| /* |
| * Chassis LCD/LED driver for HP-PARISC workstations |
| * |
| * (c) Copyright 2000 Red Hat Software |
| * (c) Copyright 2000 Helge Deller <hdeller@redhat.com> |
| * (c) Copyright 2001-2009 Helge Deller <deller@gmx.de> |
| * (c) Copyright 2001 Randolph Chung <tausq@debian.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * TODO: |
| * - speed-up calculations with inlined assembler |
| * - interface to write to second row of LCD from /proc (if technically possible) |
| * |
| * Changes: |
| * - Audit copy_from_user in led_proc_write. |
| * Daniele Bellucci <bellucda@tiscali.it> |
| * - Switch from using a tasklet to a work queue, so the led_LCD_driver |
| * can sleep. |
| * David Pye <dmp@davidmpye.dyndns.org> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/stddef.h> /* for offsetof() */ |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/ioport.h> |
| #include <linux/utsname.h> |
| #include <linux/capability.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/inetdevice.h> |
| #include <linux/in.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/reboot.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/ctype.h> |
| #include <linux/blkdev.h> |
| #include <linux/workqueue.h> |
| #include <linux/rcupdate.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/hardware.h> |
| #include <asm/param.h> /* HZ */ |
| #include <asm/led.h> |
| #include <asm/pdc.h> |
| #include <linux/uaccess.h> |
| |
| /* The control of the LEDs and LCDs on PARISC-machines have to be done |
| completely in software. The necessary calculations are done in a work queue |
| task which is scheduled regularly, and since the calculations may consume a |
| relatively large amount of CPU time, some of the calculations can be |
| turned off with the following variables (controlled via procfs) */ |
| |
| static int led_type __read_mostly = -1; |
| static unsigned char lastleds; /* LED state from most recent update */ |
| static unsigned int led_heartbeat __read_mostly = 1; |
| static unsigned int led_diskio __read_mostly = 1; |
| static unsigned int led_lanrxtx __read_mostly = 1; |
| static char lcd_text[32] __read_mostly; |
| static char lcd_text_default[32] __read_mostly; |
| static int lcd_no_led_support __read_mostly = 0; /* KittyHawk doesn't support LED on its LCD */ |
| |
| |
| static struct workqueue_struct *led_wq; |
| static void led_work_func(struct work_struct *); |
| static DECLARE_DELAYED_WORK(led_task, led_work_func); |
| |
| #if 0 |
| #define DPRINTK(x) printk x |
| #else |
| #define DPRINTK(x) |
| #endif |
| |
| struct lcd_block { |
| unsigned char command; /* stores the command byte */ |
| unsigned char on; /* value for turning LED on */ |
| unsigned char off; /* value for turning LED off */ |
| }; |
| |
| /* Structure returned by PDC_RETURN_CHASSIS_INFO */ |
| /* NOTE: we use unsigned long:16 two times, since the following member |
| lcd_cmd_reg_addr needs to be 64bit aligned on 64bit PA2.0-machines */ |
| struct pdc_chassis_lcd_info_ret_block { |
| unsigned long model:16; /* DISPLAY_MODEL_XXXX */ |
| unsigned long lcd_width:16; /* width of the LCD in chars (DISPLAY_MODEL_LCD only) */ |
