blob: ee438674d6cc4e30bfa51d0cf453ee604cfb24c1 [file] [log] [blame]
/* Broadcom NetXtreme-C/E network driver.
*
* Copyright (c) 2014-2016 Broadcom Corporation
* Copyright (c) 2016-2017 Broadcom Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/stringify.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/dma-mapping.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <asm/byteorder.h>
#include <asm/page.h>
#include <linux/time.h>
#include <linux/mii.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/if_bridge.h>
#include <linux/rtc.h>
#include <linux/bpf.h>
#include <net/ip.h>
#include <net/tcp.h>
#include <net/udp.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <net/udp_tunnel.h>
#include <linux/workqueue.h>
#include <linux/prefetch.h>
#include <linux/cache.h>
#include <linux/log2.h>
#include <linux/aer.h>
#include <linux/bitmap.h>
#include <linux/cpu_rmap.h>
#include <linux/cpumask.h>
#include <net/pkt_cls.h>
#include "bnxt_hsi.h"
#include "bnxt.h"
#include "bnxt_ulp.h"
#include "bnxt_sriov.h"
#include "bnxt_ethtool.h"
#include "bnxt_dcb.h"
#include "bnxt_xdp.h"
#include "bnxt_vfr.h"
#include "bnxt_tc.h"
#define BNXT_TX_TIMEOUT (5 * HZ)
static const char version[] =
"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
MODULE_VERSION(DRV_MODULE_VERSION);
#define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
#define BNXT_RX_DMA_OFFSET NET_SKB_PAD
#define BNXT_RX_COPY_THRESH 256
#define BNXT_TX_PUSH_THRESH 164
enum board_idx {
BCM57301,
BCM57302,
BCM57304,
BCM57417_NPAR,
BCM58700,
BCM57311,
BCM57312,
BCM57402,
BCM57404,
BCM57406,
BCM57402_NPAR,
BCM57407,
BCM57412,
BCM57414,
BCM57416,
BCM57417,
BCM57412_NPAR,
BCM57314,
BCM57417_SFP,
BCM57416_SFP,
BCM57404_NPAR,
BCM57406_NPAR,
BCM57407_SFP,
BCM57407_NPAR,
BCM57414_NPAR,
BCM57416_NPAR,
BCM57452,
BCM57454,
BCM58802,
BCM58808,
NETXTREME_E_VF,
NETXTREME_C_VF,
};
/* indexed by enum above */
static const struct {
char *name;
} board_info[] = {
[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
};
static const struct pci_device_id bnxt_pci_tbl[] = {
{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
#ifdef CONFIG_BNXT_SRIOV
{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
#endif
{ 0 }
};
MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
static const u16 bnxt_vf_req_snif[] = {
HWRM_FUNC_CFG,
HWRM_PORT_PHY_QCFG,
HWRM_CFA_L2_FILTER_ALLOC,
};
static const u16 bnxt_async_events_arr[] = {
ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
};
static struct workqueue_struct *bnxt_pf_wq;
static bool bnxt_vf_pciid(enum board_idx idx)
{
return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
}
#define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
#define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
#define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
#define BNXT_CP_DB_REARM(db, raw_cons) \
writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
#define BNXT_CP_DB(db, raw_cons) \
writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
#define BNXT_CP_DB_IRQ_DIS(db) \
writel(DB_CP_IRQ_DIS_FLAGS, db)
const u16 bnxt_lhint_arr[] = {
TX_BD_FLAGS_LHINT_512_AND_SMALLER,
TX_BD_FLAGS_LHINT_512_TO_1023,
TX_BD_FLAGS_LHINT_1024_TO_2047,
TX_BD_FLAGS_LHINT_1024_TO_2047,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
};
static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
{
struct metadata_dst *md_dst = skb_metadata_dst(skb);
if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
return 0;
return md_dst->u.port_info.port_id;
}
static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
struct bnxt_tx_ring_info *txr,
struct netdev_queue *txq)
{
netif_tx_stop_queue(txq);
/* netif_tx_stop_queue() must be done before checking
* tx index in bnxt_tx_avail() below, because in
* bnxt_tx_int(), we update tx index before checking for
* netif_tx_queue_stopped().
*/
smp_mb();
if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
netif_tx_wake_queue(txq);
return false;
}
return true;
}
static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct bnxt *bp = netdev_priv(dev);
struct tx_bd *txbd;
struct tx_bd_ext *txbd1;
struct netdev_queue *txq;
int i;
dma_addr_t mapping;
unsigned int length, pad = 0;
u32 len, free_size, vlan_tag_flags, cfa_action, flags;
u16 prod, last_frag;
struct pci_dev *pdev = bp->pdev;
struct bnxt_tx_ring_info *txr;
struct bnxt_sw_tx_bd *tx_buf;
i = skb_get_queue_mapping(skb);
if (unlikely(i >= bp->tx_nr_rings)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
txq = netdev_get_tx_queue(dev, i);
txr = &bp->tx_ring[bp->tx_ring_map[i]];
prod = txr->tx_prod;
free_size = bnxt_tx_avail(bp, txr);
if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
return NETDEV_TX_BUSY;
}
length = skb->len;
len = skb_headlen(skb);
last_frag = skb_shinfo(skb)->nr_frags;
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
txbd->tx_bd_opaque = prod;
tx_buf = &txr->tx_buf_ring[prod];
tx_buf->skb = skb;
tx_buf->nr_frags = last_frag;
vlan_tag_flags = 0;
cfa_action = bnxt_xmit_get_cfa_action(skb);
if (skb_vlan_tag_present(skb)) {
vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
skb_vlan_tag_get(skb);
/* Currently supports 8021Q, 8021AD vlan offloads
* QINQ1, QINQ2, QINQ3 vlan headers are deprecated
*/
if (skb->vlan_proto == htons(ETH_P_8021Q))
vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
}
if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
struct tx_push_buffer *tx_push_buf = txr->tx_push;
struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
void *pdata = tx_push_buf->data;
u64 *end;
int j, push_len;
/* Set COAL_NOW to be ready quickly for the next push */
tx_push->tx_bd_len_flags_type =
cpu_to_le32((length << TX_BD_LEN_SHIFT) |
TX_BD_TYPE_LONG_TX_BD |
TX_BD_FLAGS_LHINT_512_AND_SMALLER |
TX_BD_FLAGS_COAL_NOW |
TX_BD_FLAGS_PACKET_END |
(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
if (skb->ip_summed == CHECKSUM_PARTIAL)
tx_push1->tx_bd_hsize_lflags =
cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
else
tx_push1->tx_bd_hsize_lflags = 0;
tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
tx_push1->tx_bd_cfa_action =
cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
end = pdata + length;
end = PTR_ALIGN(end, 8) - 1;
*end = 0;
skb_copy_from_linear_data(skb, pdata, len);
pdata += len;
for (j = 0; j < last_frag; j++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
void *fptr;
fptr = skb_frag_address_safe(frag);
if (!fptr)
goto normal_tx;
memcpy(pdata, fptr, skb_frag_size(frag));
pdata += skb_frag_size(frag);
}
txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
txbd->tx_bd_haddr = txr->data_mapping;
prod = NEXT_TX(prod);
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
memcpy(txbd, tx_push1, sizeof(*txbd));
prod = NEXT_TX(prod);
tx_push->doorbell =
cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
txr->tx_prod = prod;
tx_buf->is_push = 1;
netdev_tx_sent_queue(txq, skb->len);
wmb(); /* Sync is_push and byte queue before pushing data */
push_len = (length + sizeof(*tx_push) + 7) / 8;
if (push_len > 16) {
__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
(push_len - 16) << 1);
} else {
__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
push_len);
}
goto tx_done;
}
normal_tx:
if (length < BNXT_MIN_PKT_SIZE) {
pad = BNXT_MIN_PKT_SIZE - length;
if (skb_pad(skb, pad)) {
/* SKB already freed. */
tx_buf->skb = NULL;
return NETDEV_TX_OK;
}
length = BNXT_MIN_PKT_SIZE;
}
mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
dev_kfree_skb_any(skb);
tx_buf->skb = NULL;
return NETDEV_TX_OK;
}
dma_unmap_addr_set(tx_buf, mapping, mapping);
flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
txbd->tx_bd_haddr = cpu_to_le64(mapping);
prod = NEXT_TX(prod);
txbd1 = (struct tx_bd_ext *)
&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
txbd1->tx_bd_hsize_lflags = 0;
if (skb_is_gso(skb)) {
u32 hdr_len;
if (skb->encapsulation)
hdr_len = skb_inner_network_offset(skb) +
skb_inner_network_header_len(skb) +
inner_tcp_hdrlen(skb);
else
hdr_len = skb_transport_offset(skb) +
tcp_hdrlen(skb);
txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
TX_BD_FLAGS_T_IPID |
(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
length = skb_shinfo(skb)->gso_size;
txbd1->tx_bd_mss = cpu_to_le32(length);
length += hdr_len;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
txbd1->tx_bd_hsize_lflags =
cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
txbd1->tx_bd_mss = 0;
}
length >>= 9;
if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
skb->len);
i = 0;
goto tx_dma_error;
}
flags |= bnxt_lhint_arr[length];
txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
txbd1->tx_bd_cfa_action =
cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
for (i = 0; i < last_frag; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
prod = NEXT_TX(prod);
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
len = skb_frag_size(frag);
mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
goto tx_dma_error;
tx_buf = &txr->tx_buf_ring[prod];
dma_unmap_addr_set(tx_buf, mapping, mapping);
txbd->tx_bd_haddr = cpu_to_le64(mapping);
flags = len << TX_BD_LEN_SHIFT;
txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
}
flags &= ~TX_BD_LEN;
txbd->tx_bd_len_flags_type =
cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
TX_BD_FLAGS_PACKET_END);
netdev_tx_sent_queue(txq, skb->len);
/* Sync BD data before updating doorbell */
wmb();
prod = NEXT_TX(prod);
txr->tx_prod = prod;
if (!skb->xmit_more || netif_xmit_stopped(txq))
bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
tx_done:
mmiowb();
if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
if (skb->xmit_more && !tx_buf->is_push)
bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
bnxt_txr_netif_try_stop_queue(bp, txr, txq);
}
return NETDEV_TX_OK;
tx_dma_error:
last_frag = i;
/* start back at beginning and unmap skb */
prod = txr->tx_prod;
tx_buf = &txr->tx_buf_ring[prod];
tx_buf->skb = NULL;
dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
skb_headlen(skb), PCI_DMA_TODEVICE);
prod = NEXT_TX(prod);
/* unmap remaining mapped pages */
for (i = 0; i < last_frag; i++) {
prod = NEXT_TX(prod);
tx_buf = &txr->tx_buf_ring[prod];
dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
skb_frag_size(&skb_shinfo(skb)->frags[i]),
PCI_DMA_TODEVICE);
}
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
{
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
u16 cons = txr->tx_cons;
struct pci_dev *pdev = bp->pdev;
int i;
unsigned int tx_bytes = 0;
for (i = 0; i < nr_pkts; i++) {
struct bnxt_sw_tx_bd *tx_buf;
struct sk_buff *skb;
int j, last;
tx_buf = &txr->tx_buf_ring[cons];
cons = NEXT_TX(cons);
skb = tx_buf->skb;
tx_buf->skb = NULL;
if (tx_buf->is_push) {
tx_buf->is_push = 0;
goto next_tx_int;
}
dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
skb_headlen(skb), PCI_DMA_TODEVICE);
last = tx_buf->nr_frags;
for (j = 0; j < last; j++) {
cons = NEXT_TX(cons);
tx_buf = &txr->tx_buf_ring[cons];
dma_unmap_page(
&pdev->dev,
dma_unmap_addr(tx_buf, mapping),
skb_frag_size(&skb_shinfo(skb)->frags[j]),
PCI_DMA_TODEVICE);
}
next_tx_int:
cons = NEXT_TX(cons);
tx_bytes += skb->len;
dev_kfree_skb_any(skb);
}
netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
txr->tx_cons = cons;
/* Need to make the tx_cons update visible to bnxt_start_xmit()
* before checking for netif_tx_queue_stopped(). Without the
* memory barrier, there is a small possibility that bnxt_start_xmit()
* will miss it and cause the queue to be stopped forever.
*/
smp_mb();
if (unlikely(netif_tx_queue_stopped(txq)) &&
bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
netif_tx_wake_queue(txq);
}
static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
gfp_t gfp)
{
struct device *dev = &bp->pdev->dev;
struct page *page;
page = alloc_page(gfp);
if (!page)
return NULL;
*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
if (dma_mapping_error(dev, *mapping)) {
__free_page(page);
return NULL;
}
*mapping += bp->rx_dma_offset;
return page;
}
static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
gfp_t gfp)
{
u8 *data;
struct pci_dev *pdev = bp->pdev;
data = kmalloc(bp->rx_buf_size, gfp);
if (!data)
return NULL;
*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
bp->rx_buf_use_size, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
if (dma_mapping_error(&pdev->dev, *mapping)) {
kfree(data);
data = NULL;
}
return data;
}
int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
u16 prod, gfp_t gfp)
{
struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
dma_addr_t mapping;
if (BNXT_RX_PAGE_MODE(bp)) {
struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
if (!page)
return -ENOMEM;
rx_buf->data = page;
rx_buf->data_ptr = page_address(page) + bp->rx_offset;
} else {
u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
if (!data)
return -ENOMEM;
rx_buf->data = data;
rx_buf->data_ptr = data + bp->rx_offset;
}
rx_buf->mapping = mapping;
rxbd->rx_bd_haddr = cpu_to_le64(mapping);
return 0;
}
void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
{
u16 prod = rxr->rx_prod;
struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
struct rx_bd *cons_bd, *prod_bd;
prod_rx_buf = &rxr->rx_buf_ring[prod];
cons_rx_buf = &rxr->rx_buf_ring[cons];
prod_rx_buf->data = data;
prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
prod_rx_buf->mapping = cons_rx_buf->mapping;
prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
}
static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
{
u16 next, max = rxr->rx_agg_bmap_size;
next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
if (next >= max)
next = find_first_zero_bit(rxr->rx_agg_bmap, max);
return next;
}
static inline int bnxt_alloc_rx_page(struct bnxt *bp,
struct bnxt_rx_ring_info *rxr,
u16 prod, gfp_t gfp)
{
struct rx_bd *rxbd =
&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
struct bnxt_sw_rx_agg_bd *rx_agg_buf;
struct pci_dev *pdev = bp->pdev;
struct page *page;
dma_addr_t mapping;
u16 sw_prod = rxr->rx_sw_agg_prod;
unsigned int offset = 0;
if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
page = rxr->rx_page;
if (!page) {
page = alloc_page(gfp);
if (!page)
return -ENOMEM;
rxr->rx_page = page;
rxr->rx_page_offset = 0;
}
offset = rxr->rx_page_offset;
rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
if (rxr->rx_page_offset == PAGE_SIZE)
rxr->rx_page = NULL;
else
get_page(page);
} else {
page = alloc_page(gfp);
if (!page)
return -ENOMEM;
}
mapping = dma_map_page_attrs(&pdev->dev, page, offset,
BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
DMA_ATTR_WEAK_ORDERING);
if (dma_mapping_error(&pdev->dev, mapping)) {
__free_page(page);
return -EIO;
}
if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
__set_bit(sw_prod, rxr->rx_agg_bmap);
rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
rx_agg_buf->page = page;
rx_agg_buf->offset = offset;
rx_agg_buf->mapping = mapping;
rxbd->rx_bd_haddr = cpu_to_le64(mapping);
rxbd->rx_bd_opaque = sw_prod;
return 0;
}
static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
u32 agg_bufs)
{
struct bnxt *bp = bnapi->bp;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
u16 prod = rxr->rx_agg_prod;
u16 sw_prod = rxr->rx_sw_agg_prod;
u32 i;
for (i = 0; i < agg_bufs; i++) {
u16 cons;
struct rx_agg_cmp *agg;
struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
struct rx_bd *prod_bd;
struct page *page;
agg = (struct rx_agg_cmp *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
cons = agg->rx_agg_cmp_opaque;
__clear_bit(cons, rxr->rx_agg_bmap);
if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
__set_bit(sw_prod, rxr->rx_agg_bmap);
prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
cons_rx_buf = &rxr->rx_agg_ring[cons];
/* It is possible for sw_prod to be equal to cons, so
* set cons_rx_buf->page to NULL first.
*/
page = cons_rx_buf->page;
cons_rx_buf->page = NULL;
prod_rx_buf->page = page;
prod_rx_buf->offset = cons_rx_buf->offset;
prod_rx_buf->mapping = cons_rx_buf->mapping;
prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
prod_bd->rx_bd_opaque = sw_prod;
prod = NEXT_RX_AGG(prod);
sw_prod = NEXT_RX_AGG(sw_prod);
cp_cons = NEXT_CMP(cp_cons);
}
rxr->rx_agg_prod = prod;
rxr->rx_sw_agg_prod = sw_prod;
}
static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
struct bnxt_rx_ring_info *rxr,
u16 cons, void *data, u8 *data_ptr,
dma_addr_t dma_addr,
unsigned int offset_and_len)
{
unsigned int payload = offset_and_len >> 16;
unsigned int len = offset_and_len & 0xffff;
struct skb_frag_struct *frag;
struct page *page = data;
u16 prod = rxr->rx_prod;
struct sk_buff *skb;
int off, err;
err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
if (unlikely(err)) {
bnxt_reuse_rx_data(rxr, cons, data);
return NULL;
}
dma_addr -= bp->rx_dma_offset;
dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
if (unlikely(!payload))
payload = eth_get_headlen(data_ptr, len);
skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
if (!skb) {
__free_page(page);
return NULL;
}
off = (void *)data_ptr - page_address(page);
skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
payload + NET_IP_ALIGN);
frag = &skb_shinfo(skb)->frags[0];
skb_frag_size_sub(frag, payload);
frag->page_offset += payload;
skb->data_len -= payload;
skb->tail += payload;
return skb;
}
static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
struct bnxt_rx_ring_info *rxr, u16 cons,
void *data, u8 *data_ptr,
dma_addr_t dma_addr,
unsigned int offset_and_len)
{
u16 prod = rxr->rx_prod;
struct sk_buff *skb;
int err;
err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
if (unlikely(err)) {
bnxt_reuse_rx_data(rxr, cons, data);
return NULL;
}
skb = build_skb(data, 0);
dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
if (!skb) {
kfree(data);
return NULL;
}
skb_reserve(skb, bp->rx_offset);
skb_put(skb, offset_and_len & 0xffff);
return skb;
}
static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
struct sk_buff *skb, u16 cp_cons,
u32 agg_bufs)
{
struct pci_dev *pdev = bp->pdev;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
u16 prod = rxr->rx_agg_prod;
u32 i;
for (i = 0; i < agg_bufs; i++) {
u16 cons, frag_len;
struct rx_agg_cmp *agg;
struct bnxt_sw_rx_agg_bd *cons_rx_buf;
struct page *page;
dma_addr_t mapping;
agg = (struct rx_agg_cmp *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
cons = agg->rx_agg_cmp_opaque;
frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
cons_rx_buf = &rxr->rx_agg_ring[cons];
skb_fill_page_desc(skb, i, cons_rx_buf->page,
cons_rx_buf->offset, frag_len);
__clear_bit(cons, rxr->rx_agg_bmap);
/* It is possible for bnxt_alloc_rx_page() to allocate
* a sw_prod index that equals the cons index, so we
* need to clear the cons entry now.
*/
mapping = cons_rx_buf->mapping;
page = cons_rx_buf->page;
cons_rx_buf->page = NULL;
if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
struct skb_shared_info *shinfo;
unsigned int nr_frags;
shinfo = skb_shinfo(skb);
nr_frags = --shinfo->nr_frags;
__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
dev_kfree_skb(skb);
cons_rx_buf->page = page;
/* Update prod since possibly some pages have been
* allocated already.
*/
rxr->rx_agg_prod = prod;
bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
return NULL;
}
dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
PCI_DMA_FROMDEVICE,
DMA_ATTR_WEAK_ORDERING);
skb->data_len += frag_len;
skb->len += frag_len;
skb->truesize += PAGE_SIZE;
prod = NEXT_RX_AGG(prod);
cp_cons = NEXT_CMP(cp_cons);
}
rxr->rx_agg_prod = prod;
return skb;
}
static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
u8 agg_bufs, u32 *raw_cons)
{
u16 last;
struct rx_agg_cmp *agg;
*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
last = RING_CMP(*raw_cons);
agg = (struct rx_agg_cmp *)
&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
return RX_AGG_CMP_VALID(agg, *raw_cons);
}
static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
unsigned int len,
dma_addr_t mapping)
{
struct bnxt *bp = bnapi->bp;
struct pci_dev *pdev = bp->pdev;
struct sk_buff *skb;
skb = napi_alloc_skb(&bnapi->napi, len);
if (!skb)
return NULL;
dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
bp->rx_dir);
memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
len + NET_IP_ALIGN);
dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
bp->rx_dir);
skb_put(skb, len);
return skb;
}
static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
u32 *raw_cons, void *cmp)
{
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct rx_cmp *rxcmp = cmp;
u32 tmp_raw_cons = *raw_cons;
u8 cmp_type, agg_bufs = 0;
cmp_type = RX_CMP_TYPE(rxcmp);
if (cmp_type == CMP_TYPE_RX_L2_CMP) {
agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
RX_CMP_AGG_BUFS) >>
RX_CMP_AGG_BUFS_SHIFT;
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
struct rx_tpa_end_cmp *tpa_end = cmp;
agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
RX_TPA_END_CMP_AGG_BUFS) >>
RX_TPA_END_CMP_AGG_BUFS_SHIFT;
}
if (agg_bufs) {
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
return -EBUSY;
}
*raw_cons = tmp_raw_cons;
return 0;
}
static void bnxt_queue_sp_work(struct bnxt *bp)
{
if (BNXT_PF(bp))
queue_work(bnxt_pf_wq, &bp->sp_task);
else
schedule_work(&bp->sp_task);
}
static void bnxt_cancel_sp_work(struct bnxt *bp)
{
if (BNXT_PF(bp))
flush_workqueue(bnxt_pf_wq);
else
cancel_work_sync(&bp->sp_task);
}
static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
{
if (!rxr->bnapi->in_reset) {
rxr->bnapi->in_reset = true;
set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
rxr->rx_next_cons = 0xffff;
}
static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
struct rx_tpa_start_cmp *tpa_start,
struct rx_tpa_start_cmp_ext *tpa_start1)
{
u8 agg_id = TPA_START_AGG_ID(tpa_start);
u16 cons, prod;
struct bnxt_tpa_info *tpa_info;
struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
struct rx_bd *prod_bd;
dma_addr_t mapping;
cons = tpa_start->rx_tpa_start_cmp_opaque;
prod = rxr->rx_prod;
cons_rx_buf = &rxr->rx_buf_ring[cons];
prod_rx_buf = &rxr->rx_buf_ring[prod];
tpa_info = &rxr->rx_tpa[agg_id];
if (unlikely(cons != rxr->rx_next_cons)) {
netdev_warn(bp->dev, "TPA cons %x != expected cons %x\n",
cons, rxr->rx_next_cons);
bnxt_sched_reset(bp, rxr);
return;
}
/* Store cfa_code in tpa_info to use in tpa_end
* completion processing.
