| int data, pagemiss, cas,width, video_enable, color_key_enable, bpp, align; |
| int nvclks, mclks, pclks, vpagemiss, crtpagemiss, vbs; |
| int found, mclk_extra, mclk_loop, cbs, m1, p1; |
| int mclk_freq, pclk_freq, nvclk_freq, mp_enable; |
| int us_m, us_n, us_p, video_drain_rate, crtc_drain_rate; |
| int vpm_us, us_video, vlwm, video_fill_us, cpm_us, us_crt,clwm; |
| int craw, vraw; |
| |
| fifo->valid = 1; |
| pclk_freq = arb->pclk_khz; |
| mclk_freq = arb->mclk_khz; |
| nvclk_freq = arb->nvclk_khz; |
| pagemiss = arb->mem_page_miss; |
| cas = arb->mem_latency; |
| width = arb->memory_width >> 6; |
| video_enable = arb->enable_video; |
| color_key_enable = arb->gr_during_vid; |
| bpp = arb->pix_bpp; |
| align = arb->mem_aligned; |
| mp_enable = arb->enable_mp; |
| clwm = 0; |
| vlwm = 0; |
| cbs = 128; |
| pclks = 2; |
| nvclks = 2; |
| nvclks += 2; |
| nvclks += 1; |
| mclks = 5; |
| mclks += 3; |
| mclks += 1; |
| mclks += cas; |
| mclks += 1; |
| mclks += 1; |
| mclks += 1; |
| mclks += 1; |
| mclk_extra = 3; |
| nvclks += 2; |
| nvclks += 1; |
| nvclks += 1; |
| nvclks += 1; |
| if (mp_enable) |
| mclks+=4; |
| nvclks += 0; |
| pclks += 0; |
| found = 0; |
| vbs = 0; |
| while (found != 1) |
| { |
| fifo->valid = 1; |
| found = 1; |
| mclk_loop = mclks+mclk_extra; |
| us_m = mclk_loop *1000*1000 / mclk_freq; |
| us_n = nvclks*1000*1000 / nvclk_freq; |
| us_p = nvclks*1000*1000 / pclk_freq; |
| if (video_enable) |
| { |
| video_drain_rate = pclk_freq * 2; |
| crtc_drain_rate = pclk_freq * bpp/8; |
| vpagemiss = 2; |
| vpagemiss += 1; |
| crtpagemiss = 2; |
| vpm_us = (vpagemiss * pagemiss)*1000*1000/mclk_freq; |
| if (nvclk_freq * 2 > mclk_freq * width) |
| video_fill_us = cbs*1000*1000 / 16 / nvclk_freq ; |
| else |
| video_fill_us = cbs*1000*1000 / (8 * width) / mclk_freq; |
| us_video = vpm_us + us_m + us_n + us_p + video_fill_us; |
| vlwm = us_video * video_drain_rate/(1000*1000); |
| vlwm++; |
| vbs = 128; |
| if (vlwm > 128) vbs = 64; |
| if (vlwm > (256-64)) vbs = 32; |
| if (nvclk_freq * 2 > mclk_freq * width) |
| video_fill_us = vbs *1000*1000/ 16 / nvclk_freq ; |
| else |
| video_fill_us = vbs*1000*1000 / (8 * width) / mclk_freq; |
| cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; |
| us_crt = |
| us_video |
| +video_fill_us |
| +cpm_us |
| +us_m + us_n +us_p |
| ; |
| clwm = us_crt * crtc_drain_rate/(1000*1000); |
| clwm++; |
| } |
| else |
| { |
| crtc_drain_rate = pclk_freq * bpp/8; |
| crtpagemiss = 2; |
| crtpagemiss += 1; |
| cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; |
| us_crt = cpm_us + us_m + us_n + us_p ; |
| clwm = us_crt * crtc_drain_rate/(1000*1000); |
| clwm++; |
| } |
| m1 = clwm + cbs - 512; |
| p1 = m1 * pclk_freq / mclk_freq; |
| p1 = p1 * bpp / 8; |
| if ((p1 < m1) && (m1 > 0)) |
| { |
| fifo->valid = 0; |
| found = 0; |
| if (mclk_extra ==0) found = 1; |
| mclk_extra--; |
| } |
| else if (video_enable) |
| { |
| if ((clwm > 511) || (vlwm > 255)) |
| { |
| fifo->valid = 0; |
| found = 0; |
| if (mclk_extra ==0) found = 1; |
| mclk_extra--; |
| } |
| } |
| else |
| { |
| if (clwm > 519) |
| { |
| fifo->valid = 0; |
| found = 0; |
| if (mclk_extra ==0) found = 1; |
| mclk_extra--; |
| } |
| } |
| craw = clwm; |
| vraw = vlwm; |
| if (clwm < 384) clwm = 384; |
| if (vlwm < 128) vlwm = 128; |
| data = (int)(clwm); |
| fifo->graphics_lwm = data; |
| fifo->graphics_burst_size = 128; |
| data = (int)((vlwm+15)); |
| fifo->video_lwm = data; |
| fifo->video_burst_size = vbs; |
| } |
| } |
| static void nv4UpdateArbitrationSettings |
| ( |
| unsigned VClk, |
| unsigned pixelDepth, |
| unsigned *burst, |
| unsigned *lwm, |
| RIVA_HW_INST *chip |
| ) |
| { |
| nv4_fifo_info fifo_data; |
| nv4_sim_state sim_data; |
| unsigned int M, N, P, pll, MClk, NVClk, cfg1; |
| |
| pll = NV_RD32(&chip->PRAMDAC0[0x00000504/4], 0); |
| M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; |
| MClk = (N * chip->CrystalFreqKHz / M) >> P; |
| pll = NV_RD32(&chip->PRAMDAC0[0x00000500/4], 0); |
| M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; |
| NVClk = (N * chip->CrystalFreqKHz / M) >> P; |
| cfg1 = NV_RD32(&chip->PFB[0x00000204/4], 0); |
| sim_data.pix_bpp = (char)pixelDepth; |
| sim_data.enable_video = 0; |
| sim_data.enable_mp = 0; |
| sim_data.memory_width = (NV_RD32(&chip->PEXTDEV[0x00000000/4], 0) & 0x10) ? |
| 128 : 64; |
| sim_data.mem_latency = (char)cfg1 & 0x0F; |
| sim_data.mem_aligned = 1; |
| sim_data.mem_page_miss = (char)(((cfg1 >> 4) &0x0F) + ((cfg1 >> 31) & 0x01)); |
| sim_data.gr_during_vid = 0; |
| sim_data.pclk_khz = VClk; |
| sim_data.mclk_khz = MClk; |
| sim_data.nvclk_khz = NVClk; |
| nv4CalcArbitration(&fifo_data, &sim_data); |
| if (fifo_data.valid) |
| { |
| int b = fifo_data.graphics_burst_size >> 4; |
| *burst = 0; |
| while (b >>= 1) |
| (*burst)++; |
| *lwm = fifo_data.graphics_lwm >> 3; |
| } |
| } |
| static void nv10CalcArbitration |
| ( |
| nv10_fifo_info *fifo, |
| nv10_sim_state *arb |
| ) |
| { |
| int data, pagemiss, cas,width, video_enable, color_key_enable, bpp, align; |
| int nvclks, mclks, pclks, vpagemiss, crtpagemiss, vbs; |
| int nvclk_fill, us_extra; |
| int found, mclk_extra, mclk_loop, cbs, m1; |
| int mclk_freq, pclk_freq, nvclk_freq, mp_enable; |
| int us_m, us_m_min, us_n, us_p, video_drain_rate, crtc_drain_rate; |
| int vus_m, vus_n, vus_p; |
| int vpm_us, us_video, vlwm, cpm_us, us_crt,clwm; |
| int clwm_rnd_down; |
| int craw, m2us, us_pipe, us_pipe_min, vus_pipe, p1clk, p2; |
| int pclks_2_top_fifo, min_mclk_extra; |
| int us_min_mclk_extra; |
| |
| fifo->valid = 1; |
| pclk_freq = arb->pclk_khz; /* freq in KHz */ |
| mclk_freq = arb->mclk_khz; |
| nvclk_freq = arb->nvclk_khz; |
| pagemiss = arb->mem_page_miss; |
| cas = arb->mem_latency; |
| width = arb->memory_width/64; |
| video_enable = arb->enable_video; |
| color_key_enable = arb->gr_during_vid; |
| bpp = arb->pix_bpp; |
| align = arb->mem_aligned; |
| mp_enable = arb->enable_mp; |
| clwm = 0; |
| vlwm = 1024; |
| |
| cbs = 512; |
| vbs = 512; |
| |
| pclks = 4; /* lwm detect. */ |
| |
| nvclks = 3; /* lwm -> sync. */ |
| nvclks += 2; /* fbi bus cycles (1 req + 1 busy) */ |
| |
| mclks = 1; /* 2 edge sync. may be very close to edge so just put one. */ |