| unsigned long lcd_cmd_reg_addr; /* ptr to LCD cmd-register & data ptr for LED */ |
| unsigned long lcd_data_reg_addr; /* ptr to LCD data-register (LCD only) */ |
| unsigned int min_cmd_delay; /* delay in uS after cmd-write (LCD only) */ |
| unsigned char reset_cmd1; /* command #1 for writing LCD string (LCD only) */ |
| unsigned char reset_cmd2; /* command #2 for writing LCD string (LCD only) */ |
| unsigned char act_enable; /* 0 = no activity (LCD only) */ |
| struct lcd_block heartbeat; |
| struct lcd_block disk_io; |
| struct lcd_block lan_rcv; |
| struct lcd_block lan_tx; |
| char _pad; |
| }; |
| |
| |
| /* LCD_CMD and LCD_DATA for KittyHawk machines */ |
| #define KITTYHAWK_LCD_CMD F_EXTEND(0xf0190000UL) /* 64bit-ready */ |
| #define KITTYHAWK_LCD_DATA (KITTYHAWK_LCD_CMD+1) |
| |
| /* lcd_info is pre-initialized to the values needed to program KittyHawk LCD's |
| * HP seems to have used Sharp/Hitachi HD44780 LCDs most of the time. */ |
| static struct pdc_chassis_lcd_info_ret_block |
| lcd_info __attribute__((aligned(8))) __read_mostly = |
| { |
| .model = DISPLAY_MODEL_LCD, |
| .lcd_width = 16, |
| .lcd_cmd_reg_addr = KITTYHAWK_LCD_CMD, |
| .lcd_data_reg_addr = KITTYHAWK_LCD_DATA, |
| .min_cmd_delay = 80, |
| .reset_cmd1 = 0x80, |
| .reset_cmd2 = 0xc0, |
| }; |
| |
| |
| /* direct access to some of the lcd_info variables */ |
| #define LCD_CMD_REG lcd_info.lcd_cmd_reg_addr |
| #define LCD_DATA_REG lcd_info.lcd_data_reg_addr |
| #define LED_DATA_REG lcd_info.lcd_cmd_reg_addr /* LASI & ASP only */ |
| |
| #define LED_HASLCD 1 |
| #define LED_NOLCD 0 |
| |
| /* The workqueue must be created at init-time */ |
| static int start_task(void) |
| { |
| /* Display the default text now */ |
| if (led_type == LED_HASLCD) lcd_print( lcd_text_default ); |
| |
| /* KittyHawk has no LED support on its LCD */ |
| if (lcd_no_led_support) return 0; |
| |
| /* Create the work queue and queue the LED task */ |
| led_wq = create_singlethread_workqueue("led_wq"); |
| if (!led_wq) |
| return -ENOMEM; |
| |
| queue_delayed_work(led_wq, &led_task, 0); |
| |
| return 0; |
| } |
| |
| device_initcall(start_task); |
| |
| /* ptr to LCD/LED-specific function */ |
| static void (*led_func_ptr) (unsigned char) __read_mostly; |
| |
| #ifdef CONFIG_PROC_FS |
| static int led_proc_show(struct seq_file *m, void *v) |
| { |
| switch ((long)m->private) |
| { |
| case LED_NOLCD: |
| seq_printf(m, "Heartbeat: %d\n", led_heartbeat); |
| seq_printf(m, "Disk IO: %d\n", led_diskio); |
| seq_printf(m, "LAN Rx/Tx: %d\n", led_lanrxtx); |
| break; |
| case LED_HASLCD: |
| seq_printf(m, "%s\n", lcd_text); |
| break; |
| default: |
| return 0; |
| } |
| return 0; |
| } |
| |
| static int led_proc_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, led_proc_show, PDE_DATA(inode)); |
| } |
| |
| |
| static ssize_t led_proc_write(struct file *file, const char *buf, |
| size_t count, loff_t *pos) |
| { |
| void *data = PDE_DATA(file_inode(file)); |
| char *cur, lbuf[32]; |
| int d; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (count >= sizeof(lbuf)) |
| count = sizeof(lbuf)-1; |
| |