*/
tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
prod_rx_buf->data = tpa_info->data;
prod_rx_buf->data_ptr = tpa_info->data_ptr;
mapping = tpa_info->mapping;
prod_rx_buf->mapping = mapping;
prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
tpa_info->data = cons_rx_buf->data;
tpa_info->data_ptr = cons_rx_buf->data_ptr;
cons_rx_buf->data = NULL;
tpa_info->mapping = cons_rx_buf->mapping;
tpa_info->len =
le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
RX_TPA_START_CMP_LEN_SHIFT;
if (likely(TPA_START_HASH_VALID(tpa_start))) {
u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
tpa_info->hash_type = PKT_HASH_TYPE_L4;
tpa_info->gso_type = SKB_GSO_TCPV4;
/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
if (hash_type == 3)
tpa_info->gso_type = SKB_GSO_TCPV6;
tpa_info->rss_hash =
le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
} else {
tpa_info->hash_type = PKT_HASH_TYPE_NONE;
tpa_info->gso_type = 0;
if (netif_msg_rx_err(bp))
netdev_warn(bp->dev, "TPA packet without valid hash\n");
}
tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
rxr->rx_prod = NEXT_RX(prod);
cons = NEXT_RX(cons);
rxr->rx_next_cons = NEXT_RX(cons);
cons_rx_buf = &rxr->rx_buf_ring[cons];
bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
rxr->rx_prod = NEXT_RX(rxr->rx_prod);
cons_rx_buf->data = NULL;
}
static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
u16 cp_cons, u32 agg_bufs)
{
if (agg_bufs)
bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
}
static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
int payload_off, int tcp_ts,
struct sk_buff *skb)
{
#ifdef CONFIG_INET
struct tcphdr *th;
int len, nw_off;
u16 outer_ip_off, inner_ip_off, inner_mac_off;
u32 hdr_info = tpa_info->hdr_info;
bool loopback = false;
inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
/* If the packet is an internal loopback packet, the offsets will
* have an extra 4 bytes.
*/
if (inner_mac_off == 4) {
loopback = true;
} else if (inner_mac_off > 4) {
__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
ETH_HLEN - 2));
/* We only support inner iPv4/ipv6. If we don't see the
* correct protocol ID, it must be a loopback packet where
* the offsets are off by 4.
*/
if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
loopback = true;
}
if (loopback) {
/* internal loopback packet, subtract all offsets by 4 */
inner_ip_off -= 4;
inner_mac_off -= 4;
outer_ip_off -= 4;
}
nw_off = inner_ip_off - ETH_HLEN;
skb_set_network_header(skb, nw_off);
if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
struct ipv6hdr *iph = ipv6_hdr(skb);
skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
len = skb->len - skb_transport_offset(skb);
th = tcp_hdr(skb);
th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
} else {
struct iphdr *iph = ip_hdr(skb);
skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
len = skb->len - skb_transport_offset(skb);
th = tcp_hdr(skb);
th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
}
if (inner_mac_off) { /* tunnel */
struct udphdr *uh = NULL;
__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
ETH_HLEN - 2));
if (proto == htons(ETH_P_IP)) {
struct iphdr *iph = (struct iphdr *)skb->data;
if (iph->protocol == IPPROTO_UDP)
uh = (struct udphdr *)(iph + 1);
} else {
struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
if (iph->nexthdr == IPPROTO_UDP)
uh = (struct udphdr *)(iph + 1);
}
if (uh) {
if (uh->check)
skb_shinfo(skb)->gso_type |=
SKB_GSO_UDP_TUNNEL_CSUM;
else
skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
}
}
#endif
return skb;
}
#define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
#define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
int payload_off, int tcp_ts,
struct sk_buff *skb)
{
#ifdef CONFIG_INET
struct tcphdr *th;
int len, nw_off, tcp_opt_len = 0;
if (tcp_ts)
tcp_opt_len = 12;
if (tpa_info->gso_type == SKB_GSO_TCPV4) {
struct iphdr *iph;
nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
ETH_HLEN;
skb_set_network_header(skb, nw_off);
iph = ip_hdr(skb);
skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
len = skb->len - skb_transport_offset(skb);
th = tcp_hdr(skb);
th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
struct ipv6hdr *iph;
nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
ETH_HLEN;
skb_set_network_header(skb, nw_off);
iph = ipv6_hdr(skb);
skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
len = skb->len - skb_transport_offset(skb);
th = tcp_hdr(skb);
th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
} else {
dev_kfree_skb_any(skb);
return NULL;
}
if (nw_off) { /* tunnel */
struct udphdr *uh = NULL;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = (struct iphdr *)skb->data;
if (iph->protocol == IPPROTO_UDP)
uh = (struct udphdr *)(iph + 1);
} else {
struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
if (iph->nexthdr == IPPROTO_UDP)
uh = (struct udphdr *)(iph + 1);
}
if (uh) {
if (uh->check)
skb_shinfo(skb)->gso_type |=
SKB_GSO_UDP_TUNNEL_CSUM;
else
skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
}
}
#endif
return skb;
}
static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
struct bnxt_tpa_info *tpa_info,
struct rx_tpa_end_cmp *tpa_end,
struct rx_tpa_end_cmp_ext *tpa_end1,
struct sk_buff *skb)
{
#ifdef CONFIG_INET
int payload_off;
u16 segs;
segs = TPA_END_TPA_SEGS(tpa_end);
if (segs == 1)
return skb;
NAPI_GRO_CB(skb)->count = segs;
skb_shinfo(skb)->gso_size =
le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
skb_shinfo(skb)->gso_type = tpa_info->gso_type;
payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
if (likely(skb))
tcp_gro_complete(skb);
#endif
return skb;
}
/* Given the cfa_code of a received packet determine which
* netdev (vf-rep or PF) the packet is destined to.
*/
static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
{
struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
/* if vf-rep dev is NULL, the must belongs to the PF */
return dev ? dev : bp->dev;
}
static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
struct bnxt_napi *bnapi,
u32 *raw_cons,
struct rx_tpa_end_cmp *tpa_end,
struct rx_tpa_end_cmp_ext *tpa_end1,
u8 *event)
{
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
u8 agg_id = TPA_END_AGG_ID(tpa_end);
u8 *data_ptr, agg_bufs;
u16 cp_cons = RING_CMP(*raw_cons);
unsigned int len;
struct bnxt_tpa_info *tpa_info;
dma_addr_t mapping;
struct sk_buff *skb;
void *data;
if (unlikely(bnapi->in_reset)) {
int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
if (rc < 0)
return ERR_PTR(-EBUSY);
return NULL;
}
tpa_info = &rxr->rx_tpa[agg_id];
data = tpa_info->data;
data_ptr = tpa_info->data_ptr;
prefetch(data_ptr);
len = tpa_info->len;
mapping = tpa_info->mapping;
agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
if (agg_bufs) {
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
return ERR_PTR(-EBUSY);
*event |= BNXT_AGG_EVENT;
cp_cons = NEXT_CMP(cp_cons);
}
if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
if (agg_bufs > MAX_SKB_FRAGS)
netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
agg_bufs, (int)MAX_SKB_FRAGS);
return NULL;
}
if (len <= bp->rx_copy_thresh) {
skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
if (!skb) {
bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
return NULL;
}
} else {
u8 *new_data;
dma_addr_t new_mapping;
new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
if (!new_data) {
bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
return NULL;
}
tpa_info->data = new_data;
tpa_info->data_ptr = new_data + bp->rx_offset;
tpa_info->mapping = new_mapping;
skb = build_skb(data, 0);
dma_unmap_single_attrs(&bp->pdev->dev, mapping,
bp->rx_buf_use_size, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
if (!skb) {
kfree(data);
bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
return NULL;
}
skb_reserve(skb, bp->rx_offset);
skb_put(skb, len);
}
if (agg_bufs) {
skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
if (!skb) {
/* Page reuse already handled by bnxt_rx_pages(). */
return NULL;
}
}
skb->protocol =
eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
(skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
u16 vlan_proto = tpa_info->metadata >>
RX_CMP_FLAGS2_METADATA_TPID_SFT;
u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
}
skb_checksum_none_assert(skb);
if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum_level =
(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
}
if (TPA_END_GRO(tpa_end))
skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
return skb;
}
static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
struct sk_buff *skb)
{
if (skb->dev != bp->dev) {
/* this packet belongs to a vf-rep */
bnxt_vf_rep_rx(bp, skb);
return;
}
skb_record_rx_queue(skb, bnapi->index);
napi_gro_receive(&bnapi->napi, skb);
}
/* returns the following:
* 1 - 1 packet successfully received
* 0 - successful TPA_START, packet not completed yet
* -EBUSY - completion ring does not have all the agg buffers yet
* -ENOMEM - packet aborted due to out of memory
* -EIO - packet aborted due to hw error indicated in BD
*/
static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
u8 *event)
{
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
struct net_device *dev = bp->dev;
struct rx_cmp *rxcmp;
struct rx_cmp_ext *rxcmp1;
u32 tmp_raw_cons = *raw_cons;
u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
struct bnxt_sw_rx_bd *rx_buf;
unsigned int len;
u8 *data_ptr, agg_bufs, cmp_type;
dma_addr_t dma_addr;
struct sk_buff *skb;
void *data;
int rc = 0;
u32 misc;
rxcmp = (struct rx_cmp *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
cp_cons = RING_CMP(tmp_raw_cons);
rxcmp1 = (struct rx_cmp_ext *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
return -EBUSY;
cmp_type = RX_CMP_TYPE(rxcmp);
prod = rxr->rx_prod;
if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
(struct rx_tpa_start_cmp_ext *)rxcmp1);
*event |= BNXT_RX_EVENT;
goto next_rx_no_prod;
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
(struct rx_tpa_end_cmp *)rxcmp,
(struct rx_tpa_end_cmp_ext *)rxcmp1, event);
if (unlikely(IS_ERR(skb)))
return -EBUSY;
rc = -ENOMEM;
if (likely(skb)) {
bnxt_deliver_skb(bp, bnapi, skb);
rc = 1;
}
*event |= BNXT_RX_EVENT;
goto next_rx_no_prod;
}
cons = rxcmp->rx_cmp_opaque;
if (unlikely(cons != rxr->rx_next_cons)) {
int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
cons, rxr->rx_next_cons);
bnxt_sched_reset(bp, rxr);
return rc1;
}
rx_buf = &rxr->rx_buf_ring[cons];
data = rx_buf->data;
data_ptr = rx_buf->data_ptr;
prefetch(data_ptr);
misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
if (agg_bufs) {
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
return -EBUSY;
cp_cons = NEXT_CMP(cp_cons);
*event |= BNXT_AGG_EVENT;
}
*event |= BNXT_RX_EVENT;
rx_buf->data = NULL;
if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
bnxt_reuse_rx_data(rxr, cons, data);
if (agg_bufs)
bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
rc = -EIO;
if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
netdev_warn(bp->dev, "RX buffer error %x\n", rx_err);
bnxt_sched_reset(bp, rxr);
}
goto next_rx;
}
len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
dma_addr = rx_buf->mapping;
if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
rc = 1;
goto next_rx;
}
if (len <= bp->rx_copy_thresh) {
skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
bnxt_reuse_rx_data(rxr, cons, data);
if (!skb) {
if (agg_bufs)
bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
rc = -ENOMEM;
goto next_rx;
}
} else {
u32 payload;
if (rx_buf->data_ptr == data_ptr)
payload = misc & RX_CMP_PAYLOAD_OFFSET;
else
payload = 0;
skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
payload | len);
if (!skb) {
rc = -ENOMEM;
goto next_rx;
}
}
if (agg_bufs) {
skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
if (!skb) {
rc = -ENOMEM;
goto next_rx;
}
}
if (RX_CMP_HASH_VALID(rxcmp)) {
u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
enum pkt_hash_types type = PKT_HASH_TYPE_L4;
/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
if (hash_type != 1 && hash_type != 3)
type = PKT_HASH_TYPE_L3;
skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
}
cfa_code = RX_CMP_CFA_CODE(rxcmp1);
skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
if ((rxcmp1->rx_cmp_flags2 &
cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
(skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
}
skb_checksum_none_assert(skb);
if (RX_CMP_L4_CS_OK(rxcmp1)) {
if (dev->features & NETIF_F_RXCSUM) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum_level = RX_CMP_ENCAP(rxcmp1);
}
} else {
if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
if (dev->features & NETIF_F_RXCSUM)
cpr->rx_l4_csum_errors++;
}
}
bnxt_deliver_skb(bp, bnapi, skb);
rc = 1;
next_rx:
rxr->rx_prod = NEXT_RX(prod);
rxr->rx_next_cons = NEXT_RX(cons);
next_rx_no_prod:
*raw_cons = tmp_raw_cons;
return rc;
}
/* In netpoll mode, if we are using a combined completion ring, we need to
* discard the rx packets and recycle the buffers.
*/
static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
u32 *raw_cons, u8 *event)
{
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
u32 tmp_raw_cons = *raw_cons;
struct rx_cmp_ext *rxcmp1;
struct rx_cmp *rxcmp;
u16 cp_cons;
u8 cmp_type;
cp_cons = RING_CMP(tmp_raw_cons);
rxcmp = (struct rx_cmp *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
cp_cons = RING_CMP(tmp_raw_cons);
rxcmp1 = (struct rx_cmp_ext *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
return -EBUSY;
cmp_type = RX_CMP_TYPE(rxcmp);
if (cmp_type == CMP_TYPE_RX_L2_CMP) {
rxcmp1->rx_cmp_cfa_code_errors_v2 |=
cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
struct rx_tpa_end_cmp_ext *tpa_end1;
tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
tpa_end1->rx_tpa_end_cmp_errors_v2 |=
cpu_to_le32(RX_TPA_END_CMP_ERRORS);
}
return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
}
#define BNXT_GET_EVENT_PORT(data) \
((data) & \
ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
static int bnxt_async_event_process(struct bnxt *bp,
struct hwrm_async_event_cmpl *cmpl)
{
u16 event_id = le16_to_cpu(cmpl->event_id);
/* TODO CHIMP_FW: Define event id's for link change, error etc */
switch (event_id) {
case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
u32 data1 = le32_to_cpu(cmpl->event_data1);
struct bnxt_link_info *link_info = &bp->link_info;
if (BNXT_VF(bp))
goto async_event_process_exit;
/* print unsupported speed warning in forced speed mode only */
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
(data1 & 0x20000)) {
u16 fw_speed = link_info->force_link_speed;
u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
if (speed != SPEED_UNKNOWN)
netdev_warn(bp->dev, "Link speed %d no longer supported\n",
speed);
}
set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
/* fall thru */
}
case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
break;
case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
break;
case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
u32 data1 = le32_to_cpu(cmpl->event_data1);
u16 port_id = BNXT_GET_EVENT_PORT(data1);
if (BNXT_VF(bp))
break;
if (bp->pf.port_id != port_id)
break;
set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
break;
}
case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
if (BNXT_PF(bp))
goto async_event_process_exit;
set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
break;
default:
goto async_event_process_exit;
}
bnxt_queue_sp_work(bp);
async_event_process_exit:
bnxt_ulp_async_events(bp, cmpl);
return 0;
}
static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
{
u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
(struct hwrm_fwd_req_cmpl *)txcmp;
switch (cmpl_type) {
case CMPL_BASE_TYPE_HWRM_DONE:
seq_id = le16_to_cpu(h_cmpl->sequence_id);
if (seq_id == bp->hwrm_intr_seq_id)
bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
else
netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
break;
case CMPL_BASE_TYPE_HWRM_FWD_REQ:
vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
if ((vf_id < bp->pf.first_vf_id) ||
(vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
vf_id);
return -EINVAL;
}
set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
break;
case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
bnxt_async_event_process(bp,
(struct hwrm_async_event_cmpl *)txcmp);
default:
break;
}
return 0;
}
static irqreturn_t bnxt_msix(int irq, void *dev_instance)
{
struct bnxt_napi *bnapi = dev_instance;
struct bnxt *bp = bnapi->bp;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
u32 cons = RING_CMP(cpr->cp_raw_cons);
prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
napi_schedule(&bnapi->napi);
return IRQ_HANDLED;
}
static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
{
u32 raw_cons = cpr->cp_raw_cons;
u16 cons = RING_CMP(raw_cons);
struct tx_cmp *txcmp;
txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
return TX_CMP_VALID(txcmp, raw_cons);
}
static irqreturn_t bnxt_inta(int irq, void *dev_instance)
{
struct bnxt_napi *bnapi = dev_instance;
struct bnxt *bp = bnapi->bp;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
u32 cons = RING_CMP(cpr->cp_raw_cons);
u32 int_status;
prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
if (!bnxt_has_work(bp, cpr)) {
int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
/* return if erroneous interrupt */
if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
return IRQ_NONE;
}
/* disable ring IRQ */
BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
/* Return here if interrupt is shared and is disabled. */
if (unlikely(atomic_read(&bp->intr_sem) != 0))
return IRQ_HANDLED;
napi_schedule(&bnapi->napi);
return IRQ_HANDLED;
}
static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
{
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
u32 raw_cons = cpr->cp_raw_cons;
u32 cons;
int tx_pkts = 0;
int rx_pkts = 0;
u8 event = 0;
struct tx_cmp *txcmp;
while (1) {
int rc;
cons = RING_CMP(raw_cons);
txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
if (!TX_CMP_VALID(txcmp, raw_cons))
break;
/* The valid test of the entry must be done first before
* reading any further.
*/
dma_rmb();
if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
tx_pkts++;
/* return full budget so NAPI will complete. */
if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
rx_pkts = budget;
raw_cons = NEXT_RAW_CMP(raw_cons);
break;
}
} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
if (likely(budget))
rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
else
rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
&event);
if (likely(rc >= 0))
rx_pkts += rc;
/* Increment rx_pkts when rc is -ENOMEM to count towards
* the NAPI budget. Otherwise, we may potentially loop
* here forever if we consistently cannot allocate
* buffers.
*/
else if (rc == -ENOMEM && budget)
rx_pkts++;
else if (rc == -EBUSY) /* partial completion */
break;
} else if (unlikely((TX_CMP_TYPE(txcmp) ==
CMPL_BASE_TYPE_HWRM_DONE) ||
(TX_CMP_TYPE(txcmp) ==
CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
(TX_CMP_TYPE(txcmp) ==
CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
bnxt_hwrm_handler(bp, txcmp);
}
raw_cons = NEXT_RAW_CMP(raw_cons);
if (rx_pkts && rx_pkts == budget)
break;
}
if (event & BNXT_TX_EVENT) {
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
void __iomem *db = txr->tx_doorbell;
u16 prod = txr->tx_prod;
/* Sync BD data before updating doorbell */
wmb();
bnxt_db_write(bp, db, DB_KEY_TX | prod);
}
cpr->cp_raw_cons = raw_cons;
/* ACK completion ring before freeing tx ring and producing new
* buffers in rx/agg rings to prevent overflowing the completion
* ring.
