| /* |
| * Generic library functions for the microengines found on the Intel |
| * IXP2000 series of network processors. |
| * |
| * Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org> |
| * Dedicated to Marija Kulikova. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU Lesser General Public License as |
| * published by the Free Software Foundation; either version 2.1 of the |
| * License, or (at your option) any later version. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/string.h> |
| #include <asm/hardware.h> |
| #include <asm/arch/hardware.h> |
| #include <asm/hardware/uengine.h> |
| #include <asm/io.h> |
| |
| #if defined(CONFIG_ARCH_IXP2000) |
| #define IXP_UENGINE_CSR_VIRT_BASE IXP2000_UENGINE_CSR_VIRT_BASE |
| #define IXP_PRODUCT_ID IXP2000_PRODUCT_ID |
| #define IXP_MISC_CONTROL IXP2000_MISC_CONTROL |
| #define IXP_RESET1 IXP2000_RESET1 |
| #else |
| #if defined(CONFIG_ARCH_IXP23XX) |
| #define IXP_UENGINE_CSR_VIRT_BASE IXP23XX_UENGINE_CSR_VIRT_BASE |
| #define IXP_PRODUCT_ID IXP23XX_PRODUCT_ID |
| #define IXP_MISC_CONTROL IXP23XX_MISC_CONTROL |
| #define IXP_RESET1 IXP23XX_RESET1 |
| #else |
| #error unknown platform |
| #endif |
| #endif |
| |
| #define USTORE_ADDRESS 0x000 |
| #define USTORE_DATA_LOWER 0x004 |
| #define USTORE_DATA_UPPER 0x008 |
| #define CTX_ENABLES 0x018 |
| #define CC_ENABLE 0x01c |
| #define CSR_CTX_POINTER 0x020 |
| #define INDIRECT_CTX_STS 0x040 |
| #define ACTIVE_CTX_STS 0x044 |
| #define INDIRECT_CTX_SIG_EVENTS 0x048 |
| #define INDIRECT_CTX_WAKEUP_EVENTS 0x050 |
| #define NN_PUT 0x080 |
| #define NN_GET 0x084 |
| #define TIMESTAMP_LOW 0x0c0 |
| #define TIMESTAMP_HIGH 0x0c4 |
| #define T_INDEX_BYTE_INDEX 0x0f4 |
| #define LOCAL_CSR_STATUS 0x180 |
| |
| u32 ixp2000_uengine_mask; |
| |
| static void *ixp2000_uengine_csr_area(int uengine) |
| { |
| return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10); |
| } |
| |
| /* |
| * LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR |
| * space means that the microengine we tried to access was also trying |
| * to access its own CSR space on the same clock cycle as we did. When |
| * this happens, we lose the arbitration process by default, and the |
| * read or write we tried to do was not actually performed, so we try |
| * again until it succeeds. |
| */ |
| u32 ixp2000_uengine_csr_read(int uengine, int offset) |
| { |
| void *uebase; |
| u32 *local_csr_status; |
| u32 *reg; |
| u32 value; |
| |
| uebase = ixp2000_uengine_csr_area(uengine); |
| |
| local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS); |
| reg = (u32 *)(uebase + offset); |
| do { |
| value = ixp2000_reg_read(reg); |
| } while (ixp2000_reg_read(local_csr_status) & 1); |
| |
| return value; |
| } |
| EXPORT_SYMBOL(ixp2000_uengine_csr_read); |
| |
| void ixp2000_uengine_csr_write(int uengine, int offset, u32 value) |
| { |
| void *uebase; |
| u32 *local_csr_status; |
| u32 *reg; |
| |
| uebase = ixp2000_uengine_csr_area(uengine); |
| |
| local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS); |
| reg = (u32 *)(uebase + offset); |
| do { |
| ixp2000_reg_write(reg, value); |
| } while (ixp2000_reg_read(local_csr_status) & 1); |
| } |
| EXPORT_SYMBOL(ixp2000_uengine_csr_write); |
| |
| void ixp2000_uengine_reset(u32 uengine_mask) |
| { |
| u32 value; |
| |
| value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask; |
| |
| uengine_mask &= ixp2000_uengine_mask; |
| ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask); |
| ixp2000_reg_wrb(IXP_RESET1, value); |
| } |
| EXPORT_SYMBOL(ixp2000_uengine_reset); |
| |
| void ixp2000_uengine_set_mode(int uengine, u32 mode) |
| { |
| /* |
| * CTL_STR_PAR_EN: unconditionally enable parity checking on |
| * control store. |
| */ |
| mode |= 0x10000000; |
| ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode); |
| |
| /* |
| * Enable updating of condition codes. |
| */ |
| ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000); |
| |
| /* |
| * Initialise other per-microengine registers. |
| */ |
| ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00); |
| ixp2000_uengine_csr_write(uengine, NN_GET, 0x00); |
| ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0); |
| } |
| EXPORT_SYMBOL(ixp2000_uengine_set_mode); |
| |
| static int make_even_parity(u32 x) |
| { |
| return hweight32(x) & 1; |
| } |
| |
| static void ustore_write(int uengine, u64 insn) |
| { |
| /* |
| * Generate even parity for top and bottom 20 bits. |
| */ |
| insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41; |
| insn |= (u64)make_even_parity(insn & 0x000fffff) << 40; |
| |
| /* |
| * Write to microstore. The second write auto-increments |
| * the USTORE_ADDRESS index register. |
| */ |
| ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn); |
| ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32)); |
| } |
| |
| void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns) |
| { |
| int i; |
| |
| /* |
| * Start writing to microstore at address 0. |
| */ |
| ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000); |
| for (i = 0; i < insns; i++) { |
| u64 insn; |
| |
| insn = (((u64)ucode[0]) << 32) | |
| (((u64)ucode[1]) << 24) | |
| (((u64)ucode[2]) << 16) | |
| (((u64)ucode[3]) << 8) | |
| ((u64)ucode[4]); |
| ucode += 5; |
| |
| ustore_write(uengine, insn); |
| } |
| |
| /* |
| * Pad with a few NOPs at the end (to avoid the microengine |
| * aborting as it prefetches beyond the last instruction), unless |
| * we run off the end of the instruction store first, at which |
| * point the address register will wrap back to zero. |
| */ |
| for (i = 0; i < 4; i++) { |
| u32 addr; |
| |
| addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS); |
| if (addr == 0x80000000) |
| break; |
| ustore_write(uengine, 0xf0000c0300ULL); |
| } |
| |
| /* |
| * End programming. |
| */ |
| ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000); |
| } |
| EXPORT_SYMBOL(ixp2000_uengine_load_microcode); |
| |
| void ixp2000_uengine_init_context(int uengine, int context, int pc) |
| { |
| /* |
| * Select the right context for indirect access. |
| */ |
| ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context); |
| |
| /* |
| * Initialise signal masks to immediately go to Ready state. |
| */ |
| ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1); |
| ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1); |
| |
| /* |
| * Set program counter. |
| */ |
| ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc); |
| } |
| EXPORT_SYMBOL(ixp2000_uengine_init_context); |
| |
| void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask) |
| { |
| u32 mask; |
| |
| /* |
| * Enable the specified context to go to Executing state. |
| */ |
| mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES); |
| mask |= ctx_mask << 8; |
| ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask); |