| if (copy_from_user(lbuf, buf, count)) |
| return -EFAULT; |
| lbuf[count] = 0; |
| |
| cur = lbuf; |
| |
| switch ((long)data) |
| { |
| case LED_NOLCD: |
| d = *cur++ - '0'; |
| if (d != 0 && d != 1) goto parse_error; |
| led_heartbeat = d; |
| |
| if (*cur++ != ' ') goto parse_error; |
| |
| d = *cur++ - '0'; |
| if (d != 0 && d != 1) goto parse_error; |
| led_diskio = d; |
| |
| if (*cur++ != ' ') goto parse_error; |
| |
| d = *cur++ - '0'; |
| if (d != 0 && d != 1) goto parse_error; |
| led_lanrxtx = d; |
| |
| break; |
| case LED_HASLCD: |
| if (*cur && cur[strlen(cur)-1] == '\n') |
| cur[strlen(cur)-1] = 0; |
| if (*cur == 0) |
| cur = lcd_text_default; |
| lcd_print(cur); |
| break; |
| default: |
| return 0; |
| } |
| |
| return count; |
| |
| parse_error: |
| if ((long)data == LED_NOLCD) |
| printk(KERN_CRIT "Parse error: expect \"n n n\" (n == 0 or 1) for heartbeat,\ndisk io and lan tx/rx indicators\n"); |
| return -EINVAL; |
| } |
| |
| static const struct file_operations led_proc_fops = { |
| .owner = THIS_MODULE, |
| .open = led_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| .write = led_proc_write, |
| }; |
| |
| static int __init led_create_procfs(void) |
| { |
| struct proc_dir_entry *proc_pdc_root = NULL; |
| struct proc_dir_entry *ent; |
| |
| if (led_type == -1) return -1; |
| |
| proc_pdc_root = proc_mkdir("pdc", 0); |
| if (!proc_pdc_root) return -1; |
| |
| if (!lcd_no_led_support) |
| { |
| ent = proc_create_data("led", S_IRUGO|S_IWUSR, proc_pdc_root, |
| &led_proc_fops, (void *)LED_NOLCD); /* LED */ |
| if (!ent) return -1; |
| } |
| |
| if (led_type == LED_HASLCD) |
| { |
| ent = proc_create_data("lcd", S_IRUGO|S_IWUSR, proc_pdc_root, |
| &led_proc_fops, (void *)LED_HASLCD); /* LCD */ |
| if (!ent) return -1; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| /* |
| ** |
| ** led_ASP_driver() |
| ** |
| */ |
| #define LED_DATA 0x01 /* data to shift (0:on 1:off) */ |
| #define LED_STROBE 0x02 /* strobe to clock data */ |
| static void led_ASP_driver(unsigned char leds) |
| { |
| int i; |
| |
| leds = ~leds; |
| for (i = 0; i < 8; i++) { |
| unsigned char value; |
| value = (leds & 0x80) >> 7; |
| gsc_writeb( value, LED_DATA_REG ); |
| gsc_writeb( value | LED_STROBE, LED_DATA_REG ); |
| leds <<= 1; |
| } |
| } |
| |
| |
| /* |
| ** |
| ** led_LASI_driver() |
| ** |
| */ |
| static void led_LASI_driver(unsigned char leds) |
| { |
| leds = ~leds; |
| gsc_writeb( leds, LED_DATA_REG ); |
| } |
| |
| |
| /* |
| ** |
| ** led_LCD_driver() |
| ** |
| */ |
| static void led_LCD_driver(unsigned char leds) |
| { |
| static int i; |
| static unsigned char mask[4] = { LED_HEARTBEAT, LED_DISK_IO, |
| LED_LAN_RCV, LED_LAN_TX }; |
| |
| static struct lcd_block * blockp[4] = { |
| &lcd_info.heartbeat, |
| &lcd_info.disk_io, |
| &lcd_info.lan_rcv, |
| &lcd_info.lan_tx |
| }; |
| |
| /* Convert min_cmd_delay to milliseconds */ |
| unsigned int msec_cmd_delay = 1 + (lcd_info.min_cmd_delay / 1000); |
| |
| for (i=0; i<4; ++i) |
| { |
| if ((leds & mask[i]) != (lastleds & mask[i])) |
| { |
| gsc_writeb( blockp[i]->command, LCD_CMD_REG ); |