*/
BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
if (tx_pkts)
bnapi->tx_int(bp, bnapi, tx_pkts);
if (event & BNXT_RX_EVENT) {
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
if (event & BNXT_AGG_EVENT)
bnxt_db_write(bp, rxr->rx_agg_doorbell,
DB_KEY_RX | rxr->rx_agg_prod);
}
return rx_pkts;
}
static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
{
struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
struct bnxt *bp = bnapi->bp;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
struct tx_cmp *txcmp;
struct rx_cmp_ext *rxcmp1;
u32 cp_cons, tmp_raw_cons;
u32 raw_cons = cpr->cp_raw_cons;
u32 rx_pkts = 0;
u8 event = 0;
while (1) {
int rc;
cp_cons = RING_CMP(raw_cons);
txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
if (!TX_CMP_VALID(txcmp, raw_cons))
break;
if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
cp_cons = RING_CMP(tmp_raw_cons);
rxcmp1 = (struct rx_cmp_ext *)
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
break;
/* force an error to recycle the buffer */
rxcmp1->rx_cmp_cfa_code_errors_v2 |=
cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
if (likely(rc == -EIO) && budget)
rx_pkts++;
else if (rc == -EBUSY) /* partial completion */
break;
} else if (unlikely(TX_CMP_TYPE(txcmp) ==
CMPL_BASE_TYPE_HWRM_DONE)) {
bnxt_hwrm_handler(bp, txcmp);
} else {
netdev_err(bp->dev,
"Invalid completion received on special ring\n");
}
raw_cons = NEXT_RAW_CMP(raw_cons);
if (rx_pkts == budget)
break;
}
cpr->cp_raw_cons = raw_cons;
BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
if (event & BNXT_AGG_EVENT)
bnxt_db_write(bp, rxr->rx_agg_doorbell,
DB_KEY_RX | rxr->rx_agg_prod);
if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
napi_complete_done(napi, rx_pkts);
BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
}
return rx_pkts;
}
static int bnxt_poll(struct napi_struct *napi, int budget)
{
struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
struct bnxt *bp = bnapi->bp;
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
int work_done = 0;
while (1) {
work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
if (work_done >= budget) {
if (!budget)
BNXT_CP_DB_REARM(cpr->cp_doorbell,
cpr->cp_raw_cons);
break;
}
if (!bnxt_has_work(bp, cpr)) {
if (napi_complete_done(napi, work_done))
BNXT_CP_DB_REARM(cpr->cp_doorbell,
cpr->cp_raw_cons);
break;
}
}
mmiowb();
return work_done;
}
static void bnxt_free_tx_skbs(struct bnxt *bp)
{
int i, max_idx;
struct pci_dev *pdev = bp->pdev;
if (!bp->tx_ring)
return;
max_idx = bp->tx_nr_pages * TX_DESC_CNT;
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
int j;
for (j = 0; j < max_idx;) {
struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
struct sk_buff *skb = tx_buf->skb;
int k, last;
if (!skb) {
j++;
continue;
}
tx_buf->skb = NULL;
if (tx_buf->is_push) {
dev_kfree_skb(skb);
j += 2;
continue;
}
dma_unmap_single(&pdev->dev,
dma_unmap_addr(tx_buf, mapping),
skb_headlen(skb),
PCI_DMA_TODEVICE);
last = tx_buf->nr_frags;
j += 2;
for (k = 0; k < last; k++, j++) {
int ring_idx = j & bp->tx_ring_mask;
skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
tx_buf = &txr->tx_buf_ring[ring_idx];
dma_unmap_page(
&pdev->dev,
dma_unmap_addr(tx_buf, mapping),
skb_frag_size(frag), PCI_DMA_TODEVICE);
}
dev_kfree_skb(skb);
}
netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
}
}
static void bnxt_free_rx_skbs(struct bnxt *bp)
{
int i, max_idx, max_agg_idx;
struct pci_dev *pdev = bp->pdev;
if (!bp->rx_ring)
return;
max_idx = bp->rx_nr_pages * RX_DESC_CNT;
max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
int j;
if (rxr->rx_tpa) {
for (j = 0; j < MAX_TPA; j++) {
struct bnxt_tpa_info *tpa_info =
&rxr->rx_tpa[j];
u8 *data = tpa_info->data;
if (!data)
continue;
dma_unmap_single_attrs(&pdev->dev,
tpa_info->mapping,
bp->rx_buf_use_size,
bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
tpa_info->data = NULL;
kfree(data);
}
}
for (j = 0; j < max_idx; j++) {
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
dma_addr_t mapping = rx_buf->mapping;
void *data = rx_buf->data;
if (!data)
continue;
rx_buf->data = NULL;
if (BNXT_RX_PAGE_MODE(bp)) {
mapping -= bp->rx_dma_offset;
dma_unmap_page_attrs(&pdev->dev, mapping,
PAGE_SIZE, bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
__free_page(data);
} else {
dma_unmap_single_attrs(&pdev->dev, mapping,
bp->rx_buf_use_size,
bp->rx_dir,
DMA_ATTR_WEAK_ORDERING);
kfree(data);
}
}
for (j = 0; j < max_agg_idx; j++) {
struct bnxt_sw_rx_agg_bd *rx_agg_buf =
&rxr->rx_agg_ring[j];
struct page *page = rx_agg_buf->page;
if (!page)
continue;
dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
BNXT_RX_PAGE_SIZE,
PCI_DMA_FROMDEVICE,
DMA_ATTR_WEAK_ORDERING);
rx_agg_buf->page = NULL;
__clear_bit(j, rxr->rx_agg_bmap);
__free_page(page);
}
if (rxr->rx_page) {
__free_page(rxr->rx_page);
rxr->rx_page = NULL;
}
}
}
static void bnxt_free_skbs(struct bnxt *bp)
{
bnxt_free_tx_skbs(bp);
bnxt_free_rx_skbs(bp);
}
static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
{
struct pci_dev *pdev = bp->pdev;
int i;
for (i = 0; i < ring->nr_pages; i++) {
if (!ring->pg_arr[i])
continue;
dma_free_coherent(&pdev->dev, ring->page_size,
ring->pg_arr[i], ring->dma_arr[i]);
ring->pg_arr[i] = NULL;
}
if (ring->pg_tbl) {
dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
ring->pg_tbl, ring->pg_tbl_map);
ring->pg_tbl = NULL;
}
if (ring->vmem_size && *ring->vmem) {
vfree(*ring->vmem);
*ring->vmem = NULL;
}
}
static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
{
int i;
struct pci_dev *pdev = bp->pdev;
if (ring->nr_pages > 1) {
ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
ring->nr_pages * 8,
&ring->pg_tbl_map,
GFP_KERNEL);
if (!ring->pg_tbl)
return -ENOMEM;
}
for (i = 0; i < ring->nr_pages; i++) {
ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
ring->page_size,
&ring->dma_arr[i],
GFP_KERNEL);
if (!ring->pg_arr[i])
return -ENOMEM;
if (ring->nr_pages > 1)
ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
}
if (ring->vmem_size) {
*ring->vmem = vzalloc(ring->vmem_size);
if (!(*ring->vmem))
return -ENOMEM;
}
return 0;
}
static void bnxt_free_rx_rings(struct bnxt *bp)
{
int i;
if (!bp->rx_ring)
return;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring;
if (rxr->xdp_prog)
bpf_prog_put(rxr->xdp_prog);
kfree(rxr->rx_tpa);
rxr->rx_tpa = NULL;
kfree(rxr->rx_agg_bmap);
rxr->rx_agg_bmap = NULL;
ring = &rxr->rx_ring_struct;
bnxt_free_ring(bp, ring);
ring = &rxr->rx_agg_ring_struct;
bnxt_free_ring(bp, ring);
}
}
static int bnxt_alloc_rx_rings(struct bnxt *bp)
{
int i, rc, agg_rings = 0, tpa_rings = 0;
if (!bp->rx_ring)
return -ENOMEM;
if (bp->flags & BNXT_FLAG_AGG_RINGS)
agg_rings = 1;
if (bp->flags & BNXT_FLAG_TPA)
tpa_rings = 1;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring;
ring = &rxr->rx_ring_struct;
rc = bnxt_alloc_ring(bp, ring);
if (rc)
return rc;
if (agg_rings) {
u16 mem_size;
ring = &rxr->rx_agg_ring_struct;
rc = bnxt_alloc_ring(bp, ring);
if (rc)
return rc;
rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
mem_size = rxr->rx_agg_bmap_size / 8;
rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
if (!rxr->rx_agg_bmap)
return -ENOMEM;
if (tpa_rings) {
rxr->rx_tpa = kcalloc(MAX_TPA,
sizeof(struct bnxt_tpa_info),
GFP_KERNEL);
if (!rxr->rx_tpa)
return -ENOMEM;
}
}
}
return 0;
}
static void bnxt_free_tx_rings(struct bnxt *bp)
{
int i;
struct pci_dev *pdev = bp->pdev;
if (!bp->tx_ring)
return;
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
struct bnxt_ring_struct *ring;
if (txr->tx_push) {
dma_free_coherent(&pdev->dev, bp->tx_push_size,
txr->tx_push, txr->tx_push_mapping);
txr->tx_push = NULL;
}
ring = &txr->tx_ring_struct;
bnxt_free_ring(bp, ring);
}
}
static int bnxt_alloc_tx_rings(struct bnxt *bp)
{
int i, j, rc;
struct pci_dev *pdev = bp->pdev;
bp->tx_push_size = 0;
if (bp->tx_push_thresh) {
int push_size;
push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
bp->tx_push_thresh);
if (push_size > 256) {
push_size = 0;
bp->tx_push_thresh = 0;
}
bp->tx_push_size = push_size;
}
for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
struct bnxt_ring_struct *ring;
ring = &txr->tx_ring_struct;
rc = bnxt_alloc_ring(bp, ring);
if (rc)
return rc;
if (bp->tx_push_size) {
dma_addr_t mapping;
/* One pre-allocated DMA buffer to backup
* TX push operation
*/
txr->tx_push = dma_alloc_coherent(&pdev->dev,
bp->tx_push_size,
&txr->tx_push_mapping,
GFP_KERNEL);
if (!txr->tx_push)
return -ENOMEM;
mapping = txr->tx_push_mapping +
sizeof(struct tx_push_bd);
txr->data_mapping = cpu_to_le64(mapping);
memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
}
ring->queue_id = bp->q_info[j].queue_id;
if (i < bp->tx_nr_rings_xdp)
continue;
if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
j++;
}
return 0;
}
static void bnxt_free_cp_rings(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr;
struct bnxt_ring_struct *ring;
if (!bnapi)
continue;
cpr = &bnapi->cp_ring;
ring = &cpr->cp_ring_struct;
bnxt_free_ring(bp, ring);
}
}
static int bnxt_alloc_cp_rings(struct bnxt *bp)
{
int i, rc;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr;
struct bnxt_ring_struct *ring;
if (!bnapi)
continue;
cpr = &bnapi->cp_ring;
ring = &cpr->cp_ring_struct;
rc = bnxt_alloc_ring(bp, ring);
if (rc)
return rc;
}
return 0;
}
static void bnxt_init_ring_struct(struct bnxt *bp)
{
int i;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_ring_info *rxr;
struct bnxt_tx_ring_info *txr;
struct bnxt_ring_struct *ring;
if (!bnapi)
continue;
cpr = &bnapi->cp_ring;
ring = &cpr->cp_ring_struct;
ring->nr_pages = bp->cp_nr_pages;
ring->page_size = HW_CMPD_RING_SIZE;
ring->pg_arr = (void **)cpr->cp_desc_ring;
ring->dma_arr = cpr->cp_desc_mapping;
ring->vmem_size = 0;
rxr = bnapi->rx_ring;
if (!rxr)
goto skip_rx;
ring = &rxr->rx_ring_struct;
ring->nr_pages = bp->rx_nr_pages;
ring->page_size = HW_RXBD_RING_SIZE;
ring->pg_arr = (void **)rxr->rx_desc_ring;
ring->dma_arr = rxr->rx_desc_mapping;
ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
ring->vmem = (void **)&rxr->rx_buf_ring;
ring = &rxr->rx_agg_ring_struct;
ring->nr_pages = bp->rx_agg_nr_pages;
ring->page_size = HW_RXBD_RING_SIZE;
ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
ring->dma_arr = rxr->rx_agg_desc_mapping;
ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
ring->vmem = (void **)&rxr->rx_agg_ring;
skip_rx:
txr = bnapi->tx_ring;
if (!txr)
continue;
ring = &txr->tx_ring_struct;
ring->nr_pages = bp->tx_nr_pages;
ring->page_size = HW_RXBD_RING_SIZE;
ring->pg_arr = (void **)txr->tx_desc_ring;
ring->dma_arr = txr->tx_desc_mapping;
ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
ring->vmem = (void **)&txr->tx_buf_ring;
}
}
static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
{
int i;
u32 prod;
struct rx_bd **rx_buf_ring;
rx_buf_ring = (struct rx_bd **)ring->pg_arr;
for (i = 0, prod = 0; i < ring->nr_pages; i++) {
int j;
struct rx_bd *rxbd;
rxbd = rx_buf_ring[i];
if (!rxbd)
continue;
for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
rxbd->rx_bd_opaque = prod;
}
}
}
static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
{
struct net_device *dev = bp->dev;
struct bnxt_rx_ring_info *rxr;
struct bnxt_ring_struct *ring;
u32 prod, type;
int i;
type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
if (NET_IP_ALIGN == 2)
type |= RX_BD_FLAGS_SOP;
rxr = &bp->rx_ring[ring_nr];
ring = &rxr->rx_ring_struct;
bnxt_init_rxbd_pages(ring, type);
if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
if (IS_ERR(rxr->xdp_prog)) {
int rc = PTR_ERR(rxr->xdp_prog);
rxr->xdp_prog = NULL;
return rc;
}
}
prod = rxr->rx_prod;
for (i = 0; i < bp->rx_ring_size; i++) {
if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
ring_nr, i, bp->rx_ring_size);
break;
}
prod = NEXT_RX(prod);
}
rxr->rx_prod = prod;
ring->fw_ring_id = INVALID_HW_RING_ID;
ring = &rxr->rx_agg_ring_struct;
ring->fw_ring_id = INVALID_HW_RING_ID;
if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
return 0;
type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
bnxt_init_rxbd_pages(ring, type);
prod = rxr->rx_agg_prod;
for (i = 0; i < bp->rx_agg_ring_size; i++) {
if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
ring_nr, i, bp->rx_ring_size);
break;
}
prod = NEXT_RX_AGG(prod);
}
rxr->rx_agg_prod = prod;
if (bp->flags & BNXT_FLAG_TPA) {
if (rxr->rx_tpa) {
u8 *data;
dma_addr_t mapping;
for (i = 0; i < MAX_TPA; i++) {
data = __bnxt_alloc_rx_data(bp, &mapping,
GFP_KERNEL);
if (!data)
return -ENOMEM;
rxr->rx_tpa[i].data = data;
rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
rxr->rx_tpa[i].mapping = mapping;
}
} else {
netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
return -ENOMEM;
}
}
return 0;
}
static void bnxt_init_cp_rings(struct bnxt *bp)
{
int i;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
ring->fw_ring_id = INVALID_HW_RING_ID;
}
}
static int bnxt_init_rx_rings(struct bnxt *bp)
{
int i, rc = 0;
if (BNXT_RX_PAGE_MODE(bp)) {
bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
bp->rx_dma_offset = XDP_PACKET_HEADROOM;
} else {
bp->rx_offset = BNXT_RX_OFFSET;
bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
}
for (i = 0; i < bp->rx_nr_rings; i++) {
rc = bnxt_init_one_rx_ring(bp, i);
if (rc)
break;
}
return rc;
}
static int bnxt_init_tx_rings(struct bnxt *bp)
{
u16 i;
bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
BNXT_MIN_TX_DESC_CNT);
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
ring->fw_ring_id = INVALID_HW_RING_ID;
}
return 0;
}
static void bnxt_free_ring_grps(struct bnxt *bp)
{
kfree(bp->grp_info);
bp->grp_info = NULL;
}
static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
{
int i;
if (irq_re_init) {
bp->grp_info = kcalloc(bp->cp_nr_rings,
sizeof(struct bnxt_ring_grp_info),
GFP_KERNEL);
if (!bp->grp_info)
return -ENOMEM;
}
for (i = 0; i < bp->cp_nr_rings; i++) {
if (irq_re_init)
bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
}
return 0;
}
static void bnxt_free_vnics(struct bnxt *bp)
{
kfree(bp->vnic_info);
bp->vnic_info = NULL;
bp->nr_vnics = 0;
}
static int bnxt_alloc_vnics(struct bnxt *bp)
{
int num_vnics = 1;
#ifdef CONFIG_RFS_ACCEL
if (bp->flags & BNXT_FLAG_RFS)
num_vnics += bp->rx_nr_rings;
#endif
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
num_vnics++;
bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
GFP_KERNEL);
if (!bp->vnic_info)
return -ENOMEM;
bp->nr_vnics = num_vnics;
return 0;
}
static void bnxt_init_vnics(struct bnxt *bp)
{
int i;
for (i = 0; i < bp->nr_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
vnic->fw_vnic_id = INVALID_HW_RING_ID;
vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
if (bp->vnic_info[i].rss_hash_key) {
if (i == 0)
prandom_bytes(vnic->rss_hash_key,
HW_HASH_KEY_SIZE);
else
memcpy(vnic->rss_hash_key,
bp->vnic_info[0].rss_hash_key,
HW_HASH_KEY_SIZE);
}
}
}
static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
{
int pages;
pages = ring_size / desc_per_pg;
if (!pages)
return 1;
pages++;
while (pages & (pages - 1))
pages++;
return pages;
}
void bnxt_set_tpa_flags(struct bnxt *bp)
{
bp->flags &= ~BNXT_FLAG_TPA;
if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
return;
if (bp->dev->features & NETIF_F_LRO)
bp->flags |= BNXT_FLAG_LRO;
if (bp->dev->features & NETIF_F_GRO)
bp->flags |= BNXT_FLAG_GRO;
}
/* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
* be set on entry.
*/
void bnxt_set_ring_params(struct bnxt *bp)
{
u32 ring_size, rx_size, rx_space;
u32 agg_factor = 0, agg_ring_size = 0;
/* 8 for CRC and VLAN */
rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
rx_space = rx_size + NET_SKB_PAD +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
ring_size = bp->rx_ring_size;
bp->rx_agg_ring_size = 0;
bp->rx_agg_nr_pages = 0;
if (bp->flags & BNXT_FLAG_TPA)
agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
bp->flags &= ~BNXT_FLAG_JUMBO;
if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
u32 jumbo_factor;
bp->flags |= BNXT_FLAG_JUMBO;
jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
if (jumbo_factor > agg_factor)
agg_factor = jumbo_factor;
}
agg_ring_size = ring_size * agg_factor;
if (agg_ring_size) {
bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
RX_DESC_CNT);
if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
u32 tmp = agg_ring_size;
bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
tmp, agg_ring_size);
}
bp->rx_agg_ring_size = agg_ring_size;
bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
rx_space = rx_size + NET_SKB_PAD +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
bp->rx_buf_use_size = rx_size;
bp->rx_buf_size = rx_space;
bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
ring_size = bp->tx_ring_size;
bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
bp->cp_ring_size = ring_size;
bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
if (bp->cp_nr_pages > MAX_CP_PAGES) {
bp->cp_nr_pages = MAX_CP_PAGES;
bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
ring_size, bp->cp_ring_size);
}
bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
bp->cp_ring_mask = bp->cp_bit - 1;
}
int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
{
if (page_mode) {
if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
return -EOPNOTSUPP;
bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
bp->flags &= ~BNXT_FLAG_AGG_RINGS;
bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
bp->dev->hw_features &= ~NETIF_F_LRO;
bp->dev->features &= ~NETIF_F_LRO;
bp->rx_dir = DMA_BIDIRECTIONAL;
bp->rx_skb_func = bnxt_rx_page_skb;
} else {
bp->dev->max_mtu = BNXT_MAX_MTU;
bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
bp->rx_dir = DMA_FROM_DEVICE;
bp->rx_skb_func = bnxt_rx_skb;
}
return 0;
}
static void bnxt_free_vnic_attributes(struct bnxt *bp)
{
int i;
struct bnxt_vnic_info *vnic;
struct pci_dev *pdev = bp->pdev;
if (!bp->vnic_info)
return;
for (i = 0; i < bp->nr_vnics; i++) {
vnic = &bp->vnic_info[i];
kfree(vnic->fw_grp_ids);
vnic->fw_grp_ids = NULL;
kfree(vnic->uc_list);
vnic->uc_list = NULL;
if (vnic->mc_list) {
dma_free_coherent(&pdev->dev, vnic->mc_list_size,
vnic->mc_list, vnic->mc_list_mapping);
vnic->mc_list = NULL;
}
if (vnic->rss_table) {
dma_free_coherent(&pdev->dev, PAGE_SIZE,
vnic->rss_table,
vnic->rss_table_dma_addr);
vnic->rss_table = NULL;
}
vnic->rss_hash_key = NULL;
vnic->flags = 0;
}
}
static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
{
int i, rc = 0, size;
struct bnxt_vnic_info *vnic;
struct pci_dev *pdev = bp->pdev;
int max_rings;
for (i = 0; i < bp->nr_vnics; i++) {
vnic = &bp->vnic_info[i];
if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
if (mem_size > 0) {
vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
if (!vnic->uc_list) {
rc = -ENOMEM;
goto out;
}
}
}
if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
vnic->mc_list =
dma_alloc_coherent(&pdev->dev,
vnic->mc_list_size,
&vnic->mc_list_mapping,
GFP_KERNEL);
if (!vnic->mc_list) {
rc = -ENOMEM;
goto out;
}
}
if (vnic->flags & BNXT_VNIC_RSS_FLAG)
max_rings = bp->rx_nr_rings;
else
max_rings = 1;
vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
if (!vnic->fw_grp_ids) {
rc = -ENOMEM;
goto out;
}
if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
!(vnic->flags & BNXT_VNIC_RSS_FLAG))
continue;
/* Allocate rss table and hash key */
vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
&vnic->rss_table_dma_addr,
GFP_KERNEL);
if (!vnic->rss_table) {
rc = -ENOMEM;
goto out;
}
size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
}
return 0;
out:
return rc;
}
static void bnxt_free_hwrm_resources(struct bnxt *bp)
{
struct pci_dev *pdev = bp->pdev;
if (bp->hwrm_cmd_resp_addr) {
dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
bp->hwrm_cmd_resp_dma_addr);
bp->hwrm_cmd_resp_addr = NULL;
}
if (bp->hwrm_dbg_resp_addr) {
dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
bp->hwrm_dbg_resp_addr,
bp->hwrm_dbg_resp_dma_addr);
bp->hwrm_dbg_resp_addr = NULL;
}
}
static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
{
struct pci_dev *pdev = bp->pdev;
bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
&bp->hwrm_cmd_resp_dma_addr,
GFP_KERNEL);
if (!bp->hwrm_cmd_resp_addr)
return -ENOMEM;
bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
HWRM_DBG_REG_BUF_SIZE,
&bp->hwrm_dbg_resp_dma_addr,
GFP_KERNEL);
if (!bp->hwrm_dbg_resp_addr)
netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
return 0;
}
static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
{
if (bp->hwrm_short_cmd_req_addr) {
struct pci_dev *pdev = bp->pdev;
dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
bp->hwrm_short_cmd_req_addr,
bp->hwrm_short_cmd_req_dma_addr);
bp->hwrm_short_cmd_req_addr = NULL;
}
}
static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
{
struct pci_dev *pdev = bp->pdev;
bp->hwrm_short_cmd_req_addr =
dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
&bp->hwrm_short_cmd_req_dma_addr,
GFP_KERNEL);
if (!bp->hwrm_short_cmd_req_addr)
return -ENOMEM;
return 0;
}
static void bnxt_free_stats(struct bnxt *bp)
{
u32 size, i;
struct pci_dev *pdev = bp->pdev;
if (bp->hw_rx_port_stats) {
dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
bp->hw_rx_port_stats,
bp->hw_rx_port_stats_map);
bp->hw_rx_port_stats = NULL;
bp->flags &= ~BNXT_FLAG_PORT_STATS;
}
if (!bp->bnapi)
return;
size = sizeof(struct ctx_hw_stats);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
if (cpr->hw_stats) {
dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
cpr->hw_stats_map);
cpr->hw_stats = NULL;
}
}
}
static int bnxt_alloc_stats(struct bnxt *bp)
{
u32 size, i;
struct pci_dev *pdev = bp->pdev;
size = sizeof(struct ctx_hw_stats);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
&cpr->hw_stats_map,
GFP_KERNEL);
if (!cpr->hw_stats)
return -ENOMEM;
cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
}
if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
sizeof(struct tx_port_stats) + 1024;
bp->hw_rx_port_stats =
dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
&bp->hw_rx_port_stats_map,
GFP_KERNEL);
if (!bp->hw_rx_port_stats)
return -ENOMEM;
bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
512;
bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
sizeof(struct rx_port_stats) + 512;
bp->flags |= BNXT_FLAG_PORT_STATS;
}
return 0;
}
static void bnxt_clear_ring_indices(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_ring_info *rxr;
struct bnxt_tx_ring_info *txr;
if (!bnapi)
continue;
cpr = &bnapi->cp_ring;
cpr->cp_raw_cons = 0;
txr = bnapi->tx_ring;
if (txr) {
txr->tx_prod = 0;
txr->tx_cons = 0;
}
rxr = bnapi->rx_ring;
if (rxr) {
rxr->rx_prod = 0;
rxr->rx_agg_prod = 0;
rxr->rx_sw_agg_prod = 0;
rxr->rx_next_cons = 0;
}
}
}
static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
{
#ifdef CONFIG_RFS_ACCEL
int i;
/* Under rtnl_lock and all our NAPIs have been disabled. It's
* safe to delete the hash table.