| |
| mclks += 1; /* arb_hp_req */ |
| mclks += 5; /* ap_hp_req tiling pipeline */ |
| |
| mclks += 2; /* tc_req latency fifo */ |
| mclks += 2; /* fb_cas_n_ memory request to fbio block */ |
| mclks += 7; /* sm_d_rdv data returned from fbio block */ |
| |
| /* fb.rd.d.Put_gc need to accumulate 256 bits for read */ |
| if (arb->memory_type == 0) |
| if (arb->memory_width == 64) /* 64 bit bus */ |
| mclks += 4; |
| else |
| mclks += 2; |
| else |
| if (arb->memory_width == 64) /* 64 bit bus */ |
| mclks += 2; |
| else |
| mclks += 1; |
| |
| if ((!video_enable) && (arb->memory_width == 128)) |
| { |
| mclk_extra = (bpp == 32) ? 31 : 42; /* Margin of error */ |
| min_mclk_extra = 17; |
| } |
| else |
| { |
| mclk_extra = (bpp == 32) ? 8 : 4; /* Margin of error */ |
| /* mclk_extra = 4; */ /* Margin of error */ |
| min_mclk_extra = 18; |
| } |
| |
| nvclks += 1; /* 2 edge sync. may be very close to edge so just put one. */ |
| nvclks += 1; /* fbi_d_rdv_n */ |
| nvclks += 1; /* Fbi_d_rdata */ |
| nvclks += 1; /* crtfifo load */ |
| |
| if(mp_enable) |
| mclks+=4; /* Mp can get in with a burst of 8. */ |
| /* Extra clocks determined by heuristics */ |
| |
| nvclks += 0; |
| pclks += 0; |
| found = 0; |
| while(found != 1) { |
| fifo->valid = 1; |
| found = 1; |
| mclk_loop = mclks+mclk_extra; |
| us_m = mclk_loop *1000*1000 / mclk_freq; /* Mclk latency in us */ |
| us_m_min = mclks * 1000*1000 / mclk_freq; /* Minimum Mclk latency in us */ |
| us_min_mclk_extra = min_mclk_extra *1000*1000 / mclk_freq; |
| us_n = nvclks*1000*1000 / nvclk_freq;/* nvclk latency in us */ |
| us_p = pclks*1000*1000 / pclk_freq;/* nvclk latency in us */ |
| us_pipe = us_m + us_n + us_p; |
| us_pipe_min = us_m_min + us_n + us_p; |
| us_extra = 0; |
| |
| vus_m = mclk_loop *1000*1000 / mclk_freq; /* Mclk latency in us */ |
| vus_n = (4)*1000*1000 / nvclk_freq;/* nvclk latency in us */ |
| vus_p = 0*1000*1000 / pclk_freq;/* pclk latency in us */ |
| vus_pipe = vus_m + vus_n + vus_p; |
| |
| if(video_enable) { |
| video_drain_rate = pclk_freq * 4; /* MB/s */ |
| crtc_drain_rate = pclk_freq * bpp/8; /* MB/s */ |
| |
| vpagemiss = 1; /* self generating page miss */ |
| vpagemiss += 1; /* One higher priority before */ |
| |
| crtpagemiss = 2; /* self generating page miss */ |
| if(mp_enable) |
| crtpagemiss += 1; /* if MA0 conflict */ |
| |
| vpm_us = (vpagemiss * pagemiss)*1000*1000/mclk_freq; |
| |
| us_video = vpm_us + vus_m; /* Video has separate read return path */ |
| |
| cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; |
| us_crt = |
| us_video /* Wait for video */ |
| +cpm_us /* CRT Page miss */ |
| +us_m + us_n +us_p /* other latency */ |
| ; |
| |
| clwm = us_crt * crtc_drain_rate/(1000*1000); |
| clwm++; /* fixed point <= float_point - 1. Fixes that */ |
| } else { |
| crtc_drain_rate = pclk_freq * bpp/8; /* bpp * pclk/8 */ |
| |
| crtpagemiss = 1; /* self generating page miss */ |
| crtpagemiss += 1; /* MA0 page miss */ |
| if(mp_enable) |
| crtpagemiss += 1; /* if MA0 conflict */ |
| cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; |
| us_crt = cpm_us + us_m + us_n + us_p ; |
| clwm = us_crt * crtc_drain_rate/(1000*1000); |
| clwm++; /* fixed point <= float_point - 1. Fixes that */ |
| |
| /* |
| // |
| // Another concern, only for high pclks so don't do this |
| // with video: |
| // What happens if the latency to fetch the cbs is so large that |
| // fifo empties. In that case we need to have an alternate clwm value |
| // based off the total burst fetch |
| // |
| us_crt = (cbs * 1000 * 1000)/ (8*width)/mclk_freq ; |
| us_crt = us_crt + us_m + us_n + us_p + (4 * 1000 * 1000)/mclk_freq; |
| clwm_mt = us_crt * crtc_drain_rate/(1000*1000); |
| clwm_mt ++; |
| if(clwm_mt > clwm) |
| clwm = clwm_mt; |
| */ |
| /* Finally, a heuristic check when width == 64 bits */ |
| if(width == 1){ |
| nvclk_fill = nvclk_freq * 8; |
| if(crtc_drain_rate * 100 >= nvclk_fill * 102) |
| clwm = 0xfff; /*Large number to fail */ |
| |
| else if(crtc_drain_rate * 100 >= nvclk_fill * 98) { |
| clwm = 1024; |
| cbs = 512; |
| us_extra = (cbs * 1000 * 1000)/ (8*width)/mclk_freq ; |
| } |
| } |
| } |
| |
| |
| /* |
| Overfill check: |
| |
| */ |
| |
| clwm_rnd_down = ((int)clwm/8)*8; |
| if (clwm_rnd_down < clwm) |
| clwm += 8; |
| |
| m1 = clwm + cbs - 1024; /* Amount of overfill */ |
| m2us = us_pipe_min + us_min_mclk_extra; |
| pclks_2_top_fifo = (1024-clwm)/(8*width); |
| |
| /* pclk cycles to drain */ |
| p1clk = m2us * pclk_freq/(1000*1000); |
| p2 = p1clk * bpp / 8; /* bytes drained. */ |
| |
| if((p2 < m1) && (m1 > 0)) { |
| fifo->valid = 0; |
| found = 0; |
| if(min_mclk_extra == 0) { |
| if(cbs <= 32) { |
| found = 1; /* Can't adjust anymore! */ |
| } else { |
| cbs = cbs/2; /* reduce the burst size */ |
| } |
| } else { |
| min_mclk_extra--; |
| } |
| } else { |
| if (clwm > 1023){ /* Have some margin */ |
| fifo->valid = 0; |
| found = 0; |
| if(min_mclk_extra == 0) |
| found = 1; /* Can't adjust anymore! */ |
| else |
| min_mclk_extra--; |
| } |
| } |
| craw = clwm; |
| |
| if(clwm < (1024-cbs+8)) clwm = 1024-cbs+8; |
| data = (int)(clwm); |
| /* printf("CRT LWM: %f bytes, prog: 0x%x, bs: 256\n", clwm, data ); */ |
| fifo->graphics_lwm = data; fifo->graphics_burst_size = cbs; |
| |
| /* printf("VID LWM: %f bytes, prog: 0x%x, bs: %d\n, ", vlwm, data, vbs ); */ |
| fifo->video_lwm = 1024; fifo->video_burst_size = 512; |
| } |
| } |
| static void nv10UpdateArbitrationSettings |
| ( |
| unsigned VClk, |
| unsigned pixelDepth, |
| unsigned *burst, |
| unsigned *lwm, |
| RIVA_HW_INST *chip |
| ) |
| { |
| nv10_fifo_info fifo_data; |
| nv10_sim_state sim_data; |
| unsigned int M, N, P, pll, MClk, NVClk, cfg1; |
| |
| pll = NV_RD32(&chip->PRAMDAC0[0x00000504/4], 0); |
| M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; |
| MClk = (N * chip->CrystalFreqKHz / M) >> P; |
| pll = NV_RD32(&chip->PRAMDAC0[0x00000500/4], 0); |
| M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; |
| NVClk = (N * chip->CrystalFreqKHz / M) >> P; |
| cfg1 = NV_RD32(&chip->PFB[0x00000204/4], 0); |
| sim_data.pix_bpp = (char)pixelDepth; |
| sim_data.enable_video = 0; |