| msleep(msec_cmd_delay); |
| |
| gsc_writeb( leds & mask[i] ? blockp[i]->on : |
| blockp[i]->off, LCD_DATA_REG ); |
| msleep(msec_cmd_delay); |
| } |
| } |
| } |
| |
| |
| /* |
| ** |
| ** led_get_net_activity() |
| ** |
| ** calculate if there was TX- or RX-throughput on the network interfaces |
| ** (analog to dev_get_info() from net/core/dev.c) |
| ** |
| */ |
| static __inline__ int led_get_net_activity(void) |
| { |
| #ifndef CONFIG_NET |
| return 0; |
| #else |
| static u64 rx_total_last, tx_total_last; |
| u64 rx_total, tx_total; |
| struct net_device *dev; |
| int retval; |
| |
| rx_total = tx_total = 0; |
| |
| /* we are running as a workqueue task, so we can use an RCU lookup */ |
| rcu_read_lock(); |
| for_each_netdev_rcu(&init_net, dev) { |
| const struct rtnl_link_stats64 *stats; |
| struct rtnl_link_stats64 temp; |
| struct in_device *in_dev = __in_dev_get_rcu(dev); |
| if (!in_dev || !in_dev->ifa_list) |
| continue; |
| if (ipv4_is_loopback(in_dev->ifa_list->ifa_local)) |
| continue; |
| stats = dev_get_stats(dev, &temp); |
| rx_total += stats->rx_packets; |
| tx_total += stats->tx_packets; |
| } |
| rcu_read_unlock(); |
| |
| retval = 0; |
| |
| if (rx_total != rx_total_last) { |
| rx_total_last = rx_total; |
| retval |= LED_LAN_RCV; |
| } |
| |
| if (tx_total != tx_total_last) { |
| tx_total_last = tx_total; |
| retval |= LED_LAN_TX; |
| } |
| |
| return retval; |
| #endif |
| } |
| |
| |
| /* |
| ** |
| ** led_get_diskio_activity() |
| ** |
| ** calculate if there was disk-io in the system |
| ** |
| */ |
| static __inline__ int led_get_diskio_activity(void) |
| { |
| static unsigned long last_pgpgin, last_pgpgout; |
| unsigned long events[NR_VM_EVENT_ITEMS]; |
| int changed; |
| |
| all_vm_events(events); |
| |
| /* Just use a very simple calculation here. Do not care about overflow, |
| since we only want to know if there was activity or not. */ |
| changed = (events[PGPGIN] != last_pgpgin) || |
| (events[PGPGOUT] != last_pgpgout); |
| last_pgpgin = events[PGPGIN]; |
| last_pgpgout = events[PGPGOUT]; |
| |
| return (changed ? LED_DISK_IO : 0); |
| } |
| |
| |
| |
| /* |
| ** led_work_func() |
| ** |
| ** manages when and which chassis LCD/LED gets updated |
| |
| TODO: |
| - display load average (older machines like 715/64 have 4 "free" LED's for that) |
| - optimizations |
| */ |
| |
| #define HEARTBEAT_LEN (HZ*10/100) |
| #define HEARTBEAT_2ND_RANGE_START (HZ*28/100) |
| #define HEARTBEAT_2ND_RANGE_END (HEARTBEAT_2ND_RANGE_START + HEARTBEAT_LEN) |
| |
| #define LED_UPDATE_INTERVAL (1 + (HZ*19/1000)) |
| |
| static void led_work_func (struct work_struct *unused) |
| { |
| static unsigned long last_jiffies; |
| static unsigned long count_HZ; /* counter in range 0..HZ */ |
| unsigned char currentleds = 0; /* stores current value of the LEDs */ |
| |
| /* exit if not initialized */ |
| if (!led_func_ptr) |
| return; |
| |
| /* increment the heartbeat timekeeper */ |
| count_HZ += jiffies - last_jiffies; |
| last_jiffies = jiffies; |
| if (count_HZ >= HZ) |
| count_HZ = 0; |
| |
| if (likely(led_heartbeat)) |
| { |
| /* flash heartbeat-LED like a real heart |