*/
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
struct hlist_head *head;
struct hlist_node *tmp;
struct bnxt_ntuple_filter *fltr;
head = &bp->ntp_fltr_hash_tbl[i];
hlist_for_each_entry_safe(fltr, tmp, head, hash) {
hlist_del(&fltr->hash);
kfree(fltr);
}
}
if (irq_reinit) {
kfree(bp->ntp_fltr_bmap);
bp->ntp_fltr_bmap = NULL;
}
bp->ntp_fltr_count = 0;
#endif
}
static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
{
#ifdef CONFIG_RFS_ACCEL
int i, rc = 0;
if (!(bp->flags & BNXT_FLAG_RFS))
return 0;
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
bp->ntp_fltr_count = 0;
bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
sizeof(long),
GFP_KERNEL);
if (!bp->ntp_fltr_bmap)
rc = -ENOMEM;
return rc;
#else
return 0;
#endif
}
static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
{
bnxt_free_vnic_attributes(bp);
bnxt_free_tx_rings(bp);
bnxt_free_rx_rings(bp);
bnxt_free_cp_rings(bp);
bnxt_free_ntp_fltrs(bp, irq_re_init);
if (irq_re_init) {
bnxt_free_stats(bp);
bnxt_free_ring_grps(bp);
bnxt_free_vnics(bp);
kfree(bp->tx_ring_map);
bp->tx_ring_map = NULL;
kfree(bp->tx_ring);
bp->tx_ring = NULL;
kfree(bp->rx_ring);
bp->rx_ring = NULL;
kfree(bp->bnapi);
bp->bnapi = NULL;
} else {
bnxt_clear_ring_indices(bp);
}
}
static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
{
int i, j, rc, size, arr_size;
void *bnapi;
if (irq_re_init) {
/* Allocate bnapi mem pointer array and mem block for
* all queues
*/
arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
bp->cp_nr_rings);
size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
if (!bnapi)
return -ENOMEM;
bp->bnapi = bnapi;
bnapi += arr_size;
for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
bp->bnapi[i] = bnapi;
bp->bnapi[i]->index = i;
bp->bnapi[i]->bp = bp;
}
bp->rx_ring = kcalloc(bp->rx_nr_rings,
sizeof(struct bnxt_rx_ring_info),
GFP_KERNEL);
if (!bp->rx_ring)
return -ENOMEM;
for (i = 0; i < bp->rx_nr_rings; i++) {
bp->rx_ring[i].bnapi = bp->bnapi[i];
bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
}
bp->tx_ring = kcalloc(bp->tx_nr_rings,
sizeof(struct bnxt_tx_ring_info),
GFP_KERNEL);
if (!bp->tx_ring)
return -ENOMEM;
bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
GFP_KERNEL);
if (!bp->tx_ring_map)
return -ENOMEM;
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
j = 0;
else
j = bp->rx_nr_rings;
for (i = 0; i < bp->tx_nr_rings; i++, j++) {
bp->tx_ring[i].bnapi = bp->bnapi[j];
bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
if (i >= bp->tx_nr_rings_xdp) {
bp->tx_ring[i].txq_index = i -
bp->tx_nr_rings_xdp;
bp->bnapi[j]->tx_int = bnxt_tx_int;
} else {
bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
}
}
rc = bnxt_alloc_stats(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_ntp_fltrs(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_vnics(bp);
if (rc)
goto alloc_mem_err;
}
bnxt_init_ring_struct(bp);
rc = bnxt_alloc_rx_rings(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_tx_rings(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_cp_rings(bp);
if (rc)
goto alloc_mem_err;
bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
BNXT_VNIC_UCAST_FLAG;
rc = bnxt_alloc_vnic_attributes(bp);
if (rc)
goto alloc_mem_err;
return 0;
alloc_mem_err:
bnxt_free_mem(bp, true);
return rc;
}
static void bnxt_disable_int(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
if (ring->fw_ring_id != INVALID_HW_RING_ID)
BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
}
}
static void bnxt_disable_int_sync(struct bnxt *bp)
{
int i;
atomic_inc(&bp->intr_sem);
bnxt_disable_int(bp);
for (i = 0; i < bp->cp_nr_rings; i++)
synchronize_irq(bp->irq_tbl[i].vector);
}
static void bnxt_enable_int(struct bnxt *bp)
{
int i;
atomic_set(&bp->intr_sem, 0);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
}
}
void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
u16 cmpl_ring, u16 target_id)
{
struct input *req = request;
req->req_type = cpu_to_le16(req_type);
req->cmpl_ring = cpu_to_le16(cmpl_ring);
req->target_id = cpu_to_le16(target_id);
req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
}
static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
int timeout, bool silent)
{
int i, intr_process, rc, tmo_count;
struct input *req = msg;
u32 *data = msg;
__le32 *resp_len, *valid;
u16 cp_ring_id, len = 0;
struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
memset(resp, 0, PAGE_SIZE);
cp_ring_id = le16_to_cpu(req->cmpl_ring);
intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
if (bp->flags & BNXT_FLAG_SHORT_CMD) {
void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
struct hwrm_short_input short_input = {0};
memcpy(short_cmd_req, req, msg_len);
memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
msg_len);
short_input.req_type = req->req_type;
short_input.signature =
cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
short_input.size = cpu_to_le16(msg_len);
short_input.req_addr =
cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
data = (u32 *)&short_input;
msg_len = sizeof(short_input);
/* Sync memory write before updating doorbell */
wmb();
max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
}
/* Write request msg to hwrm channel */
__iowrite32_copy(bp->bar0, data, msg_len / 4);
for (i = msg_len; i < max_req_len; i += 4)
writel(0, bp->bar0 + i);
/* currently supports only one outstanding message */
if (intr_process)
bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
/* Ring channel doorbell */
writel(1, bp->bar0 + 0x100);
if (!timeout)
timeout = DFLT_HWRM_CMD_TIMEOUT;
i = 0;
tmo_count = timeout * 40;
if (intr_process) {
/* Wait until hwrm response cmpl interrupt is processed */
while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
i++ < tmo_count) {
usleep_range(25, 40);
}
if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
le16_to_cpu(req->req_type));
return -1;
}
} else {
/* Check if response len is updated */
resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
for (i = 0; i < tmo_count; i++) {
len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
HWRM_RESP_LEN_SFT;
if (len)
break;
usleep_range(25, 40);
}
if (i >= tmo_count) {
netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
timeout, le16_to_cpu(req->req_type),
le16_to_cpu(req->seq_id), len);
return -1;
}
/* Last word of resp contains valid bit */
valid = bp->hwrm_cmd_resp_addr + len - 4;
for (i = 0; i < 5; i++) {
if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
break;
udelay(1);
}
if (i >= 5) {
netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
timeout, le16_to_cpu(req->req_type),
le16_to_cpu(req->seq_id), len, *valid);
return -1;
}
}
rc = le16_to_cpu(resp->error_code);
if (rc && !silent)
netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
le16_to_cpu(resp->req_type),
le16_to_cpu(resp->seq_id), rc);
return rc;
}
int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
{
return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
}
int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
int timeout)
{
return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
}
int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
{
int rc;
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, msg, msg_len, timeout);
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
int timeout)
{
int rc;
mutex_lock(&bp->hwrm_cmd_lock);
rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
int bmap_size)
{
struct hwrm_func_drv_rgtr_input req = {0};
DECLARE_BITMAP(async_events_bmap, 256);
u32 *events = (u32 *)async_events_bmap;
int i;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
req.enables =
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
memset(async_events_bmap, 0, sizeof(async_events_bmap));
for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
__set_bit(bnxt_async_events_arr[i], async_events_bmap);
if (bmap && bmap_size) {
for (i = 0; i < bmap_size; i++) {
if (test_bit(i, bmap))
__set_bit(i, async_events_bmap);
}
}
for (i = 0; i < 8; i++)
req.async_event_fwd[i] |= cpu_to_le32(events[i]);
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
{
struct hwrm_func_drv_rgtr_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
req.enables =
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
FUNC_DRV_RGTR_REQ_ENABLES_VER);
req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
req.ver_maj = DRV_VER_MAJ;
req.ver_min = DRV_VER_MIN;
req.ver_upd = DRV_VER_UPD;
if (BNXT_PF(bp)) {
u32 data[8];
int i;
memset(data, 0, sizeof(data));
for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
u16 cmd = bnxt_vf_req_snif[i];
unsigned int bit, idx;
idx = cmd / 32;
bit = cmd % 32;
data[idx] |= 1 << bit;
}
for (i = 0; i < 8; i++)
req.vf_req_fwd[i] = cpu_to_le32(data[i]);
req.enables |=
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
}
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
{
struct hwrm_func_drv_unrgtr_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
{
u32 rc = 0;
struct hwrm_tunnel_dst_port_free_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
req.tunnel_type = tunnel_type;
switch (tunnel_type) {
case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
break;
case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
break;
default:
break;
}
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
rc);
return rc;
}
static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
u8 tunnel_type)
{
u32 rc = 0;
struct hwrm_tunnel_dst_port_alloc_input req = {0};
struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
req.tunnel_type = tunnel_type;
req.tunnel_dst_port_val = port;
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc) {
netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
rc);
goto err_out;
}
switch (tunnel_type) {
case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
break;
case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
break;
default:
break;
}
err_out:
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
{
struct hwrm_cfa_l2_set_rx_mask_input req = {0};
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
req.mask = cpu_to_le32(vnic->rx_mask);
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
#ifdef CONFIG_RFS_ACCEL
static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
struct bnxt_ntuple_filter *fltr)
{
struct hwrm_cfa_ntuple_filter_free_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
req.ntuple_filter_id = fltr->filter_id;
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
#define BNXT_NTP_FLTR_FLAGS \
(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
#define BNXT_NTP_TUNNEL_FLTR_FLAG \
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
struct bnxt_ntuple_filter *fltr)
{
int rc = 0;
struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
struct hwrm_cfa_ntuple_filter_alloc_output *resp =
bp->hwrm_cmd_resp_addr;
struct flow_keys *keys = &fltr->fkeys;
struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
req.ethertype = htons(ETH_P_IP);
memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
req.ip_protocol = keys->basic.ip_proto;
if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
int i;
req.ethertype = htons(ETH_P_IPV6);
req.ip_addr_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
*(struct in6_addr *)&req.src_ipaddr[0] =
keys->addrs.v6addrs.src;
*(struct in6_addr *)&req.dst_ipaddr[0] =
keys->addrs.v6addrs.dst;
for (i = 0; i < 4; i++) {
req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
}
} else {
req.src_ipaddr[0] = keys->addrs.v4addrs.src;
req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
}
if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
req.tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
}
req.src_port = keys->ports.src;
req.src_port_mask = cpu_to_be16(0xffff);
req.dst_port = keys->ports.dst;
req.dst_port_mask = cpu_to_be16(0xffff);
req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc)
fltr->filter_id = resp->ntuple_filter_id;
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
#endif
static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
u8 *mac_addr)
{
u32 rc = 0;
struct hwrm_cfa_l2_filter_alloc_input req = {0};
struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
req.flags |=
cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
req.enables =
cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
memcpy(req.l2_addr, mac_addr, ETH_ALEN);
req.l2_addr_mask[0] = 0xff;
req.l2_addr_mask[1] = 0xff;
req.l2_addr_mask[2] = 0xff;
req.l2_addr_mask[3] = 0xff;
req.l2_addr_mask[4] = 0xff;
req.l2_addr_mask[5] = 0xff;
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc)
bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
resp->l2_filter_id;
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
{
u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
int rc = 0;
/* Any associated ntuple filters will also be cleared by firmware. */
mutex_lock(&bp->hwrm_cmd_lock);
for (i = 0; i < num_of_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
for (j = 0; j < vnic->uc_filter_count; j++) {
struct hwrm_cfa_l2_filter_free_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req,
HWRM_CFA_L2_FILTER_FREE, -1, -1);
req.l2_filter_id = vnic->fw_l2_filter_id[j];
rc = _hwrm_send_message(bp, &req, sizeof(req),
HWRM_CMD_TIMEOUT);
}
vnic->uc_filter_count = 0;
}
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
struct hwrm_vnic_tpa_cfg_input req = {0};
if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
if (tpa_flags) {
u16 mss = bp->dev->mtu - 40;
u32 nsegs, n, segs = 0, flags;
flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
if (tpa_flags & BNXT_FLAG_GRO)
flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
req.flags = cpu_to_le32(flags);
req.enables =
cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
/* Number of segs are log2 units, and first packet is not
* included as part of this units.
*/
if (mss <= BNXT_RX_PAGE_SIZE) {
n = BNXT_RX_PAGE_SIZE / mss;
nsegs = (MAX_SKB_FRAGS - 1) * n;
} else {
n = mss / BNXT_RX_PAGE_SIZE;
if (mss & (BNXT_RX_PAGE_SIZE - 1))
n++;
nsegs = (MAX_SKB_FRAGS - n) / n;
}
segs = ilog2(nsegs);
req.max_agg_segs = cpu_to_le16(segs);
req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
req.min_agg_len = cpu_to_le32(512);
}
req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
{
u32 i, j, max_rings;
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
struct hwrm_vnic_rss_cfg_input req = {0};
if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
if (set_rss) {
req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
max_rings = bp->rx_nr_rings - 1;
else
max_rings = bp->rx_nr_rings;
} else {
max_rings = 1;
}
/* Fill the RSS indirection table with ring group ids */
for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
if (j == max_rings)
j = 0;
vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
}
req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
req.hash_key_tbl_addr =
cpu_to_le64(vnic->rss_hash_key_dma_addr);
}
req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
struct hwrm_vnic_plcmodes_cfg_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
req.enables =
cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
/* thresholds not implemented in firmware yet */
req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
u16 ctx_idx)
{
struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
req.rss_cos_lb_ctx_id =
cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
}
static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
{
int i, j;
for (i = 0; i < bp->nr_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
}
}
bp->rsscos_nr_ctxs = 0;
}
static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
{
int rc;
struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
bp->hwrm_cmd_resp_addr;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
-1);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc)
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
le16_to_cpu(resp->rss_cos_lb_ctx_id);
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
{
unsigned int ring = 0, grp_idx;
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
struct hwrm_vnic_cfg_input req = {0};
u16 def_vlan = 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
/* Only RSS support for now TBD: COS & LB */
if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
VNIC_CFG_REQ_ENABLES_MRU);
} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
req.rss_rule =
cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
VNIC_CFG_REQ_ENABLES_MRU);
req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
} else {
req.rss_rule = cpu_to_le16(0xffff);
}
if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
(vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
} else {
req.cos_rule = cpu_to_le16(0xffff);
}
if (vnic->flags & BNXT_VNIC_RSS_FLAG)
ring = 0;
else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
ring = vnic_id - 1;
else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
ring = bp->rx_nr_rings - 1;
grp_idx = bp->rx_ring[ring].bnapi->index;
req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
req.lb_rule = cpu_to_le16(0xffff);
req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
VLAN_HLEN);
#ifdef CONFIG_BNXT_SRIOV
if (BNXT_VF(bp))
def_vlan = bp->vf.vlan;
#endif
if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
req.flags |=
cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
{
u32 rc = 0;
if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
struct hwrm_vnic_free_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
req.vnic_id =
cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
return rc;
bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
}
return rc;
}
static void bnxt_hwrm_vnic_free(struct bnxt *bp)
{
u16 i;
for (i = 0; i < bp->nr_vnics; i++)
bnxt_hwrm_vnic_free_one(bp, i);
}
static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
unsigned int start_rx_ring_idx,
unsigned int nr_rings)
{
int rc = 0;
unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
struct hwrm_vnic_alloc_input req = {0};
struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
/* map ring groups to this vnic */
for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
grp_idx = bp->rx_ring[i].bnapi->index;
if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
j, nr_rings);
break;
}
bp->vnic_info[vnic_id].fw_grp_ids[j] =
bp->grp_info[grp_idx].fw_grp_id;
}
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
if (vnic_id == 0)
req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc)
bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
{
struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_vnic_qcaps_input req = {0};
int rc;
if (bp->hwrm_spec_code < 0x10600)
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc) {
if (resp->flags &
cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
}
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
{
u16 i;
u32 rc = 0;
mutex_lock(&bp->hwrm_cmd_lock);
for (i = 0; i < bp->rx_nr_rings; i++) {
struct hwrm_ring_grp_alloc_input req = {0};
struct hwrm_ring_grp_alloc_output *resp =
bp->hwrm_cmd_resp_addr;
unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
rc = _hwrm_send_message(bp, &req, sizeof(req),
HWRM_CMD_TIMEOUT);
if (rc)
break;
bp->grp_info[grp_idx].fw_grp_id =
le32_to_cpu(resp->ring_group_id);
}
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
{
u16 i;
u32 rc = 0;
struct hwrm_ring_grp_free_input req = {0};
if (!bp->grp_info)
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
mutex_lock(&bp->hwrm_cmd_lock);
for (i = 0; i < bp->cp_nr_rings; i++) {
if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
continue;
req.ring_group_id =
cpu_to_le32(bp->grp_info[i].fw_grp_id);
rc = _hwrm_send_message(bp, &req, sizeof(req),
HWRM_CMD_TIMEOUT);
if (rc)
break;
bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
}
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
struct bnxt_ring_struct *ring,
u32 ring_type, u32 map_index,
u32 stats_ctx_id)
{
int rc = 0, err = 0;
struct hwrm_ring_alloc_input req = {0};
struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
u16 ring_id;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
req.enables = 0;
if (ring->nr_pages > 1) {
req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
/* Page size is in log2 units */
req.page_size = BNXT_PAGE_SHIFT;
req.page_tbl_depth = 1;
} else {
req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
}
req.fbo = 0;
/* Association of ring index with doorbell index and MSIX number */
req.logical_id = cpu_to_le16(map_index);
switch (ring_type) {
case HWRM_RING_ALLOC_TX:
req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
/* Association of transmit ring with completion ring */
req.cmpl_ring_id =
cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
req.length = cpu_to_le32(bp->tx_ring_mask + 1);
req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
req.queue_id = cpu_to_le16(ring->queue_id);
break;
case HWRM_RING_ALLOC_RX:
req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
req.length = cpu_to_le32(bp->rx_ring_mask + 1);
break;
case HWRM_RING_ALLOC_AGG:
req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
break;
case HWRM_RING_ALLOC_CMPL:
req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
req.length = cpu_to_le32(bp->cp_ring_mask + 1);
if (bp->flags & BNXT_FLAG_USING_MSIX)
req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
break;
default:
netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
ring_type);
return -1;
}
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
err = le16_to_cpu(resp->error_code);
ring_id = le16_to_cpu(resp->ring_id);
mutex_unlock(&bp->hwrm_cmd_lock);
if (rc || err) {
switch (ring_type) {
case RING_FREE_REQ_RING_TYPE_L2_CMPL:
netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
rc, err);
return -1;
case RING_FREE_REQ_RING_TYPE_RX:
netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
rc, err);
return -1;
case RING_FREE_REQ_RING_TYPE_TX:
netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
rc, err);
return -1;
default:
netdev_err(bp->dev, "Invalid ring\n");
return -1;
}
}
ring->fw_ring_id = ring_id;
return rc;
}
static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
{
int rc;
if (BNXT_PF(bp)) {
struct hwrm_func_cfg_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
req.fid = cpu_to_le16(0xffff);
req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
req.async_event_cr = cpu_to_le16(idx);
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
} else {
struct hwrm_func_vf_cfg_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
req.enables =
cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
req.async_event_cr = cpu_to_le16(idx);
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
return rc;
}
static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
{
int i, rc = 0;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
cpr->cp_doorbell = bp->bar1 + i * 0x80;
rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
INVALID_STATS_CTX_ID);
if (rc)
goto err_out;
BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
if (!i) {
rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
if (rc)
netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
}
}
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
u32 map_idx = txr->bnapi->index;
u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
map_idx, fw_stats_ctx);
if (rc)
goto err_out;
txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
}
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
u32 map_idx = rxr->bnapi->index;
rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
map_idx, INVALID_STATS_CTX_ID);
if (rc)
goto err_out;
rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
}
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring =
&rxr->rx_agg_ring_struct;
u32 grp_idx = rxr->bnapi->index;
u32 map_idx = grp_idx + bp->rx_nr_rings;
rc = hwrm_ring_alloc_send_msg(bp, ring,
HWRM_RING_ALLOC_AGG,
map_idx,
INVALID_STATS_CTX_ID);
if (rc)
goto err_out;
rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
writel(DB_KEY_RX | rxr->rx_agg_prod,
rxr->rx_agg_doorbell);
bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
}
}
err_out:
return rc;
}
static int hwrm_ring_free_send_msg(struct bnxt *bp,
struct bnxt_ring_struct *ring,
u32 ring_type, int cmpl_ring_id)
{
int rc;
struct hwrm_ring_free_input req = {0};
struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
u16 error_code;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
req.ring_type = ring_type;
req.ring_id = cpu_to_le16(ring->fw_ring_id);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
error_code = le16_to_cpu(resp->error_code);
mutex_unlock(&bp->hwrm_cmd_lock);
if (rc || error_code) {
switch (ring_type) {
case RING_FREE_REQ_RING_TYPE_L2_CMPL:
netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
rc);
return rc;
case RING_FREE_REQ_RING_TYPE_RX:
netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
rc);
return rc;
case RING_FREE_REQ_RING_TYPE_TX:
netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
rc);
return rc;
default:
netdev_err(bp->dev, "Invalid ring\n");
return -1;
}
}
return 0;
}
static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
u32 grp_idx = txr->bnapi->index;
u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
hwrm_ring_free_send_msg(bp, ring,
RING_FREE_REQ_RING_TYPE_TX,
close_path ? cmpl_ring_id :
INVALID_HW_RING_ID);
ring->fw_ring_id = INVALID_HW_RING_ID;
}
}
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
u32 grp_idx = rxr->bnapi->index;
u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
hwrm_ring_free_send_msg(bp, ring,
RING_FREE_REQ_RING_TYPE_RX,
close_path ? cmpl_ring_id :
INVALID_HW_RING_ID);
ring->fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[grp_idx].rx_fw_ring_id =
INVALID_HW_RING_ID;
}
}
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
u32 grp_idx = rxr->bnapi->index;
u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
hwrm_ring_free_send_msg(bp, ring,
RING_FREE_REQ_RING_TYPE_RX,
close_path ? cmpl_ring_id :
INVALID_HW_RING_ID);
ring->fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[grp_idx].agg_fw_ring_id =
INVALID_HW_RING_ID;
}
}
/* The completion rings are about to be freed. After that the
* IRQ doorbell will not work anymore. So we need to disable
* IRQ here.