| sim_data.enable_mp = 0; |
| sim_data.memory_type = (NV_RD32(&chip->PFB[0x00000200/4], 0) & 0x01) ? |
| 1 : 0; |
| sim_data.memory_width = (NV_RD32(&chip->PEXTDEV[0x00000000/4], 0) & 0x10) ? |
| 128 : 64; |
| sim_data.mem_latency = (char)cfg1 & 0x0F; |
| sim_data.mem_aligned = 1; |
| sim_data.mem_page_miss = (char)(((cfg1 >> 4) &0x0F) + ((cfg1 >> 31) & 0x01)); |
| sim_data.gr_during_vid = 0; |
| sim_data.pclk_khz = VClk; |
| sim_data.mclk_khz = MClk; |
| sim_data.nvclk_khz = NVClk; |
| nv10CalcArbitration(&fifo_data, &sim_data); |
| if (fifo_data.valid) |
| { |
| int b = fifo_data.graphics_burst_size >> 4; |
| *burst = 0; |
| while (b >>= 1) |
| (*burst)++; |
| *lwm = fifo_data.graphics_lwm >> 3; |
| } |
| } |
| |
| static void nForceUpdateArbitrationSettings |
| ( |
| unsigned VClk, |
| unsigned pixelDepth, |
| unsigned *burst, |
| unsigned *lwm, |
| RIVA_HW_INST *chip |
| ) |
| { |
| nv10_fifo_info fifo_data; |
| nv10_sim_state sim_data; |
| unsigned int M, N, P, pll, MClk, NVClk; |
| unsigned int uMClkPostDiv; |
| struct pci_dev *dev; |
| |
| dev = pci_get_bus_and_slot(0, 3); |
| pci_read_config_dword(dev, 0x6C, &uMClkPostDiv); |
| pci_dev_put(dev); |
| uMClkPostDiv = (uMClkPostDiv >> 8) & 0xf; |
| |
| if(!uMClkPostDiv) uMClkPostDiv = 4; |
| MClk = 400000 / uMClkPostDiv; |
| |
| pll = NV_RD32(&chip->PRAMDAC0[0x00000500/4], 0); |
| M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; |
| NVClk = (N * chip->CrystalFreqKHz / M) >> P; |
| sim_data.pix_bpp = (char)pixelDepth; |
| sim_data.enable_video = 0; |
| sim_data.enable_mp = 0; |
| |
| dev = pci_get_bus_and_slot(0, 1); |
| pci_read_config_dword(dev, 0x7C, &sim_data.memory_type); |
| pci_dev_put(dev); |
| sim_data.memory_type = (sim_data.memory_type >> 12) & 1; |
| |
| sim_data.memory_width = 64; |
| sim_data.mem_latency = 3; |
| sim_data.mem_aligned = 1; |
| sim_data.mem_page_miss = 10; |
| sim_data.gr_during_vid = 0; |
| sim_data.pclk_khz = VClk; |
| sim_data.mclk_khz = MClk; |
| sim_data.nvclk_khz = NVClk; |
| nv10CalcArbitration(&fifo_data, &sim_data); |
| if (fifo_data.valid) |
| { |
| int b = fifo_data.graphics_burst_size >> 4; |
| *burst = 0; |
| while (b >>= 1) |
| (*burst)++; |
| *lwm = fifo_data.graphics_lwm >> 3; |
| } |
| } |
| |
| /****************************************************************************\ |
| * * |
| * RIVA Mode State Routines * |
| * * |
| \****************************************************************************/ |
| |
| /* |
| * Calculate the Video Clock parameters for the PLL. |
| */ |
| static int CalcVClock |
| ( |
| int clockIn, |
| int *clockOut, |
| int *mOut, |
| int *nOut, |
| int *pOut, |
| RIVA_HW_INST *chip |
| ) |
| { |
| unsigned lowM, highM, highP; |
| unsigned DeltaNew, DeltaOld; |
| unsigned VClk, Freq; |
| unsigned M, N, P; |
| |
| DeltaOld = 0xFFFFFFFF; |
| |
| VClk = (unsigned)clockIn; |
| |
| if (chip->CrystalFreqKHz == 13500) |
| { |
| lowM = 7; |
| highM = 13 - (chip->Architecture == NV_ARCH_03); |
| } |
| else |
| { |
| lowM = 8; |
| highM = 14 - (chip->Architecture == NV_ARCH_03); |
| } |
| |
| highP = 4 - (chip->Architecture == NV_ARCH_03); |
| for (P = 0; P <= highP; P ++) |
| { |
| Freq = VClk << P; |
| if ((Freq >= 128000) && (Freq <= chip->MaxVClockFreqKHz)) |
| { |
| for (M = lowM; M <= highM; M++) |
| { |
| N = (VClk << P) * M / chip->CrystalFreqKHz; |
| if(N <= 255) { |
| Freq = (chip->CrystalFreqKHz * N / M) >> P; |
| if (Freq > VClk) |
| DeltaNew = Freq - VClk; |
| else |
| DeltaNew = VClk - Freq; |
| if (DeltaNew < DeltaOld) |
| { |
| *mOut = M; |
| *nOut = N; |
| *pOut = P; |
| *clockOut = Freq; |
| DeltaOld = DeltaNew; |
| } |
| } |
| } |
| } |
| } |
| return (DeltaOld != 0xFFFFFFFF); |
| } |
| /* |
| * Calculate extended mode parameters (SVGA) and save in a |
| * mode state structure. |
| */ |
| int CalcStateExt |
| ( |
| RIVA_HW_INST *chip, |
| RIVA_HW_STATE *state, |
| int bpp, |
| int width, |
| int hDisplaySize, |
| int height, |
| int dotClock |
| ) |
| { |
| int pixelDepth, VClk, m, n, p; |
| /* |
| * Save mode parameters. |
| */ |
| state->bpp = bpp; /* this is not bitsPerPixel, it's 8,15,16,32 */ |
| state->width = width; |
| state->height = height; |
| /* |
| * Extended RIVA registers. |
| */ |
| pixelDepth = (bpp + 1)/8; |
| if (!CalcVClock(dotClock, &VClk, &m, &n, &p, chip)) |
| return -EINVAL; |
| |
| switch (chip->Architecture) |
| { |
| case NV_ARCH_03: |
| nv3UpdateArbitrationSettings(VClk, |
| pixelDepth * 8, |
| &(state->arbitration0), |
| &(state->arbitration1), |
| chip); |
| state->cursor0 = 0x00; |
| state->cursor1 = 0x78; |
| state->cursor2 = 0x00000000; |
| state->pllsel = 0x10010100; |
| state->config = ((width + 31)/32) |
| | (((pixelDepth > 2) ? 3 : pixelDepth) << 8) |
| | 0x1000; |
| state->general = 0x00100100; |
| state->repaint1 = hDisplaySize < 1280 ? 0x06 : 0x02; |
| break; |
| case NV_ARCH_04: |
| nv4UpdateArbitrationSettings(VClk, |
| pixelDepth * 8, |
| &(state->arbitration0), |
| &(state->arbitration1), |
| chip); |
| state->cursor0 = 0x00; |
| state->cursor1 = 0xFC; |
| state->cursor2 = 0x00000000; |
| state->pllsel = 0x10000700; |
| state->config = 0x00001114; |
| state->general = bpp == 16 ? 0x00101100 : 0x00100100; |
| state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00; |
| break; |
| case NV_ARCH_10: |
| case NV_ARCH_20: |
| case NV_ARCH_30: |
| if((chip->Chipset == NV_CHIP_IGEFORCE2) || |
| (chip->Chipset == NV_CHIP_0x01F0)) |
| { |
| nForceUpdateArbitrationSettings(VClk, |
| pixelDepth * 8, |
| &(state->arbitration0), |
| &(state->arbitration1), |
| chip); |
| } else { |
| nv10UpdateArbitrationSettings(VClk, |
| pixelDepth * 8, |
| &(state->arbitration0), |
| &(state->arbitration1), |
| chip); |
| } |
| state->cursor0 = 0x80 | (chip->CursorStart >> 17); |
| state->cursor1 = (chip->CursorStart >> 11) << 2; |
| state->cursor2 = chip->CursorStart >> 24; |
| state->pllsel = 0x10000700; |
| state->config = NV_RD32(&chip->PFB[0x00000200/4], 0); |
| state->general = bpp == 16 ? 0x00101100 : 0x00100100; |
| state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00; |
| break; |
| } |
| |
| /* Paul Richards: below if block borks things in kernel for some reason */ |
| /* Tony: Below is needed to set hardware in DirectColor */ |