| } |
| EXPORT_SYMBOL(ixp2000_uengine_start_contexts); |
| |
| void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask) |
| { |
| u32 mask; |
| |
| /* |
| * Disable the Ready->Executing transition. Note that this |
| * does not stop the context until it voluntarily yields. |
| */ |
| mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES); |
| mask &= ~(ctx_mask << 8); |
| ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask); |
| } |
| EXPORT_SYMBOL(ixp2000_uengine_stop_contexts); |
| |
| static int check_ixp_type(struct ixp2000_uengine_code *c) |
| { |
| u32 product_id; |
| u32 rev; |
| |
| product_id = ixp2000_reg_read(IXP_PRODUCT_ID); |
| if (((product_id >> 16) & 0x1f) != 0) |
| return 0; |
| |
| switch ((product_id >> 8) & 0xff) { |
| #ifdef CONFIG_ARCH_IXP2000 |
| case 0: /* IXP2800 */ |
| if (!(c->cpu_model_bitmask & 4)) |
| return 0; |
| break; |
| |
| case 1: /* IXP2850 */ |
| if (!(c->cpu_model_bitmask & 8)) |
| return 0; |
| break; |
| |
| case 2: /* IXP2400 */ |
| if (!(c->cpu_model_bitmask & 2)) |
| return 0; |
| break; |
| #endif |
| |
| #ifdef CONFIG_ARCH_IXP23XX |
| case 4: /* IXP23xx */ |
| if (!(c->cpu_model_bitmask & 0x3f0)) |
| return 0; |
| break; |
| #endif |
| |
| default: |
| return 0; |
| } |
| |
| rev = product_id & 0xff; |
| if (rev < c->cpu_min_revision || rev > c->cpu_max_revision) |
| return 0; |
| |
| return 1; |
| } |
| |
| static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b) |
| { |
| int offset; |
| int i; |
| |
| offset = 0; |
| |
| for (i = 0; i < 128; i++) { |
| u8 b3; |
| u8 b2; |
| u8 b1; |
| u8 b0; |
| |
| b3 = (gpr_a[i] >> 24) & 0xff; |
| b2 = (gpr_a[i] >> 16) & 0xff; |
| b1 = (gpr_a[i] >> 8) & 0xff; |
| b0 = gpr_a[i] & 0xff; |
| |
| // immed[@ai, (b1 << 8) | b0] |
| // 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII |
| ucode[offset++] = 0xf0; |
| ucode[offset++] = (b1 >> 4); |
| ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6); |
| ucode[offset++] = (b0 << 2); |
| ucode[offset++] = 0x80 | i; |
| |
| // immed_w1[@ai, (b3 << 8) | b2] |
| // 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII |
| ucode[offset++] = 0xf4; |
| ucode[offset++] = 0x40 | (b3 >> 4); |
| ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6); |
| ucode[offset++] = (b2 << 2); |
| ucode[offset++] = 0x80 | i; |
| } |
| |
| for (i = 0; i < 128; i++) { |
| u8 b3; |
| u8 b2; |
| u8 b1; |
| u8 b0; |
| |
| b3 = (gpr_b[i] >> 24) & 0xff; |
| b2 = (gpr_b[i] >> 16) & 0xff; |
| b1 = (gpr_b[i] >> 8) & 0xff; |
| b0 = gpr_b[i] & 0xff; |
| |
| // immed[@bi, (b1 << 8) | b0] |
| // 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV |
| ucode[offset++] = 0xf0; |
| ucode[offset++] = (b1 >> 4); |
| ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6); |
| ucode[offset++] = (i << 2) | 0x03; |
| ucode[offset++] = b0; |
| |
| // immed_w1[@bi, (b3 << 8) | b2] |
| // 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV |
| ucode[offset++] = 0xf4; |
| ucode[offset++] = 0x40 | (b3 >> 4); |
| ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6); |
| ucode[offset++] = (i << 2) | 0x03; |
| ucode[offset++] = b2; |
| } |
| |
| // ctx_arb[kill] |
| ucode[offset++] = 0xe0; |
| ucode[offset++] = 0x00; |
| ucode[offset++] = 0x01; |
| ucode[offset++] = 0x00; |
| ucode[offset++] = 0x00; |
| } |
| |
| static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c) |
| { |
| int per_ctx_regs; |
| u32 *gpr_a; |
| u32 *gpr_b; |