*/
bnxt_disable_int_sync(bp);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
hwrm_ring_free_send_msg(bp, ring,
RING_FREE_REQ_RING_TYPE_L2_CMPL,
INVALID_HW_RING_ID);
ring->fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
}
}
}
/* Caller must hold bp->hwrm_cmd_lock */
int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
{
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_qcfg_input req = {0};
int rc;
if (bp->hwrm_spec_code < 0x10601)
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
req.fid = cpu_to_le16(fid);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc)
*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
return rc;
}
static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
{
struct hwrm_func_cfg_input req = {0};
int rc;
if (bp->hwrm_spec_code < 0x10601)
return 0;
if (BNXT_VF(bp))
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
req.fid = cpu_to_le16(0xffff);
req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
req.num_tx_rings = cpu_to_le16(*tx_rings);
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
return rc;
mutex_lock(&bp->hwrm_cmd_lock);
rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
mutex_unlock(&bp->hwrm_cmd_lock);
if (!rc)
bp->tx_reserved_rings = *tx_rings;
return rc;
}
static int bnxt_hwrm_check_tx_rings(struct bnxt *bp, int tx_rings)
{
struct hwrm_func_cfg_input req = {0};
int rc;
if (bp->hwrm_spec_code < 0x10801)
return 0;
if (BNXT_VF(bp))
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
req.fid = cpu_to_le16(0xffff);
req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST);
req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
req.num_tx_rings = cpu_to_le16(tx_rings);
rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
return -ENOMEM;
return 0;
}
static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
u32 buf_tmrs, u16 flags,
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
{
req->flags = cpu_to_le16(flags);
req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
/* Minimum time between 2 interrupts set to buf_tmr x 2 */
req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
}
int bnxt_hwrm_set_coal(struct bnxt *bp)
{
int i, rc = 0;
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
req_tx = {0}, *req;
u16 max_buf, max_buf_irq;
u16 buf_tmr, buf_tmr_irq;
u32 flags;
bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
/* Each rx completion (2 records) should be DMAed immediately.
* DMA 1/4 of the completion buffers at a time.
*/
max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
/* max_buf must not be zero */
max_buf = clamp_t(u16, max_buf, 1, 63);
max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
/* buf timer set to 1/4 of interrupt timer */
buf_tmr = max_t(u16, buf_tmr / 4, 1);
buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
/* RING_IDLE generates more IRQs for lower latency. Enable it only
* if coal_ticks is less than 25 us.
*/
if (bp->rx_coal_ticks < 25)
flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
/* max_buf must not be zero */
max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
/* buf timer set to 1/4 of interrupt timer */
buf_tmr = max_t(u16, buf_tmr / 4, 1);
buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
mutex_lock(&bp->hwrm_cmd_lock);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
req = &req_rx;
if (!bnapi->rx_ring)
req = &req_tx;
req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
rc = _hwrm_send_message(bp, req, sizeof(*req),
HWRM_CMD_TIMEOUT);
if (rc)
break;
}
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
{
int rc = 0, i;
struct hwrm_stat_ctx_free_input req = {0};
if (!bp->bnapi)
return 0;
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
mutex_lock(&bp->hwrm_cmd_lock);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
rc = _hwrm_send_message(bp, &req, sizeof(req),
HWRM_CMD_TIMEOUT);
if (rc)
break;
cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
}
}
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
{
int rc = 0, i;
struct hwrm_stat_ctx_alloc_input req = {0};
struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
mutex_lock(&bp->hwrm_cmd_lock);
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
rc = _hwrm_send_message(bp, &req, sizeof(req),
HWRM_CMD_TIMEOUT);
if (rc)
break;
cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
}
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
{
struct hwrm_func_qcfg_input req = {0};
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
u16 flags;
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
req.fid = cpu_to_le16(0xffff);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
goto func_qcfg_exit;
#ifdef CONFIG_BNXT_SRIOV
if (BNXT_VF(bp)) {
struct bnxt_vf_info *vf = &bp->vf;
vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
}
#endif
flags = le16_to_cpu(resp->flags);
if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
}
if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
bp->flags |= BNXT_FLAG_MULTI_HOST;
switch (resp->port_partition_type) {
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
bp->port_partition_type = resp->port_partition_type;
break;
}
if (bp->hwrm_spec_code < 0x10707 ||
resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
bp->br_mode = BRIDGE_MODE_VEB;
else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
bp->br_mode = BRIDGE_MODE_VEPA;
else
bp->br_mode = BRIDGE_MODE_UNDEF;
func_qcfg_exit:
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
{
int rc = 0;
struct hwrm_func_qcaps_input req = {0};
struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
req.fid = cpu_to_le16(0xffff);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
goto hwrm_func_qcaps_exit;
if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
bp->flags |= BNXT_FLAG_ROCEV1_CAP;
if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
bp->flags |= BNXT_FLAG_ROCEV2_CAP;
bp->tx_push_thresh = 0;
if (resp->flags &
cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
if (BNXT_PF(bp)) {
struct bnxt_pf_info *pf = &bp->pf;
pf->fw_fid = le16_to_cpu(resp->fid);
pf->port_id = le16_to_cpu(resp->port_id);
memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
if (!pf->max_hw_ring_grps)
pf->max_hw_ring_grps = pf->max_tx_rings;
pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
pf->max_vnics = le16_to_cpu(resp->max_vnics);
pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
pf->max_vfs = le16_to_cpu(resp->max_vfs);
pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
if (resp->flags &
cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
bp->flags |= BNXT_FLAG_WOL_CAP;
} else {
#ifdef CONFIG_BNXT_SRIOV
struct bnxt_vf_info *vf = &bp->vf;
vf->fw_fid = le16_to_cpu(resp->fid);
vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
if (!vf->max_hw_ring_grps)
vf->max_hw_ring_grps = vf->max_tx_rings;
vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
vf->max_vnics = le16_to_cpu(resp->max_vnics);
vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
#endif
}
hwrm_func_qcaps_exit:
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_func_reset(struct bnxt *bp)
{
struct hwrm_func_reset_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
req.enables = 0;
return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
}
static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
{
int rc = 0;
struct hwrm_queue_qportcfg_input req = {0};
struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
u8 i, *qptr;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
goto qportcfg_exit;
if (!resp->max_configurable_queues) {
rc = -EINVAL;
goto qportcfg_exit;
}
bp->max_tc = resp->max_configurable_queues;
bp->max_lltc = resp->max_configurable_lossless_queues;
if (bp->max_tc > BNXT_MAX_QUEUE)
bp->max_tc = BNXT_MAX_QUEUE;
if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
bp->max_tc = 1;
if (bp->max_lltc > bp->max_tc)
bp->max_lltc = bp->max_tc;
qptr = &resp->queue_id0;
for (i = 0; i < bp->max_tc; i++) {
bp->q_info[i].queue_id = *qptr++;
bp->q_info[i].queue_profile = *qptr++;
}
qportcfg_exit:
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_hwrm_ver_get(struct bnxt *bp)
{
int rc;
struct hwrm_ver_get_input req = {0};
struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
u32 dev_caps_cfg;
bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
req.hwrm_intf_min = HWRM_VERSION_MINOR;
req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
goto hwrm_ver_get_exit;
memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
if (resp->hwrm_intf_maj < 1) {
netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
resp->hwrm_intf_maj, resp->hwrm_intf_min,
resp->hwrm_intf_upd);
netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
}
snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
if (!bp->hwrm_cmd_timeout)
bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
if (resp->hwrm_intf_maj >= 1)
bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
bp->chip_num = le16_to_cpu(resp->chip_num);
if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
!resp->chip_metal)
bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
(dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
bp->flags |= BNXT_FLAG_SHORT_CMD;
hwrm_ver_get_exit:
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
int bnxt_hwrm_fw_set_time(struct bnxt *bp)
{
#if IS_ENABLED(CONFIG_RTC_LIB)
struct hwrm_fw_set_time_input req = {0};
struct rtc_time tm;
struct timeval tv;
if (bp->hwrm_spec_code < 0x10400)
return -EOPNOTSUPP;
do_gettimeofday(&tv);
rtc_time_to_tm(tv.tv_sec, &tm);
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
req.year = cpu_to_le16(1900 + tm.tm_year);
req.month = 1 + tm.tm_mon;
req.day = tm.tm_mday;
req.hour = tm.tm_hour;
req.minute = tm.tm_min;
req.second = tm.tm_sec;
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
#else
return -EOPNOTSUPP;
#endif
}
static int bnxt_hwrm_port_qstats(struct bnxt *bp)
{
int rc;
struct bnxt_pf_info *pf = &bp->pf;
struct hwrm_port_qstats_input req = {0};
if (!(bp->flags & BNXT_FLAG_PORT_STATS))
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
req.port_id = cpu_to_le16(pf->port_id);
req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
return rc;
}
static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
{
if (bp->vxlan_port_cnt) {
bnxt_hwrm_tunnel_dst_port_free(
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
}
bp->vxlan_port_cnt = 0;
if (bp->nge_port_cnt) {
bnxt_hwrm_tunnel_dst_port_free(
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
}
bp->nge_port_cnt = 0;
}
static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
{
int rc, i;
u32 tpa_flags = 0;
if (set_tpa)
tpa_flags = bp->flags & BNXT_FLAG_TPA;
for (i = 0; i < bp->nr_vnics; i++) {
rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
if (rc) {
netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
i, rc);
return rc;
}
}
return 0;
}
static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
{
int i;
for (i = 0; i < bp->nr_vnics; i++)
bnxt_hwrm_vnic_set_rss(bp, i, false);
}
static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
bool irq_re_init)
{
if (bp->vnic_info) {
bnxt_hwrm_clear_vnic_filter(bp);
/* clear all RSS setting before free vnic ctx */
bnxt_hwrm_clear_vnic_rss(bp);
bnxt_hwrm_vnic_ctx_free(bp);
/* before free the vnic, undo the vnic tpa settings */
if (bp->flags & BNXT_FLAG_TPA)
bnxt_set_tpa(bp, false);
bnxt_hwrm_vnic_free(bp);
}
bnxt_hwrm_ring_free(bp, close_path);
bnxt_hwrm_ring_grp_free(bp);
if (irq_re_init) {
bnxt_hwrm_stat_ctx_free(bp);
bnxt_hwrm_free_tunnel_ports(bp);
}
}
static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
{
struct hwrm_func_cfg_input req = {0};
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
req.fid = cpu_to_le16(0xffff);
req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
if (br_mode == BRIDGE_MODE_VEB)
req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
else if (br_mode == BRIDGE_MODE_VEPA)
req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
else
return -EINVAL;
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
rc = -EIO;
return rc;
}
static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
int rc;
if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
goto skip_rss_ctx;
/* allocate context for vnic */
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
vnic_id, rc);
goto vnic_setup_err;
}
bp->rsscos_nr_ctxs++;
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
vnic_id, rc);
goto vnic_setup_err;
}
bp->rsscos_nr_ctxs++;
}
skip_rss_ctx:
/* configure default vnic, ring grp */
rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
vnic_id, rc);
goto vnic_setup_err;
}
/* Enable RSS hashing on vnic */
rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
vnic_id, rc);
goto vnic_setup_err;
}
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
vnic_id, rc);
}
}
vnic_setup_err:
return rc;
}
static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
{
#ifdef CONFIG_RFS_ACCEL
int i, rc = 0;
for (i = 0; i < bp->rx_nr_rings; i++) {
struct bnxt_vnic_info *vnic;
u16 vnic_id = i + 1;
u16 ring_id = i;
if (vnic_id >= bp->nr_vnics)
break;
vnic = &bp->vnic_info[vnic_id];
vnic->flags |= BNXT_VNIC_RFS_FLAG;
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
if (rc) {
netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
vnic_id, rc);
break;
}
rc = bnxt_setup_vnic(bp, vnic_id);
if (rc)
break;
}
return rc;
#else
return 0;
#endif
}
/* Allow PF and VF with default VLAN to be in promiscuous mode */
static bool bnxt_promisc_ok(struct bnxt *bp)
{
#ifdef CONFIG_BNXT_SRIOV
if (BNXT_VF(bp) && !bp->vf.vlan)
return false;
#endif
return true;
}
static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
{
unsigned int rc = 0;
rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
if (rc) {
netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
rc);
return rc;
}
rc = bnxt_hwrm_vnic_cfg(bp, 1);
if (rc) {
netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
rc);
return rc;
}
return rc;
}
static int bnxt_cfg_rx_mode(struct bnxt *);
static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
int rc = 0;
unsigned int rx_nr_rings = bp->rx_nr_rings;
if (irq_re_init) {
rc = bnxt_hwrm_stat_ctx_alloc(bp);
if (rc) {
netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
rc);
goto err_out;
}
if (bp->tx_reserved_rings != bp->tx_nr_rings) {
int tx = bp->tx_nr_rings;
if (bnxt_hwrm_reserve_tx_rings(bp, &tx) ||
tx < bp->tx_nr_rings) {
rc = -ENOMEM;
goto err_out;
}
}
}
rc = bnxt_hwrm_ring_alloc(bp);
if (rc) {
netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
goto err_out;
}
rc = bnxt_hwrm_ring_grp_alloc(bp);
if (rc) {
netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
goto err_out;
}
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
rx_nr_rings--;
/* default vnic 0 */
rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
if (rc) {
netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
goto err_out;
}
if (BNXT_VF(bp))
bnxt_hwrm_func_qcfg(bp);
rc = bnxt_setup_vnic(bp, 0);
if (rc)
goto err_out;
if (bp->flags & BNXT_FLAG_RFS) {
rc = bnxt_alloc_rfs_vnics(bp);
if (rc)
goto err_out;
}
if (bp->flags & BNXT_FLAG_TPA) {
rc = bnxt_set_tpa(bp, true);
if (rc)
goto err_out;
}
if (BNXT_VF(bp))
bnxt_update_vf_mac(bp);
/* Filter for default vnic 0 */
rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
if (rc) {
netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
goto err_out;
}
vnic->uc_filter_count = 1;
vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
if (bp->dev->flags & IFF_ALLMULTI) {
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
vnic->mc_list_count = 0;
} else {
u32 mask = 0;
bnxt_mc_list_updated(bp, &mask);
vnic->rx_mask |= mask;
}
rc = bnxt_cfg_rx_mode(bp);
if (rc)
goto err_out;
rc = bnxt_hwrm_set_coal(bp);
if (rc)
netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
rc);
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
rc = bnxt_setup_nitroa0_vnic(bp);
if (rc)
netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
rc);
}
if (BNXT_VF(bp)) {
bnxt_hwrm_func_qcfg(bp);
netdev_update_features(bp->dev);
}
return 0;
err_out:
bnxt_hwrm_resource_free(bp, 0, true);
return rc;
}
static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
{
bnxt_hwrm_resource_free(bp, 1, irq_re_init);
return 0;
}
static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
{
bnxt_init_cp_rings(bp);
bnxt_init_rx_rings(bp);
bnxt_init_tx_rings(bp);
bnxt_init_ring_grps(bp, irq_re_init);
bnxt_init_vnics(bp);
return bnxt_init_chip(bp, irq_re_init);
}
static int bnxt_set_real_num_queues(struct bnxt *bp)
{
int rc;
struct net_device *dev = bp->dev;
rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
bp->tx_nr_rings_xdp);
if (rc)
return rc;
rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
if (rc)
return rc;
#ifdef CONFIG_RFS_ACCEL
if (bp->flags & BNXT_FLAG_RFS)
dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
#endif
return rc;
}
static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
bool shared)
{
int _rx = *rx, _tx = *tx;
if (shared) {
*rx = min_t(int, _rx, max);
*tx = min_t(int, _tx, max);
} else {
if (max < 2)
return -ENOMEM;
while (_rx + _tx > max) {
if (_rx > _tx && _rx > 1)
_rx--;
else if (_tx > 1)
_tx--;
}
*rx = _rx;
*tx = _tx;
}
return 0;
}
static void bnxt_setup_msix(struct bnxt *bp)
{
const int len = sizeof(bp->irq_tbl[0].name);
struct net_device *dev = bp->dev;
int tcs, i;
tcs = netdev_get_num_tc(dev);
if (tcs) {
int i, off, count;
for (i = 0; i < tcs; i++) {
count = bp->tx_nr_rings_per_tc;
off = i * count;
netdev_set_tc_queue(dev, i, count, off);
}
}
for (i = 0; i < bp->cp_nr_rings; i++) {
char *attr;
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
attr = "TxRx";
else if (i < bp->rx_nr_rings)
attr = "rx";
else
attr = "tx";
snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
i);
bp->irq_tbl[i].handler = bnxt_msix;
}
}
static void bnxt_setup_inta(struct bnxt *bp)
{
const int len = sizeof(bp->irq_tbl[0].name);
if (netdev_get_num_tc(bp->dev))
netdev_reset_tc(bp->dev);
snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
0);
bp->irq_tbl[0].handler = bnxt_inta;
}
static int bnxt_setup_int_mode(struct bnxt *bp)
{
int rc;
if (bp->flags & BNXT_FLAG_USING_MSIX)
bnxt_setup_msix(bp);
else
bnxt_setup_inta(bp);
rc = bnxt_set_real_num_queues(bp);
return rc;
}
#ifdef CONFIG_RFS_ACCEL
static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
{
#if defined(CONFIG_BNXT_SRIOV)
if (BNXT_VF(bp))
return bp->vf.max_rsscos_ctxs;
#endif
return bp->pf.max_rsscos_ctxs;
}
static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
{
#if defined(CONFIG_BNXT_SRIOV)
if (BNXT_VF(bp))
return bp->vf.max_vnics;
#endif
return bp->pf.max_vnics;
}
#endif
unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
{
#if defined(CONFIG_BNXT_SRIOV)
if (BNXT_VF(bp))
return bp->vf.max_stat_ctxs;
#endif
return bp->pf.max_stat_ctxs;
}
void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
{
#if defined(CONFIG_BNXT_SRIOV)
if (BNXT_VF(bp))
bp->vf.max_stat_ctxs = max;
else
#endif
bp->pf.max_stat_ctxs = max;
}
unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
{
#if defined(CONFIG_BNXT_SRIOV)
if (BNXT_VF(bp))
return bp->vf.max_cp_rings;
#endif
return bp->pf.max_cp_rings;
}
void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
{
#if defined(CONFIG_BNXT_SRIOV)
if (BNXT_VF(bp))
bp->vf.max_cp_rings = max;
else
#endif
bp->pf.max_cp_rings = max;
}
static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
{
#if defined(CONFIG_BNXT_SRIOV)
if (BNXT_VF(bp))
return min_t(unsigned int, bp->vf.max_irqs,
bp->vf.max_cp_rings);
#endif
return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
}
void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
{
#if defined(CONFIG_BNXT_SRIOV)
if (BNXT_VF(bp))
bp->vf.max_irqs = max_irqs;
else
#endif
bp->pf.max_irqs = max_irqs;
}
static int bnxt_init_msix(struct bnxt *bp)
{
int i, total_vecs, rc = 0, min = 1;
struct msix_entry *msix_ent;
total_vecs = bnxt_get_max_func_irqs(bp);
msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
if (!msix_ent)
return -ENOMEM;
for (i = 0; i < total_vecs; i++) {
msix_ent[i].entry = i;
msix_ent[i].vector = 0;
}
if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
min = 2;
total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
if (total_vecs < 0) {
rc = -ENODEV;
goto msix_setup_exit;
}
bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
if (bp->irq_tbl) {
for (i = 0; i < total_vecs; i++)
bp->irq_tbl[i].vector = msix_ent[i].vector;
bp->total_irqs = total_vecs;
/* Trim rings based upon num of vectors allocated */
rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
total_vecs, min == 1);
if (rc)
goto msix_setup_exit;
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
bp->cp_nr_rings = (min == 1) ?