| if((bpp != 8) && (chip->Architecture != NV_ARCH_03)) |
| state->general |= 0x00000030; |
| |
| state->vpll = (p << 16) | (n << 8) | m; |
| state->repaint0 = (((width/8)*pixelDepth) & 0x700) >> 3; |
| state->pixel = pixelDepth > 2 ? 3 : pixelDepth; |
| state->offset0 = |
| state->offset1 = |
| state->offset2 = |
| state->offset3 = 0; |
| state->pitch0 = |
| state->pitch1 = |
| state->pitch2 = |
| state->pitch3 = pixelDepth * width; |
| |
| return 0; |
| } |
| /* |
| * Load fixed function state and pre-calculated/stored state. |
| */ |
| #if 0 |
| #define LOAD_FIXED_STATE(tbl,dev) \ |
| for (i = 0; i < sizeof(tbl##Table##dev)/8; i++) \ |
| chip->dev[tbl##Table##dev[i][0]] = tbl##Table##dev[i][1] |
| #define LOAD_FIXED_STATE_8BPP(tbl,dev) \ |
| for (i = 0; i < sizeof(tbl##Table##dev##_8BPP)/8; i++) \ |
| chip->dev[tbl##Table##dev##_8BPP[i][0]] = tbl##Table##dev##_8BPP[i][1] |
| #define LOAD_FIXED_STATE_15BPP(tbl,dev) \ |
| for (i = 0; i < sizeof(tbl##Table##dev##_15BPP)/8; i++) \ |
| chip->dev[tbl##Table##dev##_15BPP[i][0]] = tbl##Table##dev##_15BPP[i][1] |
| #define LOAD_FIXED_STATE_16BPP(tbl,dev) \ |
| for (i = 0; i < sizeof(tbl##Table##dev##_16BPP)/8; i++) \ |
| chip->dev[tbl##Table##dev##_16BPP[i][0]] = tbl##Table##dev##_16BPP[i][1] |
| #define LOAD_FIXED_STATE_32BPP(tbl,dev) \ |
| for (i = 0; i < sizeof(tbl##Table##dev##_32BPP)/8; i++) \ |
| chip->dev[tbl##Table##dev##_32BPP[i][0]] = tbl##Table##dev##_32BPP[i][1] |
| #endif |
| |
| #define LOAD_FIXED_STATE(tbl,dev) \ |
| for (i = 0; i < sizeof(tbl##Table##dev)/8; i++) \ |
| NV_WR32(&chip->dev[tbl##Table##dev[i][0]], 0, tbl##Table##dev[i][1]) |
| #define LOAD_FIXED_STATE_8BPP(tbl,dev) \ |
| for (i = 0; i < sizeof(tbl##Table##dev##_8BPP)/8; i++) \ |
| NV_WR32(&chip->dev[tbl##Table##dev##_8BPP[i][0]], 0, tbl##Table##dev##_8BPP[i][1]) |
| #define LOAD_FIXED_STATE_15BPP(tbl,dev) \ |
| for (i = 0; i < sizeof(tbl##Table##dev##_15BPP)/8; i++) \ |
| NV_WR32(&chip->dev[tbl##Table##dev##_15BPP[i][0]], 0, tbl##Table##dev##_15BPP[i][1]) |
| #define LOAD_FIXED_STATE_16BPP(tbl,dev) \ |
| for (i = 0; i < sizeof(tbl##Table##dev##_16BPP)/8; i++) \ |
| NV_WR32(&chip->dev[tbl##Table##dev##_16BPP[i][0]], 0, tbl##Table##dev##_16BPP[i][1]) |
| #define LOAD_FIXED_STATE_32BPP(tbl,dev) \ |
| for (i = 0; i < sizeof(tbl##Table##dev##_32BPP)/8; i++) \ |
| NV_WR32(&chip->dev[tbl##Table##dev##_32BPP[i][0]], 0, tbl##Table##dev##_32BPP[i][1]) |
| |
| static void UpdateFifoState |
| ( |
| RIVA_HW_INST *chip |
| ) |
| { |
| int i; |
| |
| switch (chip->Architecture) |
| { |
| case NV_ARCH_04: |
| LOAD_FIXED_STATE(nv4,FIFO); |
| chip->Tri03 = NULL; |
| chip->Tri05 = (RivaTexturedTriangle05 __iomem *)&(chip->FIFO[0x0000E000/4]); |
| break; |
| case NV_ARCH_10: |
| case NV_ARCH_20: |
| case NV_ARCH_30: |
| /* |
| * Initialize state for the RivaTriangle3D05 routines. |
| */ |
| LOAD_FIXED_STATE(nv10tri05,PGRAPH); |
| LOAD_FIXED_STATE(nv10,FIFO); |
| chip->Tri03 = NULL; |
| chip->Tri05 = (RivaTexturedTriangle05 __iomem *)&(chip->FIFO[0x0000E000/4]); |
| break; |
| } |
| } |
| static void LoadStateExt |
| ( |
| RIVA_HW_INST *chip, |
| RIVA_HW_STATE *state |
| ) |
| { |
| int i; |
| |
| /* |
| * Load HW fixed function state. |
| */ |
| LOAD_FIXED_STATE(Riva,PMC); |
| LOAD_FIXED_STATE(Riva,PTIMER); |
| switch (chip->Architecture) |
| { |
| case NV_ARCH_03: |
| /* |
| * Make sure frame buffer config gets set before loading PRAMIN. |
| */ |
| NV_WR32(chip->PFB, 0x00000200, state->config); |
| LOAD_FIXED_STATE(nv3,PFIFO); |
| LOAD_FIXED_STATE(nv3,PRAMIN); |
| LOAD_FIXED_STATE(nv3,PGRAPH); |
| switch (state->bpp) |
| { |
| case 15: |
| case 16: |
| LOAD_FIXED_STATE_15BPP(nv3,PRAMIN); |
| LOAD_FIXED_STATE_15BPP(nv3,PGRAPH); |
| chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); |
| break; |
| case 24: |
| case 32: |
| LOAD_FIXED_STATE_32BPP(nv3,PRAMIN); |
| LOAD_FIXED_STATE_32BPP(nv3,PGRAPH); |
| chip->Tri03 = NULL; |
| break; |
| case 8: |
| default: |
| LOAD_FIXED_STATE_8BPP(nv3,PRAMIN); |
| LOAD_FIXED_STATE_8BPP(nv3,PGRAPH); |
| chip->Tri03 = NULL; |
| break; |
| } |
| for (i = 0x00000; i < 0x00800; i++) |
| NV_WR32(&chip->PRAMIN[0x00000502 + i], 0, (i << 12) | 0x03); |
| NV_WR32(chip->PGRAPH, 0x00000630, state->offset0); |
| NV_WR32(chip->PGRAPH, 0x00000634, state->offset1); |
| NV_WR32(chip->PGRAPH, 0x00000638, state->offset2); |
| NV_WR32(chip->PGRAPH, 0x0000063C, state->offset3); |
| NV_WR32(chip->PGRAPH, 0x00000650, state->pitch0); |
| NV_WR32(chip->PGRAPH, 0x00000654, state->pitch1); |
| NV_WR32(chip->PGRAPH, 0x00000658, state->pitch2); |
| NV_WR32(chip->PGRAPH, 0x0000065C, state->pitch3); |
| break; |
| case NV_ARCH_04: |
| /* |
| * Make sure frame buffer config gets set before loading PRAMIN. |
| */ |
| NV_WR32(chip->PFB, 0x00000200, state->config); |
| LOAD_FIXED_STATE(nv4,PFIFO); |
| LOAD_FIXED_STATE(nv4,PRAMIN); |
| LOAD_FIXED_STATE(nv4,PGRAPH); |
| switch (state->bpp) |
| { |
| case 15: |
| LOAD_FIXED_STATE_15BPP(nv4,PRAMIN); |
| LOAD_FIXED_STATE_15BPP(nv4,PGRAPH); |
| chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); |
| break; |
| case 16: |
| LOAD_FIXED_STATE_16BPP(nv4,PRAMIN); |
| LOAD_FIXED_STATE_16BPP(nv4,PGRAPH); |
| chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); |
| break; |
| case 24: |
| case 32: |
| LOAD_FIXED_STATE_32BPP(nv4,PRAMIN); |
| LOAD_FIXED_STATE_32BPP(nv4,PGRAPH); |
| chip->Tri03 = NULL; |
| break; |
| case 8: |
| default: |
| LOAD_FIXED_STATE_8BPP(nv4,PRAMIN); |
| LOAD_FIXED_STATE_8BPP(nv4,PGRAPH); |
| chip->Tri03 = NULL; |
| break; |
| } |
| NV_WR32(chip->PGRAPH, 0x00000640, state->offset0); |
| NV_WR32(chip->PGRAPH, 0x00000644, state->offset1); |
| NV_WR32(chip->PGRAPH, 0x00000648, state->offset2); |
| NV_WR32(chip->PGRAPH, 0x0000064C, state->offset3); |
| NV_WR32(chip->PGRAPH, 0x00000670, state->pitch0); |
| NV_WR32(chip->PGRAPH, 0x00000674, state->pitch1); |
| NV_WR32(chip->PGRAPH, 0x00000678, state->pitch2); |
| NV_WR32(chip->PGRAPH, 0x0000067C, state->pitch3); |
| break; |
| case NV_ARCH_10: |
| case NV_ARCH_20: |
| case NV_ARCH_30: |
| if(chip->twoHeads) { |
| VGA_WR08(chip->PCIO, 0x03D4, 0x44); |
| VGA_WR08(chip->PCIO, 0x03D5, state->crtcOwner); |