| u8 *ucode; |
| int i; |
| |
| gpr_a = kmalloc(128 * sizeof(u32), GFP_KERNEL); |
| gpr_b = kmalloc(128 * sizeof(u32), GFP_KERNEL); |
| ucode = kmalloc(513 * 5, GFP_KERNEL); |
| if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) { |
| kfree(ucode); |
| kfree(gpr_b); |
| kfree(gpr_a); |
| return 1; |
| } |
| |
| per_ctx_regs = 16; |
| if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS) |
| per_ctx_regs = 32; |
| |
| memset(gpr_a, 0, sizeof(gpr_a)); |
| memset(gpr_b, 0, sizeof(gpr_b)); |
| for (i = 0; i < 256; i++) { |
| struct ixp2000_reg_value *r = c->initial_reg_values + i; |
| u32 *bank; |
| int inc; |
| int j; |
| |
| if (r->reg == -1) |
| break; |
| |
| bank = (r->reg & 0x400) ? gpr_b : gpr_a; |
| inc = (r->reg & 0x80) ? 128 : per_ctx_regs; |
| |
| j = r->reg & 0x7f; |
| while (j < 128) { |
| bank[j] = r->value; |
| j += inc; |
| } |
| } |
| |
| generate_ucode(ucode, gpr_a, gpr_b); |
| ixp2000_uengine_load_microcode(uengine, ucode, 513); |
| ixp2000_uengine_init_context(uengine, 0, 0); |
| ixp2000_uengine_start_contexts(uengine, 0x01); |
| for (i = 0; i < 100; i++) { |
| u32 status; |
| |
| status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS); |
| if (!(status & 0x80000000)) |
| break; |
| } |
| ixp2000_uengine_stop_contexts(uengine, 0x01); |
| |
| kfree(ucode); |
| kfree(gpr_b); |
| kfree(gpr_a); |
| |
| return !!(i == 100); |
| } |
| |
| int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c) |
| { |
| int ctx; |
| |
| if (!check_ixp_type(c)) |
| return 1; |
| |
| if (!(ixp2000_uengine_mask & (1 << uengine))) |
| return 1; |
| |
| ixp2000_uengine_reset(1 << uengine); |
| ixp2000_uengine_set_mode(uengine, c->uengine_parameters); |
| if (set_initial_registers(uengine, c)) |
| return 1; |
| ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns); |
| |
| for (ctx = 0; ctx < 8; ctx++) |
| ixp2000_uengine_init_context(uengine, ctx, 0); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ixp2000_uengine_load); |
| |
| |
| static int __init ixp2000_uengine_init(void) |
| { |
| int uengine; |
| u32 value; |
| |
| /* |
| * Determine number of microengines present. |
| */ |
| switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) { |
| #ifdef CONFIG_ARCH_IXP2000 |
| case 0: /* IXP2800 */ |
| case 1: /* IXP2850 */ |
| ixp2000_uengine_mask = 0x00ff00ff; |
| break; |
| |
| case 2: /* IXP2400 */ |
| ixp2000_uengine_mask = 0x000f000f; |
| break; |
| #endif |
| |
| #ifdef CONFIG_ARCH_IXP23XX |
| case 4: /* IXP23xx */ |
| ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf; |
| break; |
| #endif |
| |
| default: |
| printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n", |
| (unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID)); |
| ixp2000_uengine_mask = 0x00000000; |
| break; |
| } |
| |
| /* |
| * Reset microengines. |
| */ |
| ixp2000_uengine_reset(ixp2000_uengine_mask); |
| |
| /* |
| * Synchronise timestamp counters across all microengines. |
| */ |
| value = ixp2000_reg_read(IXP_MISC_CONTROL); |
| ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80); |
| for (uengine = 0; uengine < 32; uengine++) { |
| if (ixp2000_uengine_mask & (1 << uengine)) { |
| ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0); |
| ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0); |
| } |
| } |
| ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80); |
| |
| return 0; |
| } |
| |
| subsys_initcall(ixp2000_uengine_init); |