max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
bp->tx_nr_rings + bp->rx_nr_rings;
} else {
rc = -ENOMEM;
goto msix_setup_exit;
}
bp->flags |= BNXT_FLAG_USING_MSIX;
kfree(msix_ent);
return 0;
msix_setup_exit:
netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
kfree(bp->irq_tbl);
bp->irq_tbl = NULL;
pci_disable_msix(bp->pdev);
kfree(msix_ent);
return rc;
}
static int bnxt_init_inta(struct bnxt *bp)
{
bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
if (!bp->irq_tbl)
return -ENOMEM;
bp->total_irqs = 1;
bp->rx_nr_rings = 1;
bp->tx_nr_rings = 1;
bp->cp_nr_rings = 1;
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
bp->flags |= BNXT_FLAG_SHARED_RINGS;
bp->irq_tbl[0].vector = bp->pdev->irq;
return 0;
}
static int bnxt_init_int_mode(struct bnxt *bp)
{
int rc = 0;
if (bp->flags & BNXT_FLAG_MSIX_CAP)
rc = bnxt_init_msix(bp);
if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
/* fallback to INTA */
rc = bnxt_init_inta(bp);
}
return rc;
}
static void bnxt_clear_int_mode(struct bnxt *bp)
{
if (bp->flags & BNXT_FLAG_USING_MSIX)
pci_disable_msix(bp->pdev);
kfree(bp->irq_tbl);
bp->irq_tbl = NULL;
bp->flags &= ~BNXT_FLAG_USING_MSIX;
}
static void bnxt_free_irq(struct bnxt *bp)
{
struct bnxt_irq *irq;
int i;
#ifdef CONFIG_RFS_ACCEL
free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
bp->dev->rx_cpu_rmap = NULL;
#endif
if (!bp->irq_tbl)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
irq = &bp->irq_tbl[i];
if (irq->requested) {
if (irq->have_cpumask) {
irq_set_affinity_hint(irq->vector, NULL);
free_cpumask_var(irq->cpu_mask);
irq->have_cpumask = 0;
}
free_irq(irq->vector, bp->bnapi[i]);
}
irq->requested = 0;
}
}
static int bnxt_request_irq(struct bnxt *bp)
{
int i, j, rc = 0;
unsigned long flags = 0;
#ifdef CONFIG_RFS_ACCEL
struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
#endif
if (!(bp->flags & BNXT_FLAG_USING_MSIX))
flags = IRQF_SHARED;
for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_irq *irq = &bp->irq_tbl[i];
#ifdef CONFIG_RFS_ACCEL
if (rmap && bp->bnapi[i]->rx_ring) {
rc = irq_cpu_rmap_add(rmap, irq->vector);
if (rc)
netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
j);
j++;
}
#endif
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
bp->bnapi[i]);
if (rc)
break;
irq->requested = 1;
if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
int numa_node = dev_to_node(&bp->pdev->dev);
irq->have_cpumask = 1;
cpumask_set_cpu(cpumask_local_spread(i, numa_node),
irq->cpu_mask);
rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
if (rc) {
netdev_warn(bp->dev,
"Set affinity failed, IRQ = %d\n",
irq->vector);
break;
}
}
}
return rc;
}
static void bnxt_del_napi(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
napi_hash_del(&bnapi->napi);
netif_napi_del(&bnapi->napi);
}
/* We called napi_hash_del() before netif_napi_del(), we need
* to respect an RCU grace period before freeing napi structures.
*/
synchronize_net();
}
static void bnxt_init_napi(struct bnxt *bp)
{
int i;
unsigned int cp_nr_rings = bp->cp_nr_rings;
struct bnxt_napi *bnapi;
if (bp->flags & BNXT_FLAG_USING_MSIX) {
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
cp_nr_rings--;
for (i = 0; i < cp_nr_rings; i++) {
bnapi = bp->bnapi[i];
netif_napi_add(bp->dev, &bnapi->napi,
bnxt_poll, 64);
}
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
bnapi = bp->bnapi[cp_nr_rings];
netif_napi_add(bp->dev, &bnapi->napi,
bnxt_poll_nitroa0, 64);
}
} else {
bnapi = bp->bnapi[0];
netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
}
}
static void bnxt_disable_napi(struct bnxt *bp)
{
int i;
if (!bp->bnapi)
return;
for (i = 0; i < bp->cp_nr_rings; i++)
napi_disable(&bp->bnapi[i]->napi);
}
static void bnxt_enable_napi(struct bnxt *bp)
{
int i;
for (i = 0; i < bp->cp_nr_rings; i++) {
bp->bnapi[i]->in_reset = false;
napi_enable(&bp->bnapi[i]->napi);
}
}
void bnxt_tx_disable(struct bnxt *bp)
{
int i;
struct bnxt_tx_ring_info *txr;
if (bp->tx_ring) {
for (i = 0; i < bp->tx_nr_rings; i++) {
txr = &bp->tx_ring[i];
WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
}
}
/* Make sure napi polls see @dev_state change */
synchronize_net();
/* Drop carrier first to prevent TX timeout */
netif_carrier_off(bp->dev);
/* Stop all TX queues */
netif_tx_disable(bp->dev);
}
void bnxt_tx_enable(struct bnxt *bp)
{
int i;
struct bnxt_tx_ring_info *txr;
for (i = 0; i < bp->tx_nr_rings; i++) {
txr = &bp->tx_ring[i];
WRITE_ONCE(txr->dev_state, 0);
}
/* Make sure napi polls see @dev_state change */
synchronize_net();
netif_tx_wake_all_queues(bp->dev);
if (bp->link_info.link_up)
netif_carrier_on(bp->dev);
}
static void bnxt_report_link(struct bnxt *bp)
{
if (bp->link_info.link_up) {
const char *duplex;
const char *flow_ctrl;
u32 speed;
u16 fec;
netif_carrier_on(bp->dev);
speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
if (speed == SPEED_UNKNOWN) {
netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
return;
}
if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
duplex = "full";
else
duplex = "half";
if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
flow_ctrl = "ON - receive & transmit";
else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
flow_ctrl = "ON - transmit";
else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
flow_ctrl = "ON - receive";
else
flow_ctrl = "none";
netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
speed, duplex, flow_ctrl);
if (bp->flags & BNXT_FLAG_EEE_CAP)
netdev_info(bp->dev, "EEE is %s\n",
bp->eee.eee_active ? "active" :
"not active");
fec = bp->link_info.fec_cfg;
if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
(fec & BNXT_FEC_AUTONEG) ? "on" : "off",
(fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
(fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
} else {
netif_carrier_off(bp->dev);
netdev_err(bp->dev, "NIC Link is Down\n");
}
}
static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
{
int rc = 0;
struct hwrm_port_phy_qcaps_input req = {0};
struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
struct bnxt_link_info *link_info = &bp->link_info;
if (bp->hwrm_spec_code < 0x10201)
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
goto hwrm_phy_qcaps_exit;
if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
struct ethtool_eee *eee = &bp->eee;
u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
bp->flags |= BNXT_FLAG_EEE_CAP;
eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
}
if (resp->supported_speeds_auto_mode)
link_info->support_auto_speeds =
le16_to_cpu(resp->supported_speeds_auto_mode);
bp->port_count = resp->port_cnt;
hwrm_phy_qcaps_exit:
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
{
int rc = 0;
struct bnxt_link_info *link_info = &bp->link_info;
struct hwrm_port_phy_qcfg_input req = {0};
struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
u8 link_up = link_info->link_up;
u16 diff;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc) {
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
link_info->phy_link_status = resp->link;
link_info->duplex = resp->duplex_cfg;
if (bp->hwrm_spec_code >= 0x10800)
link_info->duplex = resp->duplex_state;
link_info->pause = resp->pause;
link_info->auto_mode = resp->auto_mode;
link_info->auto_pause_setting = resp->auto_pause;
link_info->lp_pause = resp->link_partner_adv_pause;
link_info->force_pause_setting = resp->force_pause;
link_info->duplex_setting = resp->duplex_cfg;
if (link_info->phy_link_status == BNXT_LINK_LINK)
link_info->link_speed = le16_to_cpu(resp->link_speed);
else
link_info->link_speed = 0;
link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
link_info->support_speeds = le16_to_cpu(resp->support_speeds);
link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
link_info->lp_auto_link_speeds =
le16_to_cpu(resp->link_partner_adv_speeds);
link_info->preemphasis = le32_to_cpu(resp->preemphasis);
link_info->phy_ver[0] = resp->phy_maj;
link_info->phy_ver[1] = resp->phy_min;
link_info->phy_ver[2] = resp->phy_bld;
link_info->media_type = resp->media_type;
link_info->phy_type = resp->phy_type;
link_info->transceiver = resp->xcvr_pkg_type;
link_info->phy_addr = resp->eee_config_phy_addr &
PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
link_info->module_status = resp->module_status;
if (bp->flags & BNXT_FLAG_EEE_CAP) {
struct ethtool_eee *eee = &bp->eee;
u16 fw_speeds;
eee->eee_active = 0;
if (resp->eee_config_phy_addr &
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
eee->eee_active = 1;
fw_speeds = le16_to_cpu(
resp->link_partner_adv_eee_link_speed_mask);
eee->lp_advertised =
_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
}
/* Pull initial EEE config */
if (!chng_link_state) {
if (resp->eee_config_phy_addr &
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
eee->eee_enabled = 1;
fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
eee->advertised =
_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
if (resp->eee_config_phy_addr &
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
__le32 tmr;
eee->tx_lpi_enabled = 1;
tmr = resp->xcvr_identifier_type_tx_lpi_timer;
eee->tx_lpi_timer = le32_to_cpu(tmr) &
PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
}
}
}
link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
if (bp->hwrm_spec_code >= 0x10504)
link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
/* TODO: need to add more logic to report VF link */
if (chng_link_state) {
if (link_info->phy_link_status == BNXT_LINK_LINK)
link_info->link_up = 1;
else
link_info->link_up = 0;
if (link_up != link_info->link_up)
bnxt_report_link(bp);
} else {
/* alwasy link down if not require to update link state */
link_info->link_up = 0;
}
mutex_unlock(&bp->hwrm_cmd_lock);
if (!BNXT_SINGLE_PF(bp))
return 0;
diff = link_info->support_auto_speeds ^ link_info->advertising;
if ((link_info->support_auto_speeds | diff) !=
link_info->support_auto_speeds) {
/* An advertised speed is no longer supported, so we need to
* update the advertisement settings. Caller holds RTNL
* so we can modify link settings.
*/
link_info->advertising = link_info->support_auto_speeds;
if (link_info->autoneg & BNXT_AUTONEG_SPEED)
bnxt_hwrm_set_link_setting(bp, true, false);
}
return 0;
}
static void bnxt_get_port_module_status(struct bnxt *bp)
{
struct bnxt_link_info *link_info = &bp->link_info;
struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
u8 module_status;
if (bnxt_update_link(bp, true))
return;
module_status = link_info->module_status;
switch (module_status) {
case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
bp->pf.port_id);
if (bp->hwrm_spec_code >= 0x10201) {
netdev_warn(bp->dev, "Module part number %s\n",
resp->phy_vendor_partnumber);
}
if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
netdev_warn(bp->dev, "TX is disabled\n");
if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
netdev_warn(bp->dev, "SFP+ module is shutdown\n");
}
}
static void
bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
{
if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
if (bp->hwrm_spec_code >= 0x10201)
req->auto_pause =
PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
req->enables |=
cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
} else {
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
req->enables |=
cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
if (bp->hwrm_spec_code >= 0x10201) {
req->auto_pause = req->force_pause;
req->enables |= cpu_to_le32(
PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
}
}
}
static void bnxt_hwrm_set_link_common(struct bnxt *bp,
struct hwrm_port_phy_cfg_input *req)
{
u8 autoneg = bp->link_info.autoneg;
u16 fw_link_speed = bp->link_info.req_link_speed;
u16 advertising = bp->link_info.advertising;
if (autoneg & BNXT_AUTONEG_SPEED) {
req->auto_mode |=
PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
req->enables |= cpu_to_le32(
PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
req->auto_link_speed_mask = cpu_to_le16(advertising);
req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
req->flags |=
cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
} else {
req->force_link_speed = cpu_to_le16(fw_link_speed);
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
}
/* tell chimp that the setting takes effect immediately */
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
}
int bnxt_hwrm_set_pause(struct bnxt *bp)
{
struct hwrm_port_phy_cfg_input req = {0};
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
bnxt_hwrm_set_pause_common(bp, &req);
if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
bp->link_info.force_link_chng)
bnxt_hwrm_set_link_common(bp, &req);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
/* since changing of pause setting doesn't trigger any link
* change event, the driver needs to update the current pause
* result upon successfully return of the phy_cfg command
*/
bp->link_info.pause =
bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
bp->link_info.auto_pause_setting = 0;
if (!bp->link_info.force_link_chng)
bnxt_report_link(bp);
}
bp->link_info.force_link_chng = false;
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static void bnxt_hwrm_set_eee(struct bnxt *bp,
struct hwrm_port_phy_cfg_input *req)
{
struct ethtool_eee *eee = &bp->eee;
if (eee->eee_enabled) {
u16 eee_speeds;
u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
if (eee->tx_lpi_enabled)
flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
else
flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
req->flags |= cpu_to_le32(flags);
eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
} else {
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
}
}
int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
{
struct hwrm_port_phy_cfg_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
if (set_pause)
bnxt_hwrm_set_pause_common(bp, &req);
bnxt_hwrm_set_link_common(bp, &req);
if (set_eee)
bnxt_hwrm_set_eee(bp, &req);
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
{
struct hwrm_port_phy_cfg_input req = {0};
if (!BNXT_SINGLE_PF(bp))
return 0;
if (pci_num_vf(bp->pdev))
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
}
static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
{
struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_port_led_qcaps_input req = {0};
struct bnxt_pf_info *pf = &bp->pf;
int rc;
if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
req.port_id = cpu_to_le16(pf->port_id);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc) {
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
int i;
bp->num_leds = resp->num_leds;
memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
bp->num_leds);
for (i = 0; i < bp->num_leds; i++) {
struct bnxt_led_info *led = &bp->leds[i];
__le16 caps = led->led_state_caps;
if (!led->led_group_id ||
!BNXT_LED_ALT_BLINK_CAP(caps)) {
bp->num_leds = 0;
break;
}
}
}
mutex_unlock(&bp->hwrm_cmd_lock);
return 0;
}
int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
{
struct hwrm_wol_filter_alloc_input req = {0};
struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
req.port_id = cpu_to_le16(bp->pf.port_id);
req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc)
bp->wol_filter_id = resp->wol_filter_id;
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
{
struct hwrm_wol_filter_free_input req = {0};
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
req.port_id = cpu_to_le16(bp->pf.port_id);
req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
req.wol_filter_id = bp->wol_filter_id;
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
return rc;
}
static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
{
struct hwrm_wol_filter_qcfg_input req = {0};
struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
u16 next_handle = 0;
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
req.port_id = cpu_to_le16(bp->pf.port_id);
req.handle = cpu_to_le16(handle);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc) {
next_handle = le16_to_cpu(resp->next_handle);
if (next_handle != 0) {
if (resp->wol_type ==
WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
bp->wol = 1;
bp->wol_filter_id = resp->wol_filter_id;
}
}
}
mutex_unlock(&bp->hwrm_cmd_lock);
return next_handle;
}
static void bnxt_get_wol_settings(struct bnxt *bp)
{
u16 handle = 0;
if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
return;
do {
handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
} while (handle && handle != 0xffff);
}
static bool bnxt_eee_config_ok(struct bnxt *bp)
{
struct ethtool_eee *eee = &bp->eee;
struct bnxt_link_info *link_info = &bp->link_info;
if (!(bp->flags & BNXT_FLAG_EEE_CAP))
return true;
if (eee->eee_enabled) {
u32 advertising =
_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
eee->eee_enabled = 0;
return false;
}
if (eee->advertised & ~advertising) {
eee->advertised = advertising & eee->supported;
return false;
}
}
return true;
}
static int bnxt_update_phy_setting(struct bnxt *bp)
{
int rc;
bool update_link = false;
bool update_pause = false;
bool update_eee = false;
struct bnxt_link_info *link_info = &bp->link_info;
rc = bnxt_update_link(bp, true);
if (rc) {
netdev_err(bp->dev, "failed to update link (rc: %x)\n",
rc);
return rc;
}
if (!BNXT_SINGLE_PF(bp))
return 0;
if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
(link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
link_info->req_flow_ctrl)
update_pause = true;
if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
link_info->force_pause_setting != link_info->req_flow_ctrl)
update_pause = true;
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
if (BNXT_AUTO_MODE(link_info->auto_mode))
update_link = true;
if (link_info->req_link_speed != link_info->force_link_speed)
update_link = true;
if (link_info->req_duplex != link_info->duplex_setting)
update_link = true;
} else {
if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
update_link = true;
if (link_info->advertising != link_info->auto_link_speeds)
update_link = true;
}
/* The last close may have shutdown the link, so need to call
* PHY_CFG to bring it back up.
*/
if (!netif_carrier_ok(bp->dev))
update_link = true;
if (!bnxt_eee_config_ok(bp))
update_eee = true;
if (update_link)
rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
else if (update_pause)
rc = bnxt_hwrm_set_pause(bp);
if (rc) {
netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
rc);
return rc;
}
return rc;
}
/* Common routine to pre-map certain register block to different GRC window.
* A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
* in PF and 3 windows in VF that can be customized to map in different
* register blocks.
*/
static void bnxt_preset_reg_win(struct bnxt *bp)
{
if (BNXT_PF(bp)) {
/* CAG registers map to GRC window #4 */
writel(BNXT_CAG_REG_BASE,
bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
}
}
static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
{
int rc = 0;
bnxt_preset_reg_win(bp);
netif_carrier_off(bp->dev);
if (irq_re_init) {
rc = bnxt_setup_int_mode(bp);
if (rc) {
netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
rc);
return rc;
}
}
if ((bp->flags & BNXT_FLAG_RFS) &&
!(bp->flags & BNXT_FLAG_USING_MSIX)) {
/* disable RFS if falling back to INTA */
bp->dev->hw_features &= ~NETIF_F_NTUPLE;
bp->flags &= ~BNXT_FLAG_RFS;
}
rc = bnxt_alloc_mem(bp, irq_re_init);
if (rc) {
netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
goto open_err_free_mem;
}
if (irq_re_init) {
bnxt_init_napi(bp);
rc = bnxt_request_irq(bp);
if (rc) {
netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
goto open_err_irq;
}
}
rc = bnxt_init_nic(bp, irq_re_init);
if (rc) {
netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
goto open_err_irq;
}
bnxt_enable_napi(bp);
if (link_re_init) {
mutex_lock(&bp->link_lock);
rc = bnxt_update_phy_setting(bp);
mutex_unlock(&bp->link_lock);
if (rc)
netdev_warn(bp->dev, "failed to update phy settings\n");
}
if (irq_re_init)
udp_tunnel_get_rx_info(bp->dev);
set_bit(BNXT_STATE_OPEN, &bp->state);
bnxt_enable_int(bp);
/* Enable TX queues */
bnxt_tx_enable(bp);
mod_timer(&bp->timer, jiffies + bp->current_interval);
/* Poll link status and check for SFP+ module status */
bnxt_get_port_module_status(bp);
/* VF-reps may need to be re-opened after the PF is re-opened */
if (BNXT_PF(bp))
bnxt_vf_reps_open(bp);
return 0;
open_err_irq:
bnxt_del_napi(bp);
open_err_free_mem:
bnxt_free_skbs(bp);
bnxt_free_irq(bp);
bnxt_free_mem(bp, true);
return rc;
}
/* rtnl_lock held */
int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
{
int rc = 0;
rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
if (rc) {
netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
dev_close(bp->dev);
}
return rc;
}
/* rtnl_lock held, open the NIC half way by allocating all resources, but
* NAPI, IRQ, and TX are not enabled. This is mainly used for offline
* self tests.
*/
int bnxt_half_open_nic(struct bnxt *bp)
{
int rc = 0;
rc = bnxt_alloc_mem(bp, false);
if (rc) {
netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
goto half_open_err;
}
rc = bnxt_init_nic(bp, false);
if (rc) {
netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
goto half_open_err;
}
return 0;
half_open_err:
bnxt_free_skbs(bp);
bnxt_free_mem(bp, false);
dev_close(bp->dev);
return rc;
}
/* rtnl_lock held, this call can only be made after a previous successful
* call to bnxt_half_open_nic().
