| /* |
| ** ----------------------------------------------------------------------------- |
| ** |
| ** Perle Specialix driver for Linux |
| ** Ported from existing RIO Driver for SCO sources. |
| * |
| * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| ** |
| ** Module : rioinit.c |
| ** SID : 1.3 |
| ** Last Modified : 11/6/98 10:33:43 |
| ** Retrieved : 11/6/98 10:33:49 |
| ** |
| ** ident @(#)rioinit.c 1.3 |
| ** |
| ** ----------------------------------------------------------------------------- |
| */ |
| #ifdef SCCS_LABELS |
| static char *_rioinit_c_sccs_ = "@(#)rioinit.c 1.3"; |
| #endif |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <asm/io.h> |
| #include <asm/system.h> |
| #include <asm/string.h> |
| #include <asm/semaphore.h> |
| #include <asm/uaccess.h> |
| |
| #include <linux/termios.h> |
| #include <linux/serial.h> |
| |
| #include <linux/generic_serial.h> |
| |
| |
| #include "linux_compat.h" |
| #include "typdef.h" |
| #include "pkt.h" |
| #include "daemon.h" |
| #include "rio.h" |
| #include "riospace.h" |
| #include "top.h" |
| #include "cmdpkt.h" |
| #include "map.h" |
| #include "riotypes.h" |
| #include "rup.h" |
| #include "port.h" |
| #include "riodrvr.h" |
| #include "rioinfo.h" |
| #include "func.h" |
| #include "errors.h" |
| #include "pci.h" |
| |
| #include "parmmap.h" |
| #include "unixrup.h" |
| #include "board.h" |
| #include "host.h" |
| #include "error.h" |
| #include "phb.h" |
| #include "link.h" |
| #include "cmdblk.h" |
| #include "route.h" |
| #include "control.h" |
| #include "cirrus.h" |
| #include "rioioctl.h" |
| #include "rio_linux.h" |
| |
| #undef bcopy |
| #define bcopy rio_pcicopy |
| |
| int RIOPCIinit(struct rio_info *p, int Mode); |
| |
| #if 0 |
| static void RIOAllocateInterrupts(struct rio_info *); |
| static int RIOReport(struct rio_info *); |
| static void RIOStopInterrupts(struct rio_info *, int, int); |
| #endif |
| |
| static int RIOScrub(int, BYTE *, int); |
| |
| #if 0 |
| extern int rio_intr(); |
| |
| /* |
| ** Init time code. |
| */ |
| void |
| rioinit( p, info ) |
| struct rio_info * p; |
| struct RioHostInfo * info; |
| { |
| /* |
| ** Multi-Host card support - taking the easy way out - sorry ! |
| ** We allocate and set up the Host and Port structs when the |
| ** driver is called to 'install' the first host. |
| ** We check for this first 'call' by testing the RIOPortp pointer. |
| */ |
| if ( !p->RIOPortp ) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "Allocating and setting up driver data structures\n"); |
| |
| RIOAllocDataStructs(p); /* allocate host/port structs */ |
| RIOSetupDataStructs(p); /* setup topology structs */ |
| } |
| |
| RIOInitHosts( p, info ); /* hunt down the hardware */ |
| |
| RIOAllocateInterrupts(p); /* allocate interrupts */ |
| RIOReport(p); /* show what we found */ |
| } |
| |
| /* |
| ** Initialise the Cards |
| */ |
| void |
| RIOInitHosts(p, info) |
| struct rio_info * p; |
| struct RioHostInfo * info; |
| { |
| /* |
| ** 15.10.1998 ARG - ESIL 0762 part fix |
| ** If there is no ISA card definition - we always look for PCI cards. |
| ** As we currently only support one host card this lets an ISA card |
| ** definition take precedence over PLUG and PLAY. |
| ** No ISA card - we are PLUG and PLAY with PCI. |
| */ |
| |
| /* |
| ** Note - for PCI both these will be zero, that's okay because |
| ** RIOPCIInit() fills them in if a card is found. |
| */ |
| p->RIOHosts[p->RIONumHosts].Ivec = info->vector; |
| p->RIOHosts[p->RIONumHosts].PaddrP = info->location; |
| |
| /* |
| ** Check that we are able to accommodate another host |
| */ |
| if ( p->RIONumHosts >= RIO_HOSTS ) |
| { |