| * (2 x short then a long delay) |
| */ |
| if (count_HZ < HEARTBEAT_LEN || |
| (count_HZ >= HEARTBEAT_2ND_RANGE_START && |
| count_HZ < HEARTBEAT_2ND_RANGE_END)) |
| currentleds |= LED_HEARTBEAT; |
| } |
| |
| if (likely(led_lanrxtx)) currentleds |= led_get_net_activity(); |
| if (likely(led_diskio)) currentleds |= led_get_diskio_activity(); |
| |
| /* blink LEDs if we got an Oops (HPMC) */ |
| if (unlikely(oops_in_progress)) { |
| if (boot_cpu_data.cpu_type >= pcxl2) { |
| /* newer machines don't have loadavg. LEDs, so we |
| * let all LEDs blink twice per second instead */ |
| currentleds = (count_HZ <= (HZ/2)) ? 0 : 0xff; |
| } else { |
| /* old machines: blink loadavg. LEDs twice per second */ |
| if (count_HZ <= (HZ/2)) |
| currentleds &= ~(LED4|LED5|LED6|LED7); |
| else |
| currentleds |= (LED4|LED5|LED6|LED7); |
| } |
| } |
| |
| if (currentleds != lastleds) |
| { |
| led_func_ptr(currentleds); /* Update the LCD/LEDs */ |
| lastleds = currentleds; |
| } |
| |
| queue_delayed_work(led_wq, &led_task, LED_UPDATE_INTERVAL); |
| } |
| |
| /* |
| ** led_halt() |
| ** |
| ** called by the reboot notifier chain at shutdown and stops all |
| ** LED/LCD activities. |
| ** |
| */ |
| |
| static int led_halt(struct notifier_block *, unsigned long, void *); |
| |
| static struct notifier_block led_notifier = { |
| .notifier_call = led_halt, |
| }; |
| static int notifier_disabled = 0; |
| |
| static int led_halt(struct notifier_block *nb, unsigned long event, void *buf) |
| { |
| char *txt; |
| |
| if (notifier_disabled) |
| return NOTIFY_OK; |
| |
| notifier_disabled = 1; |
| switch (event) { |
| case SYS_RESTART: txt = "SYSTEM RESTART"; |
| break; |
| case SYS_HALT: txt = "SYSTEM HALT"; |
| break; |
| case SYS_POWER_OFF: txt = "SYSTEM POWER OFF"; |
| break; |
| default: return NOTIFY_DONE; |
| } |
| |
| /* Cancel the work item and delete the queue */ |
| if (led_wq) { |
| cancel_delayed_work_sync(&led_task); |
| destroy_workqueue(led_wq); |
| led_wq = NULL; |
| } |
| |
| if (lcd_info.model == DISPLAY_MODEL_LCD) |
| lcd_print(txt); |
| else |
| if (led_func_ptr) |
| led_func_ptr(0xff); /* turn all LEDs ON */ |
| |
| return NOTIFY_OK; |
| } |
| |
| /* |
| ** register_led_driver() |
| ** |
| ** registers an external LED or LCD for usage by this driver. |
| ** currently only LCD-, LASI- and ASP-style LCD/LED's are supported. |
| ** |
| */ |
| |
| int __init register_led_driver(int model, unsigned long cmd_reg, unsigned long data_reg) |
| { |
| static int initialized; |
| |
| if (initialized || !data_reg) |
| return 1; |
| |
| lcd_info.model = model; /* store the values */ |
| LCD_CMD_REG = (cmd_reg == LED_CMD_REG_NONE) ? 0 : cmd_reg; |
| |
| switch (lcd_info.model) { |
| case DISPLAY_MODEL_LCD: |
| LCD_DATA_REG = data_reg; |
| printk(KERN_INFO "LCD display at %lx,%lx registered\n", |
| LCD_CMD_REG , LCD_DATA_REG); |
| led_func_ptr = led_LCD_driver; |
| led_type = LED_HASLCD; |
| break; |
| |
| case DISPLAY_MODEL_LASI: |
| /* Skip to register LED in QEMU */ |
| if (running_on_qemu) |
| return 1; |
| LED_DATA_REG = data_reg; |
| led_func_ptr = led_LASI_driver; |