*/
void bnxt_half_close_nic(struct bnxt *bp)
{
bnxt_hwrm_resource_free(bp, false, false);
bnxt_free_skbs(bp);
bnxt_free_mem(bp, false);
}
static int bnxt_open(struct net_device *dev)
{
struct bnxt *bp = netdev_priv(dev);
return __bnxt_open_nic(bp, true, true);
}
static bool bnxt_drv_busy(struct bnxt *bp)
{
return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
test_bit(BNXT_STATE_READ_STATS, &bp->state));
}
int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
{
int rc = 0;
#ifdef CONFIG_BNXT_SRIOV
if (bp->sriov_cfg) {
rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
!bp->sriov_cfg,
BNXT_SRIOV_CFG_WAIT_TMO);
if (rc)
netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
}
/* Close the VF-reps before closing PF */
if (BNXT_PF(bp))
bnxt_vf_reps_close(bp);
#endif
/* Change device state to avoid TX queue wake up's */
bnxt_tx_disable(bp);
clear_bit(BNXT_STATE_OPEN, &bp->state);
smp_mb__after_atomic();
while (bnxt_drv_busy(bp))
msleep(20);
/* Flush rings and and disable interrupts */
bnxt_shutdown_nic(bp, irq_re_init);
/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
bnxt_disable_napi(bp);
del_timer_sync(&bp->timer);
bnxt_free_skbs(bp);
if (irq_re_init) {
bnxt_free_irq(bp);
bnxt_del_napi(bp);
}
bnxt_free_mem(bp, irq_re_init);
return rc;
}
static int bnxt_close(struct net_device *dev)
{
struct bnxt *bp = netdev_priv(dev);
bnxt_close_nic(bp, true, true);
bnxt_hwrm_shutdown_link(bp);
return 0;
}
/* rtnl_lock held */
static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
/* fallthru */
case SIOCGMIIREG: {
if (!netif_running(dev))
return -EAGAIN;
return 0;
}
case SIOCSMIIREG:
if (!netif_running(dev))
return -EAGAIN;
return 0;
default:
/* do nothing */
break;
}
return -EOPNOTSUPP;
}
static void
bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
u32 i;
struct bnxt *bp = netdev_priv(dev);
set_bit(BNXT_STATE_READ_STATS, &bp->state);
/* Make sure bnxt_close_nic() sees that we are reading stats before
* we check the BNXT_STATE_OPEN flag.
*/
smp_mb__after_atomic();
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
clear_bit(BNXT_STATE_READ_STATS, &bp->state);
return;
}
/* TODO check if we need to synchronize with bnxt_close path */
for (i = 0; i < bp->cp_nr_rings; i++) {
struct bnxt_napi *bnapi = bp->bnapi[i];
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
struct ctx_hw_stats *hw_stats = cpr->hw_stats;
stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
stats->rx_missed_errors +=
le64_to_cpu(hw_stats->rx_discard_pkts);
stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
}
if (bp->flags & BNXT_FLAG_PORT_STATS) {
struct rx_port_stats *rx = bp->hw_rx_port_stats;
struct tx_port_stats *tx = bp->hw_tx_port_stats;
stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
le64_to_cpu(rx->rx_ovrsz_frames) +
le64_to_cpu(rx->rx_runt_frames);
stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
le64_to_cpu(rx->rx_jbr_frames);
stats->collisions = le64_to_cpu(tx->tx_total_collisions);
stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
stats->tx_errors = le64_to_cpu(tx->tx_err);
}
clear_bit(BNXT_STATE_READ_STATS, &bp->state);
}
static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
{
struct net_device *dev = bp->dev;
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
struct netdev_hw_addr *ha;
u8 *haddr;
int mc_count = 0;
bool update = false;
int off = 0;
netdev_for_each_mc_addr(ha, dev) {
if (mc_count >= BNXT_MAX_MC_ADDRS) {
*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
vnic->mc_list_count = 0;
return false;
}
haddr = ha->addr;
if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
update = true;
}
off += ETH_ALEN;
mc_count++;
}
if (mc_count)
*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
if (mc_count != vnic->mc_list_count) {
vnic->mc_list_count = mc_count;
update = true;
}
return update;
}
static bool bnxt_uc_list_updated(struct bnxt *bp)
{
struct net_device *dev = bp->dev;
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
struct netdev_hw_addr *ha;
int off = 0;
if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
return true;
netdev_for_each_uc_addr(ha, dev) {
if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
return true;
off += ETH_ALEN;
}
return false;
}
static void bnxt_set_rx_mode(struct net_device *dev)
{
struct bnxt *bp = netdev_priv(dev);
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
u32 mask = vnic->rx_mask;
bool mc_update = false;
bool uc_update;
if (!netif_running(dev))
return;
mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
uc_update = bnxt_uc_list_updated(bp);
if (dev->flags & IFF_ALLMULTI) {
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
vnic->mc_list_count = 0;
} else {
mc_update = bnxt_mc_list_updated(bp, &mask);
}
if (mask != vnic->rx_mask || uc_update || mc_update) {
vnic->rx_mask = mask;
set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
}
static int bnxt_cfg_rx_mode(struct bnxt *bp)
{
struct net_device *dev = bp->dev;
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
struct netdev_hw_addr *ha;
int i, off = 0, rc;
bool uc_update;
netif_addr_lock_bh(dev);
uc_update = bnxt_uc_list_updated(bp);
netif_addr_unlock_bh(dev);
if (!uc_update)
goto skip_uc;
mutex_lock(&bp->hwrm_cmd_lock);
for (i = 1; i < vnic->uc_filter_count; i++) {
struct hwrm_cfa_l2_filter_free_input req = {0};
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
-1);
req.l2_filter_id = vnic->fw_l2_filter_id[i];
rc = _hwrm_send_message(bp, &req, sizeof(req),
HWRM_CMD_TIMEOUT);
}
mutex_unlock(&bp->hwrm_cmd_lock);
vnic->uc_filter_count = 1;
netif_addr_lock_bh(dev);
if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
} else {
netdev_for_each_uc_addr(ha, dev) {
memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
off += ETH_ALEN;
vnic->uc_filter_count++;
}
}
netif_addr_unlock_bh(dev);
for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
if (rc) {
netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
rc);
vnic->uc_filter_count = i;
return rc;
}
}
skip_uc:
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
if (rc && vnic->mc_list_count) {
netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
rc);
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
vnic->mc_list_count = 0;
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
}
if (rc)
netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
rc);
return rc;
}
/* If the chip and firmware supports RFS */
static bool bnxt_rfs_supported(struct bnxt *bp)
{
if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
return true;
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
return true;
return false;
}
/* If runtime conditions support RFS */
static bool bnxt_rfs_capable(struct bnxt *bp)
{
#ifdef CONFIG_RFS_ACCEL
int vnics, max_vnics, max_rss_ctxs;
if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
return false;
vnics = 1 + bp->rx_nr_rings;
max_vnics = bnxt_get_max_func_vnics(bp);
max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
/* RSS contexts not a limiting factor */
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
max_rss_ctxs = max_vnics;
if (vnics > max_vnics || vnics > max_rss_ctxs) {
netdev_warn(bp->dev,
"Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
min(max_rss_ctxs - 1, max_vnics - 1));
return false;
}
return true;
#else
return false;
#endif
}
static netdev_features_t bnxt_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct bnxt *bp = netdev_priv(dev);
netdev_features_t vlan_features;
if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
features &= ~NETIF_F_NTUPLE;
/* Both CTAG and STAG VLAN accelaration on the RX side have to be
* turned on or off together.
*/
vlan_features = features & (NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_STAG_RX);
if (vlan_features != (NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_STAG_RX)) {
if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_STAG_RX);
else if (vlan_features)
features |= NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_STAG_RX;
}
#ifdef CONFIG_BNXT_SRIOV
if (BNXT_VF(bp)) {
if (bp->vf.vlan) {
features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_STAG_RX);
}
}
#endif
return features;
}
static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
{
struct bnxt *bp = netdev_priv(dev);
u32 flags = bp->flags;
u32 changes;
int rc = 0;
bool re_init = false;
bool update_tpa = false;
flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
flags |= BNXT_FLAG_GRO;
if (features & NETIF_F_LRO)
flags |= BNXT_FLAG_LRO;
if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
flags &= ~BNXT_FLAG_TPA;
if (features & NETIF_F_HW_VLAN_CTAG_RX)
flags |= BNXT_FLAG_STRIP_VLAN;
if (features & NETIF_F_NTUPLE)
flags |= BNXT_FLAG_RFS;
changes = flags ^ bp->flags;
if (changes & BNXT_FLAG_TPA) {
update_tpa = true;
if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
(flags & BNXT_FLAG_TPA) == 0)
re_init = true;
}
if (changes & ~BNXT_FLAG_TPA)
re_init = true;
if (flags != bp->flags) {
u32 old_flags = bp->flags;
bp->flags = flags;
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
if (update_tpa)
bnxt_set_ring_params(bp);
return rc;
}
if (re_init) {
bnxt_close_nic(bp, false, false);
if (update_tpa)
bnxt_set_ring_params(bp);
return bnxt_open_nic(bp, false, false);
}
if (update_tpa) {
rc = bnxt_set_tpa(bp,
(flags & BNXT_FLAG_TPA) ?
true : false);
if (rc)
bp->flags = old_flags;
}
}
return rc;
}
static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
{
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
int i = bnapi->index;
if (!txr)
return;
netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
txr->tx_cons);
}
static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
{
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
int i = bnapi->index;
if (!rxr)
return;
netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
rxr->rx_sw_agg_prod);
}
static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
{
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
int i = bnapi->index;
netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
}
static void bnxt_dbg_dump_states(struct bnxt *bp)
{
int i;
struct bnxt_napi *bnapi;
for (i = 0; i < bp->cp_nr_rings; i++) {
bnapi = bp->bnapi[i];
if (netif_msg_drv(bp)) {
bnxt_dump_tx_sw_state(bnapi);
bnxt_dump_rx_sw_state(bnapi);
bnxt_dump_cp_sw_state(bnapi);
}
}
}
static void bnxt_reset_task(struct bnxt *bp, bool silent)
{
if (!silent)
bnxt_dbg_dump_states(bp);
if (netif_running(bp->dev)) {
int rc;
if (!silent)
bnxt_ulp_stop(bp);
bnxt_close_nic(bp, false, false);
rc = bnxt_open_nic(bp, false, false);
if (!silent && !rc)
bnxt_ulp_start(bp);
}
}
static void bnxt_tx_timeout(struct net_device *dev)
{
struct bnxt *bp = netdev_priv(dev);
netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bnxt_poll_controller(struct net_device *dev)
{
struct bnxt *bp = netdev_priv(dev);
int i;
/* Only process tx rings/combined rings in netpoll mode. */
for (i = 0; i < bp->tx_nr_rings; i++) {
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
napi_schedule(&txr->bnapi->napi);
}
}
#endif
static void bnxt_timer(unsigned long data)
{
struct bnxt *bp = (struct bnxt *)data;
struct net_device *dev = bp->dev;
if (!netif_running(dev))
return;
if (atomic_read(&bp->intr_sem) != 0)
goto bnxt_restart_timer;
if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
bp->stats_coal_ticks) {
set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
bnxt_restart_timer:
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
static void bnxt_rtnl_lock_sp(struct bnxt *bp)
{
/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
* set. If the device is being closed, bnxt_close() may be holding
* rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
* must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
*/
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
rtnl_lock();
}
static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
{
set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
rtnl_unlock();
}
/* Only called from bnxt_sp_task() */
static void bnxt_reset(struct bnxt *bp, bool silent)
{
bnxt_rtnl_lock_sp(bp);
if (test_bit(BNXT_STATE_OPEN, &bp->state))
bnxt_reset_task(bp, silent);
bnxt_rtnl_unlock_sp(bp);
}
static void bnxt_cfg_ntp_filters(struct bnxt *);
static void bnxt_sp_task(struct work_struct *work)
{
struct bnxt *bp = container_of(work, struct bnxt, sp_task);
set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
smp_mb__after_atomic();
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
return;
}
if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
bnxt_cfg_rx_mode(bp);
if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
bnxt_cfg_ntp_filters(bp);
if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
bnxt_hwrm_exec_fwd_req(bp);
if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
bnxt_hwrm_tunnel_dst_port_alloc(
bp, bp->vxlan_port,
TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
}
if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
bnxt_hwrm_tunnel_dst_port_free(
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
}
if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
bnxt_hwrm_tunnel_dst_port_alloc(
bp, bp->nge_port,
TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
}
if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
bnxt_hwrm_tunnel_dst_port_free(
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
}
if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
bnxt_hwrm_port_qstats(bp);
if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
int rc;
mutex_lock(&bp->link_lock);
if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
&bp->sp_event))
bnxt_hwrm_phy_qcaps(bp);
rc = bnxt_update_link(bp, true);
mutex_unlock(&bp->link_lock);
if (rc)
netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
rc);
}
if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
mutex_lock(&bp->link_lock);
bnxt_get_port_module_status(bp);
mutex_unlock(&bp->link_lock);
}
/* These functions below will clear BNXT_STATE_IN_SP_TASK. They
* must be the last functions to be called before exiting.
*/
if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
bnxt_reset(bp, false);
if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
bnxt_reset(bp, true);
smp_mb__before_atomic();
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
}
/* Under rtnl_lock */
int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
int tx_xdp)
{
int max_rx, max_tx, tx_sets = 1;
int tx_rings_needed;
int rc;
if (tcs)
tx_sets = tcs;
rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
if (rc)
return rc;
if (max_rx < rx)
return -ENOMEM;
tx_rings_needed = tx * tx_sets + tx_xdp;
if (max_tx < tx_rings_needed)
return -ENOMEM;
return bnxt_hwrm_check_tx_rings(bp, tx_rings_needed);
}
static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
{
if (bp->bar2) {
pci_iounmap(pdev, bp->bar2);
bp->bar2 = NULL;
}
if (bp->bar1) {
pci_iounmap(pdev, bp->bar1);
bp->bar1 = NULL;
}
if (bp->bar0) {
pci_iounmap(pdev, bp->bar0);
bp->bar0 = NULL;
}
}
static void bnxt_cleanup_pci(struct bnxt *bp)
{
bnxt_unmap_bars(bp, bp->pdev);
pci_release_regions(bp->pdev);
pci_disable_device(bp->pdev);
}
static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
{
int rc;
struct bnxt *bp = netdev_priv(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
/* enable device (incl. PCI PM wakeup), and bus-mastering */
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
goto init_err;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
dev_err(&pdev->dev,
"Cannot find PCI device base address, aborting\n");
rc = -ENODEV;
goto init_err_disable;
}
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
if (rc) {
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
goto init_err_disable;
}
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
dev_err(&pdev->dev, "System does not support DMA, aborting\n");
rc = -EIO;
goto init_err_release;
}
pci_set_master(pdev);
bp->dev = dev;
bp->pdev = pdev;
bp->bar0 = pci_ioremap_bar(pdev, 0);
if (!bp->bar0) {
dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
rc = -ENOMEM;
goto init_err_release;
}
bp->bar1 = pci_ioremap_bar(pdev, 2);
if (!bp->bar1) {
dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
rc = -ENOMEM;
goto init_err_release;
}
bp->bar2 = pci_ioremap_bar(pdev, 4);
if (!bp->bar2) {
dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
rc = -ENOMEM;
goto init_err_release;
}
pci_enable_pcie_error_reporting(pdev);
INIT_WORK(&bp->sp_task, bnxt_sp_task);
spin_lock_init(&bp->ntp_fltr_lock);
bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
/* tick values in micro seconds */
bp->rx_coal_ticks = 12;
bp->rx_coal_bufs = 30;
bp->rx_coal_ticks_irq = 1;
bp->rx_coal_bufs_irq = 2;
bp->tx_coal_ticks = 25;
bp->tx_coal_bufs = 30;
bp->tx_coal_ticks_irq = 2;
bp->tx_coal_bufs_irq = 2;
bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
init_timer(&bp->timer);
bp->timer.data = (unsigned long)bp;
bp->timer.function = bnxt_timer;
bp->current_interval = BNXT_TIMER_INTERVAL;
clear_bit(BNXT_STATE_OPEN, &bp->state);
return 0;
init_err_release:
bnxt_unmap_bars(bp, pdev);
pci_release_regions(pdev);
init_err_disable:
pci_disable_device(pdev);
init_err:
return rc;
}
/* rtnl_lock held */
static int bnxt_change_mac_addr(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
struct bnxt *bp = netdev_priv(dev);
int rc = 0;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
rc = bnxt_approve_mac(bp, addr->sa_data);
if (rc)
return rc;
if (ether_addr_equal(addr->sa_data, dev->dev_addr))
return 0;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
if (netif_running(dev)) {
bnxt_close_nic(bp, false, false);
rc = bnxt_open_nic(bp, false, false);
}
return rc;
}
/* rtnl_lock held */
static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
{
struct bnxt *bp = netdev_priv(dev);
if (netif_running(dev))
bnxt_close_nic(bp, true, false);
dev->mtu = new_mtu;
bnxt_set_ring_params(bp);
if (netif_running(dev))
return bnxt_open_nic(bp, true, false);
return 0;
}
int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
{
struct bnxt *bp = netdev_priv(dev);
bool sh = false;
int rc;
if (tc > bp->max_tc) {
netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
tc, bp->max_tc);
return -EINVAL;
}
if (netdev_get_num_tc(dev) == tc)
return 0;
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
sh = true;
rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
sh, tc, bp->tx_nr_rings_xdp);
if (rc)
return rc;
/* Needs to close the device and do hw resource re-allocations */
if (netif_running(bp->dev))
bnxt_close_nic(bp, true, false);
if (tc) {
bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
netdev_set_num_tc(dev, tc);
} else {
bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
netdev_reset_tc(dev);
}
bp->tx_nr_rings += bp->tx_nr_rings_xdp;
bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
bp->tx_nr_rings + bp->rx_nr_rings;
bp->num_stat_ctxs = bp->cp_nr_rings;
if (netif_running(bp->dev))
return bnxt_open_nic(bp, true, false);
return 0;
}
static int bnxt_setup_flower(struct net_device *dev,
struct tc_cls_flower_offload *cls_flower)
{
struct bnxt *bp = netdev_priv(dev);
if (BNXT_VF(bp))
return -EOPNOTSUPP;
return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, cls_flower);
}
static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
switch (type) {
case TC_SETUP_CLSFLOWER:
return bnxt_setup_flower(dev, type_data);
case TC_SETUP_MQPRIO: {
struct tc_mqprio_qopt *mqprio = type_data;
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
return bnxt_setup_mq_tc(dev, mqprio->num_tc);
}
default:
return -EOPNOTSUPP;
}
}
#ifdef CONFIG_RFS_ACCEL
static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
struct bnxt_ntuple_filter *f2)
{
struct flow_keys *keys1 = &f1->fkeys;
struct flow_keys *keys2 = &f2->fkeys;
if (keys1->basic.n_proto != keys2->basic.n_proto ||
keys1->basic.ip_proto != keys2->basic.ip_proto)
return false;
if (keys1->basic.n_proto == htons(ETH_P_IP)) {
if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
return false;
} else {
if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
sizeof(keys1->addrs.v6addrs.src)) ||
memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
sizeof(keys1->addrs.v6addrs.dst)))
return false;
}
if (keys1->ports.ports == keys2->ports.ports &&
keys1->control.flags == keys2->control.flags &&
ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
return true;
return false;
}
static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
u16 rxq_index, u32 flow_id)
{
struct bnxt *bp = netdev_priv(dev);
struct bnxt_ntuple_filter *fltr, *new_fltr;
struct flow_keys *fkeys;
struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
int rc = 0, idx, bit_id, l2_idx = 0;
struct hlist_head *head;
if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
int off = 0, j;
netif_addr_lock_bh(dev);
for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
if (ether_addr_equal(eth->h_dest,
vnic->uc_list + off)) {
l2_idx = j + 1;
break;
}
}
netif_addr_unlock_bh(dev);
if (!l2_idx)
return -EINVAL;
}
new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
if (!new_fltr)
return -ENOMEM;
fkeys = &new_fltr->fkeys;
if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