| chip->LockUnlock(chip, 0); |
| } |
| |
| LOAD_FIXED_STATE(nv10,PFIFO); |
| LOAD_FIXED_STATE(nv10,PRAMIN); |
| LOAD_FIXED_STATE(nv10,PGRAPH); |
| switch (state->bpp) |
| { |
| case 15: |
| LOAD_FIXED_STATE_15BPP(nv10,PRAMIN); |
| LOAD_FIXED_STATE_15BPP(nv10,PGRAPH); |
| chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); |
| break; |
| case 16: |
| LOAD_FIXED_STATE_16BPP(nv10,PRAMIN); |
| LOAD_FIXED_STATE_16BPP(nv10,PGRAPH); |
| chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); |
| break; |
| case 24: |
| case 32: |
| LOAD_FIXED_STATE_32BPP(nv10,PRAMIN); |
| LOAD_FIXED_STATE_32BPP(nv10,PGRAPH); |
| chip->Tri03 = NULL; |
| break; |
| case 8: |
| default: |
| LOAD_FIXED_STATE_8BPP(nv10,PRAMIN); |
| LOAD_FIXED_STATE_8BPP(nv10,PGRAPH); |
| chip->Tri03 = NULL; |
| break; |
| } |
| |
| if(chip->Architecture == NV_ARCH_10) { |
| NV_WR32(chip->PGRAPH, 0x00000640, state->offset0); |
| NV_WR32(chip->PGRAPH, 0x00000644, state->offset1); |
| NV_WR32(chip->PGRAPH, 0x00000648, state->offset2); |
| NV_WR32(chip->PGRAPH, 0x0000064C, state->offset3); |
| NV_WR32(chip->PGRAPH, 0x00000670, state->pitch0); |
| NV_WR32(chip->PGRAPH, 0x00000674, state->pitch1); |
| NV_WR32(chip->PGRAPH, 0x00000678, state->pitch2); |
| NV_WR32(chip->PGRAPH, 0x0000067C, state->pitch3); |
| NV_WR32(chip->PGRAPH, 0x00000680, state->pitch3); |
| } else { |
| NV_WR32(chip->PGRAPH, 0x00000820, state->offset0); |
| NV_WR32(chip->PGRAPH, 0x00000824, state->offset1); |
| NV_WR32(chip->PGRAPH, 0x00000828, state->offset2); |
| NV_WR32(chip->PGRAPH, 0x0000082C, state->offset3); |
| NV_WR32(chip->PGRAPH, 0x00000850, state->pitch0); |
| NV_WR32(chip->PGRAPH, 0x00000854, state->pitch1); |
| NV_WR32(chip->PGRAPH, 0x00000858, state->pitch2); |
| NV_WR32(chip->PGRAPH, 0x0000085C, state->pitch3); |
| NV_WR32(chip->PGRAPH, 0x00000860, state->pitch3); |
| NV_WR32(chip->PGRAPH, 0x00000864, state->pitch3); |
| NV_WR32(chip->PGRAPH, 0x000009A4, NV_RD32(chip->PFB, 0x00000200)); |
| NV_WR32(chip->PGRAPH, 0x000009A8, NV_RD32(chip->PFB, 0x00000204)); |
| } |
| if(chip->twoHeads) { |
| NV_WR32(chip->PCRTC0, 0x00000860, state->head); |
| NV_WR32(chip->PCRTC0, 0x00002860, state->head2); |
| } |
| NV_WR32(chip->PRAMDAC, 0x00000404, NV_RD32(chip->PRAMDAC, 0x00000404) | (1 << 25)); |
| |
| NV_WR32(chip->PMC, 0x00008704, 1); |
| NV_WR32(chip->PMC, 0x00008140, 0); |
| NV_WR32(chip->PMC, 0x00008920, 0); |
| NV_WR32(chip->PMC, 0x00008924, 0); |
| NV_WR32(chip->PMC, 0x00008908, 0x01ffffff); |
| NV_WR32(chip->PMC, 0x0000890C, 0x01ffffff); |
| NV_WR32(chip->PMC, 0x00001588, 0); |
| |
| NV_WR32(chip->PFB, 0x00000240, 0); |
| NV_WR32(chip->PFB, 0x00000250, 0); |
| NV_WR32(chip->PFB, 0x00000260, 0); |
| NV_WR32(chip->PFB, 0x00000270, 0); |
| NV_WR32(chip->PFB, 0x00000280, 0); |
| NV_WR32(chip->PFB, 0x00000290, 0); |
| NV_WR32(chip->PFB, 0x000002A0, 0); |
| NV_WR32(chip->PFB, 0x000002B0, 0); |
| |
| NV_WR32(chip->PGRAPH, 0x00000B00, NV_RD32(chip->PFB, 0x00000240)); |
| NV_WR32(chip->PGRAPH, 0x00000B04, NV_RD32(chip->PFB, 0x00000244)); |
| NV_WR32(chip->PGRAPH, 0x00000B08, NV_RD32(chip->PFB, 0x00000248)); |
| NV_WR32(chip->PGRAPH, 0x00000B0C, NV_RD32(chip->PFB, 0x0000024C)); |
| NV_WR32(chip->PGRAPH, 0x00000B10, NV_RD32(chip->PFB, 0x00000250)); |
| NV_WR32(chip->PGRAPH, 0x00000B14, NV_RD32(chip->PFB, 0x00000254)); |
| NV_WR32(chip->PGRAPH, 0x00000B18, NV_RD32(chip->PFB, 0x00000258)); |
| NV_WR32(chip->PGRAPH, 0x00000B1C, NV_RD32(chip->PFB, 0x0000025C)); |
| NV_WR32(chip->PGRAPH, 0x00000B20, NV_RD32(chip->PFB, 0x00000260)); |
| NV_WR32(chip->PGRAPH, 0x00000B24, NV_RD32(chip->PFB, 0x00000264)); |
| NV_WR32(chip->PGRAPH, 0x00000B28, NV_RD32(chip->PFB, 0x00000268)); |
| NV_WR32(chip->PGRAPH, 0x00000B2C, NV_RD32(chip->PFB, 0x0000026C)); |
| NV_WR32(chip->PGRAPH, 0x00000B30, NV_RD32(chip->PFB, 0x00000270)); |
| NV_WR32(chip->PGRAPH, 0x00000B34, NV_RD32(chip->PFB, 0x00000274)); |
| NV_WR32(chip->PGRAPH, 0x00000B38, NV_RD32(chip->PFB, 0x00000278)); |
| NV_WR32(chip->PGRAPH, 0x00000B3C, NV_RD32(chip->PFB, 0x0000027C)); |
| NV_WR32(chip->PGRAPH, 0x00000B40, NV_RD32(chip->PFB, 0x00000280)); |
| NV_WR32(chip->PGRAPH, 0x00000B44, NV_RD32(chip->PFB, 0x00000284)); |
| NV_WR32(chip->PGRAPH, 0x00000B48, NV_RD32(chip->PFB, 0x00000288)); |
| NV_WR32(chip->PGRAPH, 0x00000B4C, NV_RD32(chip->PFB, 0x0000028C)); |
| NV_WR32(chip->PGRAPH, 0x00000B50, NV_RD32(chip->PFB, 0x00000290)); |
| NV_WR32(chip->PGRAPH, 0x00000B54, NV_RD32(chip->PFB, 0x00000294)); |
| NV_WR32(chip->PGRAPH, 0x00000B58, NV_RD32(chip->PFB, 0x00000298)); |
| NV_WR32(chip->PGRAPH, 0x00000B5C, NV_RD32(chip->PFB, 0x0000029C)); |
| NV_WR32(chip->PGRAPH, 0x00000B60, NV_RD32(chip->PFB, 0x000002A0)); |
| NV_WR32(chip->PGRAPH, 0x00000B64, NV_RD32(chip->PFB, 0x000002A4)); |
| NV_WR32(chip->PGRAPH, 0x00000B68, NV_RD32(chip->PFB, 0x000002A8)); |
| NV_WR32(chip->PGRAPH, 0x00000B6C, NV_RD32(chip->PFB, 0x000002AC)); |
| NV_WR32(chip->PGRAPH, 0x00000B70, NV_RD32(chip->PFB, 0x000002B0)); |
| NV_WR32(chip->PGRAPH, 0x00000B74, NV_RD32(chip->PFB, 0x000002B4)); |
| NV_WR32(chip->PGRAPH, 0x00000B78, NV_RD32(chip->PFB, 0x000002B8)); |
| NV_WR32(chip->PGRAPH, 0x00000B7C, NV_RD32(chip->PFB, 0x000002BC)); |
| NV_WR32(chip->PGRAPH, 0x00000F40, 0x10000000); |
| NV_WR32(chip->PGRAPH, 0x00000F44, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000040); |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000008); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000200); |
| for (i = 0; i < (3*16); i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000040); |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000800); |
| for (i = 0; i < (16*16); i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F40, 0x30000000); |
| NV_WR32(chip->PGRAPH, 0x00000F44, 0x00000004); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00006400); |
| for (i = 0; i < (59*4); i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00006800); |
| for (i = 0; i < (47*4); i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00006C00); |
| for (i = 0; i < (3*4); i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00007000); |
| for (i = 0; i < (19*4); i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00007400); |