| p->RIOFailed++; |
| return; |
| } |
| |
| if ( info->bus & ISA_BUS ) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "initialising card %d (ISA)\n", p->RIONumHosts); |
| RIOISAinit(p, p->mode); |
| } |
| else |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "initialising card %d (PCI)\n", p->RIONumHosts); |
| RIOPCIinit(p, RIO_PCI_DEFAULT_MODE); |
| } |
| |
| rio_dprintk (RIO_DEBUG_INIT, "Total hosts initialised so far : %d\n", p->RIONumHosts); |
| |
| |
| #ifdef FUTURE_RELEASE |
| if (p->bus & EISA_BUS) |
| /* EISA card */ |
| RIOEISAinit(p, RIO_EISA_DEFAULT_MODE); |
| |
| if (p->bus & MCA_BUS) |
| /* MCA card */ |
| RIOMCAinit(p, RIO_MCA_DEFAULT_MODE); |
| #endif |
| } |
| |
| /* |
| ** go through memory for an AT host that we pass in the device info |
| ** structure and initialise |
| */ |
| void |
| RIOISAinit(p, mode) |
| struct rio_info * p; |
| int mode; |
| { |
| |
| /* XXX Need to implement this. */ |
| #if 0 |
| p->intr_tid = iointset(p->RIOHosts[p->RIONumHosts].Ivec, |
| (int (*)())rio_intr, (char*)p->RIONumHosts); |
| |
| rio_dprintk (RIO_DEBUG_INIT, "Set interrupt handler, intr_tid = 0x%x\n", p->intr_tid ); |
| |
| if (RIODoAT(p, p->RIOHosts[p->RIONumHosts].PaddrP, mode)) { |
| return; |
| } |
| else { |
| rio_dprintk (RIO_DEBUG_INIT, "RIODoAT failed\n"); |
| p->RIOFailed++; |
| } |
| #endif |
| |
| } |
| |
| /* |
| ** RIODoAT : |
| ** |
| ** Map in a boards physical address, check that the board is there, |
| ** test the board and if everything is okay assign the board an entry |
| ** in the Rio Hosts structure. |
| */ |
| int |
| RIODoAT(p, Base, mode) |
| struct rio_info * p; |
| int Base; |
| int mode; |
| { |
| #define FOUND 1 |
| #define NOT_FOUND 0 |
| |
| caddr_t cardAddr; |
| |
| /* |
| ** Check to see if we actually have a board at this physical address. |
| */ |
| if ((cardAddr = RIOCheckForATCard(Base)) != 0) { |
| /* |
| ** Now test the board to see if it is working. |
| */ |
| if (RIOBoardTest(Base, cardAddr, RIO_AT, 0) == RIO_SUCCESS) { |
| /* |
| ** Fill out a slot in the Rio host structure. |
| */ |
| if (RIOAssignAT(p, Base, cardAddr, mode)) { |
| return(FOUND); |
| } |
| } |
| RIOMapout(Base, RIO_AT_MEM_SIZE, cardAddr); |
| } |
| return(NOT_FOUND); |
| } |
| |
| caddr_t |
| RIOCheckForATCard(Base) |
| int Base; |
| { |
| int off; |
| struct DpRam *cardp; /* (Points at the host) */ |
| caddr_t virtAddr; |
| unsigned char RIOSigTab[24]; |
| /* |
| ** Table of values to search for as prom signature of a host card |
| */ |
| strcpy(RIOSigTab, "JBJGPGGHINSMJPJR"); |
| |
| /* |
| ** Hey! Yes, You reading this code! Yo, grab a load a this: |
| ** |
| ** IF the card is using WORD MODE rather than BYTE MODE |
| ** then it will occupy 128K of PHYSICAL memory area. So, |
| ** you might think that the following Mapin is wrong. Well, |
| ** it isn't, because the SECOND 64K of occupied space is an |
| ** EXACT COPY of the FIRST 64K. (good?), so, we need only |
| ** map it in in one 64K block. |
| */ |
| if (RIOMapin(Base, RIO_AT_MEM_SIZE, &virtAddr) == -1) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Couldn't map the board in!\n"); |
| return((caddr_t)0); |
| } |
| |
| /* |
| ** virtAddr points to the DP ram of the system. |
| ** We now cast this to a pointer to a RIO Host, |
| ** and have a rummage about in the PROM. |
| */ |
| cardp = (struct DpRam *)virtAddr; |
| |
| for (off=0; RIOSigTab[off]; off++) { |
| if ((RBYTE(cardp->DpSignature[off]) & 0xFF) != RIOSigTab[off]) { |
| /* |
| ** Signature mismatch - card not at this address |
| */ |
| RIOMapout(Base, RIO_AT_MEM_SIZE, virtAddr); |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Couldn't match the signature 0x%x 0x%x!\n", |