rc = -EPROTONOSUPPORT;
goto err_free;
}
if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
((fkeys->basic.ip_proto != IPPROTO_TCP) &&
(fkeys->basic.ip_proto != IPPROTO_UDP))) {
rc = -EPROTONOSUPPORT;
goto err_free;
}
if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
bp->hwrm_spec_code < 0x10601) {
rc = -EPROTONOSUPPORT;
goto err_free;
}
if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
bp->hwrm_spec_code < 0x10601) {
rc = -EPROTONOSUPPORT;
goto err_free;
}
memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
head = &bp->ntp_fltr_hash_tbl[idx];
rcu_read_lock();
hlist_for_each_entry_rcu(fltr, head, hash) {
if (bnxt_fltr_match(fltr, new_fltr)) {
rc = fltr->sw_id;
rcu_read_unlock();
goto err_free;
}
}
rcu_read_unlock();
spin_lock_bh(&bp->ntp_fltr_lock);
bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
BNXT_NTP_FLTR_MAX_FLTR, 0);
if (bit_id < 0) {
spin_unlock_bh(&bp->ntp_fltr_lock);
rc = -ENOMEM;
goto err_free;
}
new_fltr->sw_id = (u16)bit_id;
new_fltr->flow_id = flow_id;
new_fltr->l2_fltr_idx = l2_idx;
new_fltr->rxq = rxq_index;
hlist_add_head_rcu(&new_fltr->hash, head);
bp->ntp_fltr_count++;
spin_unlock_bh(&bp->ntp_fltr_lock);
set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
return new_fltr->sw_id;
err_free:
kfree(new_fltr);
return rc;
}
static void bnxt_cfg_ntp_filters(struct bnxt *bp)
{
int i;
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
struct hlist_head *head;
struct hlist_node *tmp;
struct bnxt_ntuple_filter *fltr;
int rc;
head = &bp->ntp_fltr_hash_tbl[i];
hlist_for_each_entry_safe(fltr, tmp, head, hash) {
bool del = false;
if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
if (rps_may_expire_flow(bp->dev, fltr->rxq,
fltr->flow_id,
fltr->sw_id)) {
bnxt_hwrm_cfa_ntuple_filter_free(bp,
fltr);
del = true;
}
} else {
rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
fltr);
if (rc)
del = true;
else
set_bit(BNXT_FLTR_VALID, &fltr->state);
}
if (del) {
spin_lock_bh(&bp->ntp_fltr_lock);
hlist_del_rcu(&fltr->hash);
bp->ntp_fltr_count--;
spin_unlock_bh(&bp->ntp_fltr_lock);
synchronize_rcu();
clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
kfree(fltr);
}
}
}
if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
netdev_info(bp->dev, "Receive PF driver unload event!");
}
#else
static void bnxt_cfg_ntp_filters(struct bnxt *bp)
{
}
#endif /* CONFIG_RFS_ACCEL */
static void bnxt_udp_tunnel_add(struct net_device *dev,
struct udp_tunnel_info *ti)
{
struct bnxt *bp = netdev_priv(dev);
if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
return;
if (!netif_running(dev))
return;
switch (ti->type) {
case UDP_TUNNEL_TYPE_VXLAN:
if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
return;
bp->vxlan_port_cnt++;
if (bp->vxlan_port_cnt == 1) {
bp->vxlan_port = ti->port;
set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
bnxt_queue_sp_work(bp);
}
break;
case UDP_TUNNEL_TYPE_GENEVE:
if (bp->nge_port_cnt && bp->nge_port != ti->port)
return;
bp->nge_port_cnt++;
if (bp->nge_port_cnt == 1) {
bp->nge_port = ti->port;
set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
}
break;
default:
return;
}
bnxt_queue_sp_work(bp);
}
static void bnxt_udp_tunnel_del(struct net_device *dev,
struct udp_tunnel_info *ti)
{
struct bnxt *bp = netdev_priv(dev);
if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
return;
if (!netif_running(dev))
return;
switch (ti->type) {
case UDP_TUNNEL_TYPE_VXLAN:
if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
return;
bp->vxlan_port_cnt--;
if (bp->vxlan_port_cnt != 0)
return;
set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
break;
case UDP_TUNNEL_TYPE_GENEVE:
if (!bp->nge_port_cnt || bp->nge_port != ti->port)
return;
bp->nge_port_cnt--;
if (bp->nge_port_cnt != 0)
return;
set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
break;
default:
return;
}
bnxt_queue_sp_work(bp);
}
static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev, u32 filter_mask,
int nlflags)
{
struct bnxt *bp = netdev_priv(dev);
return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
nlflags, filter_mask, NULL);
}
static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
u16 flags)
{
struct bnxt *bp = netdev_priv(dev);
struct nlattr *attr, *br_spec;
int rem, rc = 0;
if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
return -EOPNOTSUPP;
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (!br_spec)
return -EINVAL;
nla_for_each_nested(attr, br_spec, rem) {
u16 mode;
if (nla_type(attr) != IFLA_BRIDGE_MODE)
continue;
if (nla_len(attr) < sizeof(mode))
return -EINVAL;
mode = nla_get_u16(attr);
if (mode == bp->br_mode)
break;
rc = bnxt_hwrm_set_br_mode(bp, mode);
if (!rc)
bp->br_mode = mode;
break;
}
return rc;
}
static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
size_t len)
{
struct bnxt *bp = netdev_priv(dev);
int rc;
/* The PF and it's VF-reps only support the switchdev framework */
if (!BNXT_PF(bp))
return -EOPNOTSUPP;
rc = snprintf(buf, len, "p%d", bp->pf.port_id);
if (rc >= len)
return -EOPNOTSUPP;
return 0;
}
int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
{
if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
return -EOPNOTSUPP;
/* The PF and it's VF-reps only support the switchdev framework */
if (!BNXT_PF(bp))
return -EOPNOTSUPP;
switch (attr->id) {
case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
/* In SRIOV each PF-pool (PF + child VFs) serves as a
* switching domain, the PF's perm mac-addr can be used
* as the unique parent-id
*/
attr->u.ppid.id_len = ETH_ALEN;
ether_addr_copy(attr->u.ppid.id, bp->pf.mac_addr);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int bnxt_swdev_port_attr_get(struct net_device *dev,
struct switchdev_attr *attr)
{
return bnxt_port_attr_get(netdev_priv(dev), attr);
}
static const struct switchdev_ops bnxt_switchdev_ops = {
.switchdev_port_attr_get = bnxt_swdev_port_attr_get
};
static const struct net_device_ops bnxt_netdev_ops = {
.ndo_open = bnxt_open,
.ndo_start_xmit = bnxt_start_xmit,
.ndo_stop = bnxt_close,
.ndo_get_stats64 = bnxt_get_stats64,
.ndo_set_rx_mode = bnxt_set_rx_mode,
.ndo_do_ioctl = bnxt_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = bnxt_change_mac_addr,
.ndo_change_mtu = bnxt_change_mtu,
.ndo_fix_features = bnxt_fix_features,
.ndo_set_features = bnxt_set_features,
.ndo_tx_timeout = bnxt_tx_timeout,
#ifdef CONFIG_BNXT_SRIOV
.ndo_get_vf_config = bnxt_get_vf_config,
.ndo_set_vf_mac = bnxt_set_vf_mac,
.ndo_set_vf_vlan = bnxt_set_vf_vlan,
.ndo_set_vf_rate = bnxt_set_vf_bw,
.ndo_set_vf_link_state = bnxt_set_vf_link_state,
.ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = bnxt_poll_controller,
#endif
.ndo_setup_tc = bnxt_setup_tc,
#ifdef CONFIG_RFS_ACCEL
.ndo_rx_flow_steer = bnxt_rx_flow_steer,
#endif
.ndo_udp_tunnel_add = bnxt_udp_tunnel_add,
.ndo_udp_tunnel_del = bnxt_udp_tunnel_del,
.ndo_xdp = bnxt_xdp,
.ndo_bridge_getlink = bnxt_bridge_getlink,
.ndo_bridge_setlink = bnxt_bridge_setlink,
.ndo_get_phys_port_name = bnxt_get_phys_port_name
};
static void bnxt_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnxt *bp = netdev_priv(dev);
if (BNXT_PF(bp)) {
bnxt_sriov_disable(bp);
bnxt_dl_unregister(bp);
}
pci_disable_pcie_error_reporting(pdev);
unregister_netdev(dev);
bnxt_shutdown_tc(bp);
bnxt_cancel_sp_work(bp);
bp->sp_event = 0;
bnxt_clear_int_mode(bp);
bnxt_hwrm_func_drv_unrgtr(bp);
bnxt_free_hwrm_resources(bp);
bnxt_free_hwrm_short_cmd_req(bp);
bnxt_ethtool_free(bp);
bnxt_dcb_free(bp);
kfree(bp->edev);
bp->edev = NULL;
if (bp->xdp_prog)
bpf_prog_put(bp->xdp_prog);
bnxt_cleanup_pci(bp);
free_netdev(dev);
}
static int bnxt_probe_phy(struct bnxt *bp)
{
int rc = 0;
struct bnxt_link_info *link_info = &bp->link_info;
rc = bnxt_hwrm_phy_qcaps(bp);
if (rc) {
netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
rc);
return rc;
}
mutex_init(&bp->link_lock);
rc = bnxt_update_link(bp, false);
if (rc) {
netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
rc);
return rc;
}
/* Older firmware does not have supported_auto_speeds, so assume
* that all supported speeds can be autonegotiated.
*/
if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
link_info->support_auto_speeds = link_info->support_speeds;
/*initialize the ethool setting copy with NVM settings */
if (BNXT_AUTO_MODE(link_info->auto_mode)) {
link_info->autoneg = BNXT_AUTONEG_SPEED;
if (bp->hwrm_spec_code >= 0x10201) {
if (link_info->auto_pause_setting &
PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
} else {
link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
}
link_info->advertising = link_info->auto_link_speeds;
} else {
link_info->req_link_speed = link_info->force_link_speed;
link_info->req_duplex = link_info->duplex_setting;
}
if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
link_info->req_flow_ctrl =
link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
else
link_info->req_flow_ctrl = link_info->force_pause_setting;
return rc;
}
static int bnxt_get_max_irq(struct pci_dev *pdev)
{
u16 ctrl;
if (!pdev->msix_cap)
return 1;
pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
}
static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
int *max_cp)
{
int max_ring_grps = 0;
#ifdef CONFIG_BNXT_SRIOV
if (!BNXT_PF(bp)) {
*max_tx = bp->vf.max_tx_rings;
*max_rx = bp->vf.max_rx_rings;
*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
max_ring_grps = bp->vf.max_hw_ring_grps;
} else
#endif
{
*max_tx = bp->pf.max_tx_rings;
*max_rx = bp->pf.max_rx_rings;
*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
max_ring_grps = bp->pf.max_hw_ring_grps;
}
if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
*max_cp -= 1;
*max_rx -= 2;
}
if (bp->flags & BNXT_FLAG_AGG_RINGS)
*max_rx >>= 1;
*max_rx = min_t(int, *max_rx, max_ring_grps);
}
int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
{
int rx, tx, cp;
_bnxt_get_max_rings(bp, &rx, &tx, &cp);
*max_rx = rx;
*max_tx = tx;
if (!rx || !tx || !cp)
return -ENOMEM;
return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
}
static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
bool shared)
{
int rc;
rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
/* Not enough rings, try disabling agg rings. */
bp->flags &= ~BNXT_FLAG_AGG_RINGS;
rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
if (rc) {
/* set BNXT_FLAG_AGG_RINGS back for consistency */
bp->flags |= BNXT_FLAG_AGG_RINGS;
return rc;
}
bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
bp->dev->hw_features &= ~NETIF_F_LRO;
bp->dev->features &= ~NETIF_F_LRO;
bnxt_set_ring_params(bp);
}
if (bp->flags & BNXT_FLAG_ROCE_CAP) {
int max_cp, max_stat, max_irq;
/* Reserve minimum resources for RoCE */
max_cp = bnxt_get_max_func_cp_rings(bp);
max_stat = bnxt_get_max_func_stat_ctxs(bp);
max_irq = bnxt_get_max_func_irqs(bp);
if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
return 0;
max_cp -= BNXT_MIN_ROCE_CP_RINGS;
max_irq -= BNXT_MIN_ROCE_CP_RINGS;
max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
max_cp = min_t(int, max_cp, max_irq);
max_cp = min_t(int, max_cp, max_stat);
rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
if (rc)
rc = 0;
}
return rc;
}
static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
{
int dflt_rings, max_rx_rings, max_tx_rings, rc;
if (sh)
bp->flags |= BNXT_FLAG_SHARED_RINGS;
dflt_rings = netif_get_num_default_rss_queues();
/* Reduce default rings to reduce memory usage on multi-port cards */
if (bp->port_count > 1)
dflt_rings = min_t(int, dflt_rings, 4);
rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
if (rc)
return rc;
bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
if (rc)
netdev_warn(bp->dev, "Unable to reserve tx rings\n");
bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
bp->tx_nr_rings + bp->rx_nr_rings;
bp->num_stat_ctxs = bp->cp_nr_rings;
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
bp->rx_nr_rings++;
bp->cp_nr_rings++;
}
return rc;
}
void bnxt_restore_pf_fw_resources(struct bnxt *bp)
{
ASSERT_RTNL();
bnxt_hwrm_func_qcaps(bp);
bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
}
static int bnxt_init_mac_addr(struct bnxt *bp)
{
int rc = 0;
if (BNXT_PF(bp)) {
memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
} else {
#ifdef CONFIG_BNXT_SRIOV
struct bnxt_vf_info *vf = &bp->vf;
if (is_valid_ether_addr(vf->mac_addr)) {
/* overwrite netdev dev_adr with admin VF MAC */
memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
} else {
eth_hw_addr_random(bp->dev);
rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
}
#endif
}
return rc;
}
static void bnxt_parse_log_pcie_link(struct bnxt *bp)
{
enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
if (pcie_get_minimum_link(pci_physfn(bp->pdev), &speed, &width) ||
speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
else
netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
"Unknown", width);
}
static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int version_printed;
struct net_device *dev;
struct bnxt *bp;
int rc, max_irqs;
if (pci_is_bridge(pdev))
return -ENODEV;
if (version_printed++ == 0)
pr_info("%s", version);
max_irqs = bnxt_get_max_irq(pdev);
dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
if (!dev)
return -ENOMEM;
bp = netdev_priv(dev);
if (bnxt_vf_pciid(ent->driver_data))
bp->flags |= BNXT_FLAG_VF;
if (pdev->msix_cap)
bp->flags |= BNXT_FLAG_MSIX_CAP;
rc = bnxt_init_board(pdev, dev);
if (rc < 0)
goto init_err_free;
dev->netdev_ops = &bnxt_netdev_ops;
dev->watchdog_timeo = BNXT_TX_TIMEOUT;
dev->ethtool_ops = &bnxt_ethtool_ops;
SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
pci_set_drvdata(pdev, dev);
rc = bnxt_alloc_hwrm_resources(bp);
if (rc)
goto init_err_pci_clean;
mutex_init(&bp->hwrm_cmd_lock);
rc = bnxt_hwrm_ver_get(bp);
if (rc)
goto init_err_pci_clean;
if (bp->flags & BNXT_FLAG_SHORT_CMD) {
rc = bnxt_alloc_hwrm_short_cmd_req(bp);
if (rc)
goto init_err_pci_clean;
}
rc = bnxt_hwrm_func_reset(bp);
if (rc)
goto init_err_pci_clean;
bnxt_hwrm_fw_set_time(bp);
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_TSO6 |
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
NETIF_F_GSO_IPXIP4 |
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
NETIF_F_RXCSUM | NETIF_F_GRO;
if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
dev->hw_features |= NETIF_F_LRO;
dev->hw_enc_features =
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_TSO6 |
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_GSO_GRE_CSUM;
dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
dev->priv_flags |= IFF_UNICAST_FLT;
/* MTU range: 60 - 9500 */
dev->min_mtu = ETH_ZLEN;
dev->max_mtu = BNXT_MAX_MTU;
#ifdef CONFIG_BNXT_SRIOV
init_waitqueue_head(&bp->sriov_cfg_wait);
mutex_init(&bp->sriov_lock);
#endif
bp->gro_func = bnxt_gro_func_5730x;
if (BNXT_CHIP_P4_PLUS(bp))
bp->gro_func = bnxt_gro_func_5731x;
else
bp->flags |= BNXT_FLAG_DOUBLE_DB;
rc = bnxt_hwrm_func_drv_rgtr(bp);
if (rc)
goto init_err_pci_clean;
rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
if (rc)
goto init_err_pci_clean;
bp->ulp_probe = bnxt_ulp_probe;
/* Get the MAX capabilities for this function */
rc = bnxt_hwrm_func_qcaps(bp);
if (rc) {
netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
rc);
rc = -1;
goto init_err_pci_clean;
}
rc = bnxt_init_mac_addr(bp);
if (rc) {
dev_err(&pdev->dev, "Unable to initialize mac address.\n");
rc = -EADDRNOTAVAIL;
goto init_err_pci_clean;
}
rc = bnxt_hwrm_queue_qportcfg(bp);
if (rc) {
netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
rc);
rc = -1;
goto init_err_pci_clean;
}
bnxt_hwrm_func_qcfg(bp);
bnxt_hwrm_port_led_qcaps(bp);
bnxt_ethtool_init(bp);
bnxt_dcb_init(bp);
rc = bnxt_probe_phy(bp);
if (rc)
goto init_err_pci_clean;
bnxt_set_rx_skb_mode(bp, false);
bnxt_set_tpa_flags(bp);
bnxt_set_ring_params(bp);
bnxt_set_max_func_irqs(bp, max_irqs);
rc = bnxt_set_dflt_rings(bp, true);
if (rc) {
netdev_err(bp->dev, "Not enough rings available.\n");
rc = -ENOMEM;
goto init_err_pci_clean;
}
/* Default RSS hash cfg. */
bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
}
bnxt_hwrm_vnic_qcaps(bp);
if (bnxt_rfs_supported(bp)) {
dev->hw_features |= NETIF_F_NTUPLE;
if (bnxt_rfs_capable(bp)) {
bp->flags |= BNXT_FLAG_RFS;
dev->features |= NETIF_F_NTUPLE;
}
}
if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
bp->flags |= BNXT_FLAG_STRIP_VLAN;
rc = bnxt_init_int_mode(bp);
if (rc)
goto init_err_pci_clean;
bnxt_get_wol_settings(bp);
if (bp->flags & BNXT_FLAG_WOL_CAP)
device_set_wakeup_enable(&pdev->dev, bp->wol);
else
device_set_wakeup_capable(&pdev->dev, false);
if (BNXT_PF(bp)) {
if (!bnxt_pf_wq) {
bnxt_pf_wq =
create_singlethread_workqueue("bnxt_pf_wq");
if (!bnxt_pf_wq) {
dev_err(&pdev->dev, "Unable to create workqueue.\n");
rc = -ENOMEM;
goto init_err_pci_clean;
}
}
bnxt_init_tc(bp);
}
rc = register_netdev(dev);
if (rc)
goto init_err_cleanup_tc;
if (BNXT_PF(bp))
bnxt_dl_register(bp);
netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
board_info[ent->driver_data].name,
(long)pci_resource_start(pdev, 0), dev->dev_addr);
bnxt_parse_log_pcie_link(bp);
pci_save_state(pdev);
return 0;
init_err_cleanup_tc:
bnxt_shutdown_tc(bp);
bnxt_clear_int_mode(bp);
init_err_pci_clean:
bnxt_free_hwrm_short_cmd_req(bp);
bnxt_free_hwrm_resources(bp);
bnxt_cleanup_pci(bp);
init_err_free:
free_netdev(dev);
return rc;
}
static void bnxt_shutdown(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnxt *bp;
if (!dev)
return;
rtnl_lock();
bp = netdev_priv(dev);
if (!bp)
goto shutdown_exit;
if (netif_running(dev))
dev_close(dev);
bnxt_ulp_shutdown(bp);
if (system_state == SYSTEM_POWER_OFF) {
bnxt_clear_int_mode(bp);
pci_wake_from_d3(pdev, bp->wol);
pci_set_power_state(pdev, PCI_D3hot);
}
shutdown_exit:
rtnl_unlock();
}
#ifdef CONFIG_PM_SLEEP
static int bnxt_suspend(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct net_device *dev = pci_get_drvdata(pdev);
struct bnxt *bp = netdev_priv(dev);
int rc = 0;
rtnl_lock();
if (netif_running(dev)) {
netif_device_detach(dev);
rc = bnxt_close(dev);
}
bnxt_hwrm_func_drv_unrgtr(bp);
rtnl_unlock();
return rc;
}
static int bnxt_resume(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct net_device *dev = pci_get_drvdata(pdev);
struct bnxt *bp = netdev_priv(dev);
int rc = 0;
rtnl_lock();
if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
rc = -ENODEV;
goto resume_exit;
}
rc = bnxt_hwrm_func_reset(bp);
if (rc) {
rc = -EBUSY;
goto resume_exit;
}
bnxt_get_wol_settings(bp);
if (netif_running(dev)) {
rc = bnxt_open(dev);
if (!rc)
netif_device_attach(dev);
}
resume_exit:
rtnl_unlock();
return rc;
}
static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
#define BNXT_PM_OPS (&bnxt_pm_ops)
#else
#define BNXT_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
/**
* bnxt_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct bnxt *bp = netdev_priv(netdev);
netdev_info(netdev, "PCI I/O error detected\n");
rtnl_lock();
netif_device_detach(netdev);
bnxt_ulp_stop(bp);
if (state == pci_channel_io_perm_failure) {
rtnl_unlock();
return PCI_ERS_RESULT_DISCONNECT;
}
if (netif_running(netdev))
bnxt_close(netdev);
pci_disable_device(pdev);
rtnl_unlock();
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* bnxt_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
* At this point, the card has exprienced a hard reset,
* followed by fixups by BIOS, and has its config space
* set up identically to what it was at cold boot.
*/
static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct bnxt *bp = netdev_priv(netdev);
int err = 0;
pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
netdev_info(bp->dev, "PCI Slot Reset\n");
rtnl_lock();
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
err = bnxt_hwrm_func_reset(bp);
if (!err && netif_running(netdev))
err = bnxt_open(netdev);
if (!err) {
result = PCI_ERS_RESULT_RECOVERED;
bnxt_ulp_start(bp);
}
}
if (result != PCI_ERS_RESULT_RECOVERED) {
if (netif_running(netdev))
dev_close(netdev);
pci_disable_device(pdev);
}
rtnl_unlock();
err = pci_cleanup_aer_uncorrect_error_status(pdev);
if (err) {
dev_err(&pdev->dev,
"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
err); /* non-fatal, continue */
}
return result;
}
/**
* bnxt_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells
* us that its OK to resume normal operation.
*/
static void bnxt_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
rtnl_lock();
netif_device_attach(netdev);
rtnl_unlock();
}
static const struct pci_error_handlers bnxt_err_handler = {
.error_detected = bnxt_io_error_detected,
.slot_reset = bnxt_io_slot_reset,
.resume = bnxt_io_resume
};
static struct pci_driver bnxt_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = bnxt_pci_tbl,
.probe = bnxt_init_one,
.remove = bnxt_remove_one,
.shutdown = bnxt_shutdown,
.driver.pm = BNXT_PM_OPS,
.err_handler = &bnxt_err_handler,
#if defined(CONFIG_BNXT_SRIOV)
.sriov_configure = bnxt_sriov_configure,
#endif
};
static int __init bnxt_init(void)
{
return pci_register_driver(&bnxt_pci_driver);
}
static void __exit bnxt_exit(void)
{
pci_unregister_driver(&bnxt_pci_driver);
if (bnxt_pf_wq)
destroy_workqueue(bnxt_pf_wq);
}
module_init(bnxt_init);
module_exit(bnxt_exit);