| for (i = 0; i < (12*4); i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00007800); |
| for (i = 0; i < (12*4); i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00004400); |
| for (i = 0; i < (8*4); i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000000); |
| for (i = 0; i < 16; i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000040); |
| for (i = 0; i < 4; i++) |
| NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); |
| |
| NV_WR32(chip->PCRTC, 0x00000810, state->cursorConfig); |
| |
| if(chip->flatPanel) { |
| if((chip->Chipset & 0x0ff0) == 0x0110) { |
| NV_WR32(chip->PRAMDAC, 0x0528, state->dither); |
| } else |
| if((chip->Chipset & 0x0ff0) >= 0x0170) { |
| NV_WR32(chip->PRAMDAC, 0x083C, state->dither); |
| } |
| |
| VGA_WR08(chip->PCIO, 0x03D4, 0x53); |
| VGA_WR08(chip->PCIO, 0x03D5, 0); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x54); |
| VGA_WR08(chip->PCIO, 0x03D5, 0); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x21); |
| VGA_WR08(chip->PCIO, 0x03D5, 0xfa); |
| } |
| |
| VGA_WR08(chip->PCIO, 0x03D4, 0x41); |
| VGA_WR08(chip->PCIO, 0x03D5, state->extra); |
| } |
| LOAD_FIXED_STATE(Riva,FIFO); |
| UpdateFifoState(chip); |
| /* |
| * Load HW mode state. |
| */ |
| VGA_WR08(chip->PCIO, 0x03D4, 0x19); |
| VGA_WR08(chip->PCIO, 0x03D5, state->repaint0); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x1A); |
| VGA_WR08(chip->PCIO, 0x03D5, state->repaint1); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x25); |
| VGA_WR08(chip->PCIO, 0x03D5, state->screen); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x28); |
| VGA_WR08(chip->PCIO, 0x03D5, state->pixel); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x2D); |
| VGA_WR08(chip->PCIO, 0x03D5, state->horiz); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x1B); |
| VGA_WR08(chip->PCIO, 0x03D5, state->arbitration0); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x20); |
| VGA_WR08(chip->PCIO, 0x03D5, state->arbitration1); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x30); |
| VGA_WR08(chip->PCIO, 0x03D5, state->cursor0); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x31); |
| VGA_WR08(chip->PCIO, 0x03D5, state->cursor1); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x2F); |
| VGA_WR08(chip->PCIO, 0x03D5, state->cursor2); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x39); |
| VGA_WR08(chip->PCIO, 0x03D5, state->interlace); |
| |
| if(!chip->flatPanel) { |
| NV_WR32(chip->PRAMDAC0, 0x00000508, state->vpll); |
| NV_WR32(chip->PRAMDAC0, 0x0000050C, state->pllsel); |
| if(chip->twoHeads) |
| NV_WR32(chip->PRAMDAC0, 0x00000520, state->vpll2); |
| } else { |
| NV_WR32(chip->PRAMDAC, 0x00000848 , state->scale); |
| } |
| NV_WR32(chip->PRAMDAC, 0x00000600 , state->general); |
| |
| /* |
| * Turn off VBlank enable and reset. |
| */ |
| NV_WR32(chip->PCRTC, 0x00000140, 0); |
| NV_WR32(chip->PCRTC, 0x00000100, chip->VBlankBit); |
| /* |
| * Set interrupt enable. |
| */ |
| NV_WR32(chip->PMC, 0x00000140, chip->EnableIRQ & 0x01); |
| /* |
| * Set current state pointer. |
| */ |
| chip->CurrentState = state; |
| /* |
| * Reset FIFO free and empty counts. |
| */ |
| chip->FifoFreeCount = 0; |
| /* Free count from first subchannel */ |
| chip->FifoEmptyCount = NV_RD32(&chip->Rop->FifoFree, 0); |
| } |
| static void UnloadStateExt |
| ( |
| RIVA_HW_INST *chip, |
| RIVA_HW_STATE *state |
| ) |
| { |
| /* |
| * Save current HW state. |
| */ |
| VGA_WR08(chip->PCIO, 0x03D4, 0x19); |
| state->repaint0 = VGA_RD08(chip->PCIO, 0x03D5); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x1A); |
| state->repaint1 = VGA_RD08(chip->PCIO, 0x03D5); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x25); |
| state->screen = VGA_RD08(chip->PCIO, 0x03D5); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x28); |
| state->pixel = VGA_RD08(chip->PCIO, 0x03D5); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x2D); |
| state->horiz = VGA_RD08(chip->PCIO, 0x03D5); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x1B); |
| state->arbitration0 = VGA_RD08(chip->PCIO, 0x03D5); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x20); |
| state->arbitration1 = VGA_RD08(chip->PCIO, 0x03D5); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x30); |
| state->cursor0 = VGA_RD08(chip->PCIO, 0x03D5); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x31); |
| state->cursor1 = VGA_RD08(chip->PCIO, 0x03D5); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x2F); |
| state->cursor2 = VGA_RD08(chip->PCIO, 0x03D5); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x39); |
| state->interlace = VGA_RD08(chip->PCIO, 0x03D5); |
| state->vpll = NV_RD32(chip->PRAMDAC0, 0x00000508); |
| state->vpll2 = NV_RD32(chip->PRAMDAC0, 0x00000520); |
| state->pllsel = NV_RD32(chip->PRAMDAC0, 0x0000050C); |
| state->general = NV_RD32(chip->PRAMDAC, 0x00000600); |
| state->scale = NV_RD32(chip->PRAMDAC, 0x00000848); |
| state->config = NV_RD32(chip->PFB, 0x00000200); |
| switch (chip->Architecture) |
| { |
| case NV_ARCH_03: |
| state->offset0 = NV_RD32(chip->PGRAPH, 0x00000630); |
| state->offset1 = NV_RD32(chip->PGRAPH, 0x00000634); |
| state->offset2 = NV_RD32(chip->PGRAPH, 0x00000638); |
| state->offset3 = NV_RD32(chip->PGRAPH, 0x0000063C); |
| state->pitch0 = NV_RD32(chip->PGRAPH, 0x00000650); |
| state->pitch1 = NV_RD32(chip->PGRAPH, 0x00000654); |
| state->pitch2 = NV_RD32(chip->PGRAPH, 0x00000658); |
| state->pitch3 = NV_RD32(chip->PGRAPH, 0x0000065C); |
| break; |
| case NV_ARCH_04: |
| state->offset0 = NV_RD32(chip->PGRAPH, 0x00000640); |
| state->offset1 = NV_RD32(chip->PGRAPH, 0x00000644); |
| state->offset2 = NV_RD32(chip->PGRAPH, 0x00000648); |
| state->offset3 = NV_RD32(chip->PGRAPH, 0x0000064C); |
| state->pitch0 = NV_RD32(chip->PGRAPH, 0x00000670); |
| state->pitch1 = NV_RD32(chip->PGRAPH, 0x00000674); |
| state->pitch2 = NV_RD32(chip->PGRAPH, 0x00000678); |
| state->pitch3 = NV_RD32(chip->PGRAPH, 0x0000067C); |
| break; |
| case NV_ARCH_10: |
| case NV_ARCH_20: |
| case NV_ARCH_30: |
| state->offset0 = NV_RD32(chip->PGRAPH, 0x00000640); |
| state->offset1 = NV_RD32(chip->PGRAPH, 0x00000644); |
| state->offset2 = NV_RD32(chip->PGRAPH, 0x00000648); |
| state->offset3 = NV_RD32(chip->PGRAPH, 0x0000064C); |