| printk(KERN_INFO "LED display at %lx registered\n", LED_DATA_REG); |
| led_type = LED_NOLCD; |
| break; |
| |
| case DISPLAY_MODEL_OLD_ASP: |
| LED_DATA_REG = data_reg; |
| led_func_ptr = led_ASP_driver; |
| printk(KERN_INFO "LED (ASP-style) display at %lx registered\n", |
| LED_DATA_REG); |
| led_type = LED_NOLCD; |
| break; |
| |
| default: |
| printk(KERN_ERR "%s: Wrong LCD/LED model %d !\n", |
| __func__, lcd_info.model); |
| return 1; |
| } |
| |
| /* mark the LCD/LED driver now as initialized and |
| * register to the reboot notifier chain */ |
| initialized++; |
| register_reboot_notifier(&led_notifier); |
| |
| /* Ensure the work is queued */ |
| if (led_wq) { |
| queue_delayed_work(led_wq, &led_task, 0); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| ** register_led_regions() |
| ** |
| ** register_led_regions() registers the LCD/LED regions for /procfs. |
| ** At bootup - where the initialisation of the LCD/LED normally happens - |
| ** not all internal structures of request_region() are properly set up, |
| ** so that we delay the led-registration until after busdevices_init() |
| ** has been executed. |
| ** |
| */ |
| |
| void __init register_led_regions(void) |
| { |
| switch (lcd_info.model) { |
| case DISPLAY_MODEL_LCD: |
| request_mem_region((unsigned long)LCD_CMD_REG, 1, "lcd_cmd"); |
| request_mem_region((unsigned long)LCD_DATA_REG, 1, "lcd_data"); |
| break; |
| case DISPLAY_MODEL_LASI: |
| case DISPLAY_MODEL_OLD_ASP: |
| request_mem_region((unsigned long)LED_DATA_REG, 1, "led_data"); |
| break; |
| } |
| } |
| |
| |
| /* |
| ** |
| ** lcd_print() |
| ** |
| ** Displays the given string on the LCD-Display of newer machines. |
| ** lcd_print() disables/enables the timer-based led work queue to |
| ** avoid a race condition while writing the CMD/DATA register pair. |
| ** |
| */ |
| int lcd_print( const char *str ) |
| { |
| int i; |
| |
| if (!led_func_ptr || lcd_info.model != DISPLAY_MODEL_LCD) |
| return 0; |
| |
| /* temporarily disable the led work task */ |
| if (led_wq) |
| cancel_delayed_work_sync(&led_task); |
| |
| /* copy display string to buffer for procfs */ |
| strlcpy(lcd_text, str, sizeof(lcd_text)); |
| |
| /* Set LCD Cursor to 1st character */ |
| gsc_writeb(lcd_info.reset_cmd1, LCD_CMD_REG); |
| udelay(lcd_info.min_cmd_delay); |
| |
| /* Print the string */ |
| for (i=0; i < lcd_info.lcd_width; i++) { |
| if (str && *str) |
| gsc_writeb(*str++, LCD_DATA_REG); |
| else |
| gsc_writeb(' ', LCD_DATA_REG); |
| udelay(lcd_info.min_cmd_delay); |
| } |
| |
| /* re-queue the work */ |
| if (led_wq) { |
| queue_delayed_work(led_wq, &led_task, 0); |
| } |
| |
| return lcd_info.lcd_width; |
| } |
| |
| /* |
| ** led_init() |
| ** |
| ** led_init() is called very early in the bootup-process from setup.c |
| ** and asks the PDC for an usable chassis LCD or LED. |
| ** If the PDC doesn't return any info, then the LED |
| ** is detected by lasi.c or asp.c and registered with the |
| ** above functions lasi_led_init() or asp_led_init(). |
| ** KittyHawk machines have often a buggy PDC, so that |
| ** we explicitly check for those machines here. |
| */ |
| |
