| /* |
| * linux/arch/ia64/kernel/irq.c |
| * |
| * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar |
| * |
| * This file contains the code used by various IRQ handling routines: |
| * asking for different IRQs should be done through these routines |
| * instead of just grabbing them. Thus setups with different IRQ numbers |
| * shouldn't result in any weird surprises, and installing new handlers |
| * should be easier. |
| * |
| * Copyright (C) Ashok Raj<ashok.raj@intel.com>, Intel Corporation 2004 |
| * |
| * 4/14/2004: Added code to handle cpu migration and do safe irq |
| * migration without losing interrupts for iosapic |
| * architecture. |
| */ |
| |
| #include <asm/delay.h> |
| #include <asm/uaccess.h> |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| |
| /* |
| * 'what should we do if we get a hw irq event on an illegal vector'. |
| * each architecture has to answer this themselves. |
| */ |
| void ack_bad_irq(unsigned int irq) |
| { |
| printk(KERN_ERR "Unexpected irq vector 0x%x on CPU %u!\n", irq, smp_processor_id()); |
| } |
| |
| #ifdef CONFIG_IA64_GENERIC |
| ia64_vector __ia64_irq_to_vector(int irq) |
| { |
| return irq_cfg[irq].vector; |
| } |
| |
| unsigned int __ia64_local_vector_to_irq (ia64_vector vec) |
| { |
| return __get_cpu_var(vector_irq)[vec]; |
| } |
| #endif |
| |
| /* |
| * Interrupt statistics: |
| */ |
| |
| atomic_t irq_err_count; |
| |
| /* |
| * /proc/interrupts printing: |
| */ |
| |
| int show_interrupts(struct seq_file *p, void *v) |
| { |
| int i = *(loff_t *) v, j; |
| struct irqaction * action; |
| unsigned long flags; |
| |
| if (i == 0) { |
| char cpuname[16]; |
| seq_printf(p, " "); |
| for_each_online_cpu(j) { |
| snprintf(cpuname, 10, "CPU%d", j); |
| seq_printf(p, "%10s ", cpuname); |
| } |
| seq_putc(p, '\n'); |
| } |
| |
| if (i < NR_IRQS) { |
| spin_lock_irqsave(&irq_desc[i].lock, flags); |
| action = irq_desc[i].action; |
| if (!action) |
| goto skip; |
| seq_printf(p, "%3d: ",i); |
| #ifndef CONFIG_SMP |
| seq_printf(p, "%10u ", kstat_irqs(i)); |
| #else |
| for_each_online_cpu(j) { |
| seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); |
| } |
| #endif |
| seq_printf(p, " %14s", irq_desc[i].chip->name); |
| seq_printf(p, " %s", action->name); |
| |
| for (action=action->next; action; action = action->next) |
| seq_printf(p, ", %s", action->name); |
| |
| seq_putc(p, '\n'); |
| skip: |
| spin_unlock_irqrestore(&irq_desc[i].lock, flags); |
| } else if (i == NR_IRQS) |
| seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count)); |
| return 0; |
| } |
| |
| #ifdef CONFIG_SMP |
| static char irq_redir [NR_IRQS]; // = { [0 ... NR_IRQS-1] = 1 }; |
| |
| void set_irq_affinity_info (unsigned int irq, int hwid, int redir) |
| { |
| if (irq < NR_IRQS) { |
| cpumask_copy(&irq_desc[irq].affinity, |
| cpumask_of(cpu_logical_id(hwid))); |
| irq_redir[irq] = (char) (redir & 0xff); |
| } |
| } |
| |
| bool is_affinity_mask_valid(const struct cpumask *cpumask) |
| { |
| if (ia64_platform_is("sn2")) { |
| /* Only allow one CPU to be specified in the smp_affinity mask */ |
| if (cpumask_weight(cpumask) != 1) |
| return false; |
| } |
| return true; |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| unsigned int vectors_in_migration[NR_IRQS]; |
| |
| /* |
| * Since cpu_online_mask is already updated, we just need to check for |
| * affinity that has zeros |
| */ |
| static void migrate_irqs(void) |
| { |
| irq_desc_t *desc; |
| int irq, new_cpu; |
| |
| for (irq=0; irq < NR_IRQS; irq++) { |
| desc = irq_desc + irq; |
| |
| if (desc->status == IRQ_DISABLED) |
| continue; |
| |
| /* |
| * No handling for now. |
| * TBD: Implement a disable function so we can now |
| * tell CPU not to respond to these local intr sources. |
| * such as ITV,CPEI,MCA etc. |
| */ |
| if (desc->status == IRQ_PER_CPU) |
| continue; |
| |
| if (cpumask_any_and(&irq_desc[irq].affinity, cpu_online_mask) |
| >= nr_cpu_ids) { |
| /* |
| * Save it for phase 2 processing |
| */ |
| vectors_in_migration[irq] = irq; |
| |
| new_cpu = cpumask_any(cpu_online_mask); |
| |
| /* |
| * Al three are essential, currently WARN_ON.. maybe panic? |
| */ |
| if (desc->chip && desc->chip->disable && |
| desc->chip->enable && desc->chip->set_affinity) { |
| desc->chip->disable(irq); |
| desc->chip->set_affinity(irq, |
| cpumask_of(new_cpu)); |
| desc->chip->enable(irq); |
| } else { |
| WARN_ON((!(desc->chip) || !(desc->chip->disable) || |
| !(desc->chip->enable) || |
| !(desc->chip->set_affinity))); |
| } |
| } |
| } |
| } |
| |
| void fixup_irqs(void) |
| { |
| unsigned int irq; |
| extern void ia64_process_pending_intr(void); |
| extern volatile int time_keeper_id; |
| |
| /* Mask ITV to disable timer */ |
| ia64_set_itv(1 << 16); |
| |
| /* |
| * Find a new timesync master |
| */ |
| if (smp_processor_id() == time_keeper_id) { |
| time_keeper_id = cpumask_first(cpu_online_mask); |
| printk ("CPU %d is now promoted to time-keeper master\n", time_keeper_id); |
| } |
| |
| /* |
| * Phase 1: Locate IRQs bound to this cpu and |
| * relocate them for cpu removal. |
| */ |
| migrate_irqs(); |
| |
| /* |
| * Phase 2: Perform interrupt processing for all entries reported in |
| * local APIC. |
| */ |
| ia64_process_pending_intr(); |
| |
| /* |
| * Phase 3: Now handle any interrupts not captured in local APIC. |
| * This is to account for cases that device interrupted during the time the |
| * rte was being disabled and re-programmed. |
| */ |
| for (irq=0; irq < NR_IRQS; irq++) { |
| if (vectors_in_migration[irq]) { |
| struct pt_regs *old_regs = set_irq_regs(NULL); |
| |
| vectors_in_migration[irq]=0; |
| generic_handle_irq(irq); |
| set_irq_regs(old_regs); |
| } |
| } |
| |
| /* |
| * Now let processor die. We do irq disable and max_xtp() to |
| * ensure there is no more interrupts routed to this processor. |
| * But the local timer interrupt can have 1 pending which we |
| * take care in timer_interrupt(). |
| */ |
| max_xtp(); |
| local_irq_disable(); |
| } |
| #endif |