| state->pitch0 = NV_RD32(chip->PGRAPH, 0x00000670); |
| state->pitch1 = NV_RD32(chip->PGRAPH, 0x00000674); |
| state->pitch2 = NV_RD32(chip->PGRAPH, 0x00000678); |
| state->pitch3 = NV_RD32(chip->PGRAPH, 0x0000067C); |
| if(chip->twoHeads) { |
| state->head = NV_RD32(chip->PCRTC0, 0x00000860); |
| state->head2 = NV_RD32(chip->PCRTC0, 0x00002860); |
| VGA_WR08(chip->PCIO, 0x03D4, 0x44); |
| state->crtcOwner = VGA_RD08(chip->PCIO, 0x03D5); |
| } |
| VGA_WR08(chip->PCIO, 0x03D4, 0x41); |
| state->extra = VGA_RD08(chip->PCIO, 0x03D5); |
| state->cursorConfig = NV_RD32(chip->PCRTC, 0x00000810); |
| |
| if((chip->Chipset & 0x0ff0) == 0x0110) { |
| state->dither = NV_RD32(chip->PRAMDAC, 0x0528); |
| } else |
| if((chip->Chipset & 0x0ff0) >= 0x0170) { |
| state->dither = NV_RD32(chip->PRAMDAC, 0x083C); |
| } |
| break; |
| } |
| } |
| static void SetStartAddress |
| ( |
| RIVA_HW_INST *chip, |
| unsigned start |
| ) |
| { |
| NV_WR32(chip->PCRTC, 0x800, start); |
| } |
| |
| static void SetStartAddress3 |
| ( |
| RIVA_HW_INST *chip, |
| unsigned start |
| ) |
| { |
| int offset = start >> 2; |
| int pan = (start & 3) << 1; |
| unsigned char tmp; |
| |
| /* |
| * Unlock extended registers. |
| */ |
| chip->LockUnlock(chip, 0); |
| /* |
| * Set start address. |
| */ |
| VGA_WR08(chip->PCIO, 0x3D4, 0x0D); VGA_WR08(chip->PCIO, 0x3D5, offset); |
| offset >>= 8; |
| VGA_WR08(chip->PCIO, 0x3D4, 0x0C); VGA_WR08(chip->PCIO, 0x3D5, offset); |
| offset >>= 8; |
| VGA_WR08(chip->PCIO, 0x3D4, 0x19); tmp = VGA_RD08(chip->PCIO, 0x3D5); |
| VGA_WR08(chip->PCIO, 0x3D5, (offset & 0x01F) | (tmp & ~0x1F)); |
| VGA_WR08(chip->PCIO, 0x3D4, 0x2D); tmp = VGA_RD08(chip->PCIO, 0x3D5); |
| VGA_WR08(chip->PCIO, 0x3D5, (offset & 0x60) | (tmp & ~0x60)); |
| /* |
| * 4 pixel pan register. |
| */ |
| offset = VGA_RD08(chip->PCIO, chip->IO + 0x0A); |
| VGA_WR08(chip->PCIO, 0x3C0, 0x13); |
| VGA_WR08(chip->PCIO, 0x3C0, pan); |
| } |
| static void nv3SetSurfaces2D |
| ( |
| RIVA_HW_INST *chip, |
| unsigned surf0, |
| unsigned surf1 |
| ) |
| { |
| RivaSurface __iomem *Surface = |
| (RivaSurface __iomem *)&(chip->FIFO[0x0000E000/4]); |
| |
| RIVA_FIFO_FREE(*chip,Tri03,5); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000003); |
| NV_WR32(&Surface->Offset, 0, surf0); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000004); |
| NV_WR32(&Surface->Offset, 0, surf1); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000013); |
| } |
| static void nv4SetSurfaces2D |
| ( |
| RIVA_HW_INST *chip, |
| unsigned surf0, |
| unsigned surf1 |
| ) |
| { |
| RivaSurface __iomem *Surface = |
| (RivaSurface __iomem *)&(chip->FIFO[0x0000E000/4]); |
| |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000003); |
| NV_WR32(&Surface->Offset, 0, surf0); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000004); |
| NV_WR32(&Surface->Offset, 0, surf1); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000014); |
| } |
| static void nv10SetSurfaces2D |
| ( |
| RIVA_HW_INST *chip, |
| unsigned surf0, |
| unsigned surf1 |
| ) |
| { |
| RivaSurface __iomem *Surface = |
| (RivaSurface __iomem *)&(chip->FIFO[0x0000E000/4]); |
| |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000003); |
| NV_WR32(&Surface->Offset, 0, surf0); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000004); |
| NV_WR32(&Surface->Offset, 0, surf1); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000014); |
| } |
| static void nv3SetSurfaces3D |
| ( |
| RIVA_HW_INST *chip, |
| unsigned surf0, |
| unsigned surf1 |
| ) |
| { |
| RivaSurface __iomem *Surface = |
| (RivaSurface __iomem *)&(chip->FIFO[0x0000E000/4]); |
| |
| RIVA_FIFO_FREE(*chip,Tri03,5); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000005); |
| NV_WR32(&Surface->Offset, 0, surf0); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000006); |
| NV_WR32(&Surface->Offset, 0, surf1); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000013); |
| } |
| static void nv4SetSurfaces3D |
| ( |
| RIVA_HW_INST *chip, |
| unsigned surf0, |
| unsigned surf1 |
| ) |
| { |
| RivaSurface __iomem *Surface = |
| (RivaSurface __iomem *)&(chip->FIFO[0x0000E000/4]); |
| |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000005); |
| NV_WR32(&Surface->Offset, 0, surf0); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000006); |
| NV_WR32(&Surface->Offset, 0, surf1); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000014); |
| } |
| static void nv10SetSurfaces3D |
| ( |
| RIVA_HW_INST *chip, |
| unsigned surf0, |
| unsigned surf1 |
| ) |
| { |
| RivaSurface3D __iomem *Surfaces3D = |
| (RivaSurface3D __iomem *)&(chip->FIFO[0x0000E000/4]); |
| |
| RIVA_FIFO_FREE(*chip,Tri03,4); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000007); |
| NV_WR32(&Surfaces3D->RenderBufferOffset, 0, surf0); |
| NV_WR32(&Surfaces3D->ZBufferOffset, 0, surf1); |
| NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000014); |
| } |
| |
| /****************************************************************************\ |
| * * |
| * Probe RIVA Chip Configuration * |
| * * |
| \****************************************************************************/ |
| |
| static void nv3GetConfig |
| ( |
| RIVA_HW_INST *chip |
| ) |
| { |
| /* |
| * Fill in chip configuration. |
| */ |
| if (NV_RD32(&chip->PFB[0x00000000/4], 0) & 0x00000020) |
| { |
| if (((NV_RD32(chip->PMC, 0x00000000) & 0xF0) == 0x20) |
| && ((NV_RD32(chip->PMC, 0x00000000) & 0x0F) >= 0x02)) |
| { |
| /* |
| * SDRAM 128 ZX. |
| */ |
| chip->RamBandwidthKBytesPerSec = 800000; |
| switch (NV_RD32(chip->PFB, 0x00000000) & 0x03) |
| { |
| case 2: |
| chip->RamAmountKBytes = 1024 * 4; |
| break; |
| case 1: |
| chip->RamAmountKBytes = 1024 * 2; |
| break; |
| default: |
| chip->RamAmountKBytes = 1024 * 8; |
| break; |
| } |
| } |
| else |
| { |
| chip->RamBandwidthKBytesPerSec = 1000000; |
| chip->RamAmountKBytes = 1024 * 8; |
| } |
| } |
| else |
| { |
| /* |
| * SGRAM 128. |
| */ |
| chip->RamBandwidthKBytesPerSec = 1000000; |
| switch (NV_RD32(chip->PFB, 0x00000000) & 0x00000003) |
| { |
| case 0: |
| chip->RamAmountKBytes = 1024 * 8; |
| break; |
| case 2: |
| chip->RamAmountKBytes = 1024 * 4; |
| break; |
| default: |