| int __init led_init(void) |
| { |
| struct pdc_chassis_info chassis_info; |
| int ret; |
| |
| snprintf(lcd_text_default, sizeof(lcd_text_default), |
| "Linux %s", init_utsname()->release); |
| |
| /* Work around the buggy PDC of KittyHawk-machines */ |
| switch (CPU_HVERSION) { |
| case 0x580: /* KittyHawk DC2-100 (K100) */ |
| case 0x581: /* KittyHawk DC3-120 (K210) */ |
| case 0x582: /* KittyHawk DC3 100 (K400) */ |
| case 0x583: /* KittyHawk DC3 120 (K410) */ |
| case 0x58B: /* KittyHawk DC2 100 (K200) */ |
| printk(KERN_INFO "%s: KittyHawk-Machine (hversion 0x%x) found, " |
| "LED detection skipped.\n", __FILE__, CPU_HVERSION); |
| lcd_no_led_support = 1; |
| goto found; /* use the preinitialized values of lcd_info */ |
| } |
| |
| /* initialize the struct, so that we can check for valid return values */ |
| lcd_info.model = DISPLAY_MODEL_NONE; |
| chassis_info.actcnt = chassis_info.maxcnt = 0; |
| |
| ret = pdc_chassis_info(&chassis_info, &lcd_info, sizeof(lcd_info)); |
| if (ret == PDC_OK) { |
| DPRINTK((KERN_INFO "%s: chassis info: model=%d (%s), " |
| "lcd_width=%d, cmd_delay=%u,\n" |
| "%s: sizecnt=%d, actcnt=%ld, maxcnt=%ld\n", |
| __FILE__, lcd_info.model, |
| (lcd_info.model==DISPLAY_MODEL_LCD) ? "LCD" : |
| (lcd_info.model==DISPLAY_MODEL_LASI) ? "LED" : "unknown", |
| lcd_info.lcd_width, lcd_info.min_cmd_delay, |
| __FILE__, sizeof(lcd_info), |
| chassis_info.actcnt, chassis_info.maxcnt)); |
| DPRINTK((KERN_INFO "%s: cmd=%p, data=%p, reset1=%x, reset2=%x, act_enable=%d\n", |
| __FILE__, lcd_info.lcd_cmd_reg_addr, |
| lcd_info.lcd_data_reg_addr, lcd_info.reset_cmd1, |
| lcd_info.reset_cmd2, lcd_info.act_enable )); |
| |
| /* check the results. Some machines have a buggy PDC */ |
| if (chassis_info.actcnt <= 0 || chassis_info.actcnt != chassis_info.maxcnt) |
| goto not_found; |
| |
| switch (lcd_info.model) { |
| case DISPLAY_MODEL_LCD: /* LCD display */ |
| if (chassis_info.actcnt < |
| offsetof(struct pdc_chassis_lcd_info_ret_block, _pad)-1) |
| goto not_found; |
| if (!lcd_info.act_enable) { |
| DPRINTK((KERN_INFO "PDC prohibited usage of the LCD.\n")); |
| goto not_found; |
| } |
| break; |
| |
| case DISPLAY_MODEL_NONE: /* no LED or LCD available */ |
| printk(KERN_INFO "PDC reported no LCD or LED.\n"); |
| goto not_found; |
| |
| case DISPLAY_MODEL_LASI: /* Lasi style 8 bit LED display */ |
| if (chassis_info.actcnt != 8 && chassis_info.actcnt != 32) |
| goto not_found; |
| break; |
| |
| default: |
| printk(KERN_WARNING "PDC reported unknown LCD/LED model %d\n", |
| lcd_info.model); |
| goto not_found; |
| } /* switch() */ |
| |
| found: |
| /* register the LCD/LED driver */ |
| register_led_driver(lcd_info.model, LCD_CMD_REG, LCD_DATA_REG); |
| return 0; |
| |
| } else { /* if() */ |
| DPRINTK((KERN_INFO "pdc_chassis_info call failed with retval = %d\n", ret)); |
| } |
| |
| not_found: |
| lcd_info.model = DISPLAY_MODEL_NONE; |
| return 1; |
| } |
| |
| static void __exit led_exit(void) |
| { |
| unregister_reboot_notifier(&led_notifier); |
| return; |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| module_init(led_create_procfs) |
| #endif |