| chip->RamAmountKBytes = 1024 * 2; |
| break; |
| } |
| } |
| chip->CrystalFreqKHz = (NV_RD32(chip->PEXTDEV, 0x00000000) & 0x00000040) ? 14318 : 13500; |
| chip->CURSOR = &(chip->PRAMIN[0x00008000/4 - 0x0800/4]); |
| chip->VBlankBit = 0x00000100; |
| chip->MaxVClockFreqKHz = 256000; |
| /* |
| * Set chip functions. |
| */ |
| chip->Busy = nv3Busy; |
| chip->ShowHideCursor = ShowHideCursor; |
| chip->LoadStateExt = LoadStateExt; |
| chip->UnloadStateExt = UnloadStateExt; |
| chip->SetStartAddress = SetStartAddress3; |
| chip->SetSurfaces2D = nv3SetSurfaces2D; |
| chip->SetSurfaces3D = nv3SetSurfaces3D; |
| chip->LockUnlock = nv3LockUnlock; |
| } |
| static void nv4GetConfig |
| ( |
| RIVA_HW_INST *chip |
| ) |
| { |
| /* |
| * Fill in chip configuration. |
| */ |
| if (NV_RD32(chip->PFB, 0x00000000) & 0x00000100) |
| { |
| chip->RamAmountKBytes = ((NV_RD32(chip->PFB, 0x00000000) >> 12) & 0x0F) * 1024 * 2 |
| + 1024 * 2; |
| } |
| else |
| { |
| switch (NV_RD32(chip->PFB, 0x00000000) & 0x00000003) |
| { |
| case 0: |
| chip->RamAmountKBytes = 1024 * 32; |
| break; |
| case 1: |
| chip->RamAmountKBytes = 1024 * 4; |
| break; |
| case 2: |
| chip->RamAmountKBytes = 1024 * 8; |
| break; |
| case 3: |
| default: |
| chip->RamAmountKBytes = 1024 * 16; |
| break; |
| } |
| } |
| switch ((NV_RD32(chip->PFB, 0x00000000) >> 3) & 0x00000003) |
| { |
| case 3: |
| chip->RamBandwidthKBytesPerSec = 800000; |
| break; |
| default: |
| chip->RamBandwidthKBytesPerSec = 1000000; |
| break; |
| } |
| chip->CrystalFreqKHz = (NV_RD32(chip->PEXTDEV, 0x00000000) & 0x00000040) ? 14318 : 13500; |
| chip->CURSOR = &(chip->PRAMIN[0x00010000/4 - 0x0800/4]); |
| chip->VBlankBit = 0x00000001; |
| chip->MaxVClockFreqKHz = 350000; |
| /* |
| * Set chip functions. |
| */ |
| chip->Busy = nv4Busy; |
| chip->ShowHideCursor = ShowHideCursor; |
| chip->LoadStateExt = LoadStateExt; |
| chip->UnloadStateExt = UnloadStateExt; |
| chip->SetStartAddress = SetStartAddress; |
| chip->SetSurfaces2D = nv4SetSurfaces2D; |
| chip->SetSurfaces3D = nv4SetSurfaces3D; |
| chip->LockUnlock = nv4LockUnlock; |
| } |
| static void nv10GetConfig |
| ( |
| RIVA_HW_INST *chip, |
| unsigned int chipset |
| ) |
| { |
| struct pci_dev* dev; |
| int amt; |
| |
| #ifdef __BIG_ENDIAN |
| /* turn on big endian register access */ |
| if(!(NV_RD32(chip->PMC, 0x00000004) & 0x01000001)) |
| NV_WR32(chip->PMC, 0x00000004, 0x01000001); |
| #endif |
| |
| /* |
| * Fill in chip configuration. |
| */ |
| if(chipset == NV_CHIP_IGEFORCE2) { |
| dev = pci_get_bus_and_slot(0, 1); |
| pci_read_config_dword(dev, 0x7C, &amt); |
| pci_dev_put(dev); |
| chip->RamAmountKBytes = (((amt >> 6) & 31) + 1) * 1024; |
| } else if(chipset == NV_CHIP_0x01F0) { |
| dev = pci_get_bus_and_slot(0, 1); |
| pci_read_config_dword(dev, 0x84, &amt); |
| pci_dev_put(dev); |
| chip->RamAmountKBytes = (((amt >> 4) & 127) + 1) * 1024; |
| } else { |
| switch ((NV_RD32(chip->PFB, 0x0000020C) >> 20) & 0x000000FF) |
| { |
| case 0x02: |
| chip->RamAmountKBytes = 1024 * 2; |
| break; |
| case 0x04: |
| chip->RamAmountKBytes = 1024 * 4; |
| break; |
| case 0x08: |
| chip->RamAmountKBytes = 1024 * 8; |
| break; |
| case 0x10: |
| chip->RamAmountKBytes = 1024 * 16; |
| break; |
| case 0x20: |
| chip->RamAmountKBytes = 1024 * 32; |
| break; |
| case 0x40: |
| chip->RamAmountKBytes = 1024 * 64; |
| break; |
| case 0x80: |
| chip->RamAmountKBytes = 1024 * 128; |
| break; |
| default: |
| chip->RamAmountKBytes = 1024 * 16; |
| break; |
| } |
| } |
| switch ((NV_RD32(chip->PFB, 0x00000000) >> 3) & 0x00000003) |
| { |
| case 3: |
| chip->RamBandwidthKBytesPerSec = 800000; |
| break; |
| default: |
| chip->RamBandwidthKBytesPerSec = 1000000; |
| break; |
| } |
| chip->CrystalFreqKHz = (NV_RD32(chip->PEXTDEV, 0x0000) & (1 << 6)) ? |
| 14318 : 13500; |
| |
| switch (chipset & 0x0ff0) { |
| case 0x0170: |
| case 0x0180: |
| case 0x01F0: |
| case 0x0250: |
| case 0x0280: |
| case 0x0300: |
| case 0x0310: |
| case 0x0320: |
| case 0x0330: |
| case 0x0340: |
| if(NV_RD32(chip->PEXTDEV, 0x0000) & (1 << 22)) |
| chip->CrystalFreqKHz = 27000; |
| break; |
| default: |
| break; |
| } |
| |
| chip->CursorStart = (chip->RamAmountKBytes - 128) * 1024; |
| chip->CURSOR = NULL; /* can't set this here */ |
| chip->VBlankBit = 0x00000001; |
| chip->MaxVClockFreqKHz = 350000; |
| /* |
| * Set chip functions. |
| */ |
| chip->Busy = nv10Busy; |
| chip->ShowHideCursor = ShowHideCursor; |
| chip->LoadStateExt = LoadStateExt; |
| chip->UnloadStateExt = UnloadStateExt; |
| chip->SetStartAddress = SetStartAddress; |
| chip->SetSurfaces2D = nv10SetSurfaces2D; |
| chip->SetSurfaces3D = nv10SetSurfaces3D; |
| chip->LockUnlock = nv4LockUnlock; |
| |
| switch(chipset & 0x0ff0) { |
| case 0x0110: |
| case 0x0170: |
| case 0x0180: |
| case 0x01F0: |
| case 0x0250: |
| case 0x0280: |
| case 0x0300: |
| case 0x0310: |
| case 0x0320: |
| case 0x0330: |
| case 0x0340: |
| chip->twoHeads = TRUE; |
| break; |
| default: |
| chip->twoHeads = FALSE; |
| break; |
| } |
| } |
| int RivaGetConfig |
| ( |
| RIVA_HW_INST *chip, |
| unsigned int chipset |
| ) |
| { |
| /* |
| * Save this so future SW know whats it's dealing with. |
| */ |
| chip->Version = RIVA_SW_VERSION; |
| /* |
| * Chip specific configuration. |
| */ |
| switch (chip->Architecture) |
| { |
| case NV_ARCH_03: |
| nv3GetConfig(chip); |
| break; |
| case NV_ARCH_04: |
| nv4GetConfig(chip); |
| break; |
| case NV_ARCH_10: |
| case NV_ARCH_20: |
| case NV_ARCH_30: |
| nv10GetConfig(chip, chipset); |
| break; |
| default: |
| return (-1); |
| } |
| chip->Chipset = chipset; |
| /* |
| * Fill in FIFO pointers. |
| */ |
| chip->Rop = (RivaRop __iomem *)&(chip->FIFO[0x00000000/4]); |
| chip->Clip = (RivaClip __iomem *)&(chip->FIFO[0x00002000/4]); |
| chip->Patt = (RivaPattern __iomem *)&(chip->FIFO[0x00004000/4]); |
| chip->Pixmap = (RivaPixmap __iomem *)&(chip->FIFO[0x00006000/4]); |
| chip->Blt = (RivaScreenBlt __iomem *)&(chip->FIFO[0x00008000/4]); |
| chip->Bitmap = (RivaBitmap __iomem *)&(chip->FIFO[0x0000A000/4]); |
| chip->Line = (RivaLine __iomem *)&(chip->FIFO[0x0000C000/4]); |
| chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); |
| return (0); |
| } |
| |