| (int)cardp, off); |
| return((caddr_t)0); |
| } |
| } |
| |
| /* |
| ** If we get here then we must have found a valid board so return |
| ** its virtual address. |
| */ |
| return(virtAddr); |
| } |
| #endif |
| |
| /** |
| ** RIOAssignAT : |
| ** |
| ** Fill out the fields in the p->RIOHosts structure now we know we know |
| ** we have a board present. |
| ** |
| ** bits < 0 indicates 8 bit operation requested, |
| ** bits > 0 indicates 16 bit operation. |
| */ |
| int |
| RIOAssignAT(p, Base, virtAddr, mode) |
| struct rio_info * p; |
| int Base; |
| caddr_t virtAddr; |
| int mode; |
| { |
| int bits; |
| struct DpRam *cardp = (struct DpRam *)virtAddr; |
| |
| if ((Base < ONE_MEG) || (mode & BYTE_ACCESS_MODE)) |
| bits = BYTE_OPERATION; |
| else |
| bits = WORD_OPERATION; |
| |
| /* |
| ** Board has passed its scrub test. Fill in all the |
| ** transient stuff. |
| */ |
| p->RIOHosts[p->RIONumHosts].Caddr = virtAddr; |
| p->RIOHosts[p->RIONumHosts].CardP = (struct DpRam *)virtAddr; |
| |
| /* |
| ** Revision 01 AT host cards don't support WORD operations, |
| */ |
| if ( RBYTE(cardp->DpRevision) == 01 ) |
| bits = BYTE_OPERATION; |
| |
| p->RIOHosts[p->RIONumHosts].Type = RIO_AT; |
| p->RIOHosts[p->RIONumHosts].Copy = bcopy; |
| /* set this later */ |
| p->RIOHosts[p->RIONumHosts].Slot = -1; |
| p->RIOHosts[p->RIONumHosts].Mode = SLOW_LINKS | SLOW_AT_BUS | bits; |
| WBYTE(p->RIOHosts[p->RIONumHosts].Control, |
| BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| p->RIOHosts[p->RIONumHosts].Mode | |
| INTERRUPT_DISABLE ); |
| WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff); |
| WBYTE(p->RIOHosts[p->RIONumHosts].Control, |
| BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| p->RIOHosts[p->RIONumHosts].Mode | |
| INTERRUPT_DISABLE ); |
| WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff); |
| p->RIOHosts[p->RIONumHosts].UniqueNum = |
| ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[0])&0xFF)<<0)| |
| ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[1])&0xFF)<<8)| |
| ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[2])&0xFF)<<16)| |
| ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[3])&0xFF)<<24); |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Uniquenum 0x%x\n",p->RIOHosts[p->RIONumHosts].UniqueNum); |
| |
| p->RIONumHosts++; |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Tests Passed at 0x%x\n", Base); |
| return(1); |
| } |
| #if 0 |
| #ifdef FUTURE_RELEASE |
| int RIOMCAinit(int Mode) |
| { |
| uchar SlotNumber; |
| caddr_t Caddr; |
| uint Paddr; |
| uint Ivec; |
| int Handle; |
| int ret = 0; |
| |
| /* |
| ** Valid mode information for MCA cards |
| ** is only FAST LINKS |
| */ |
| Mode = (Mode & FAST_LINKS) ? McaTpFastLinks : McaTpSlowLinks; |
| rio_dprintk (RIO_DEBUG_INIT, "RIOMCAinit(%d)\n",Mode); |
| |
| |
| /* |
| ** Check out each of the slots |
| */ |
| for (SlotNumber = 0; SlotNumber < McaMaxSlots; SlotNumber++) { |
| /* |
| ** Enable the slot we want to talk to |
| */ |
| outb( McaSlotSelect, SlotNumber | McaSlotEnable ); |
| |
| /* |
| ** Read the ID word from the slot |
| */ |
| if (((inb(McaIdHigh)<< 8)|inb(McaIdLow)) == McaRIOId) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "Potential MCA card in slot %d\n", SlotNumber); |
| |
| /* |
| ** Card appears to be a RIO MCA card! |
| */ |
| RIOMachineType |= (1<<RIO_MCA); |
| |
| /* |
| ** Just check we haven't found too many wonderful objects |
| */ |
| if ( RIONumHosts >= RIO_HOSTS ) |
| { |
| Rprintf(RIOMesgTooManyCards); |
| return(ret); |
| } |
| |
| /* |
| ** McaIrqEnable contains the interrupt vector, and a card |
| ** enable bit. |
| */ |
| Ivec = inb(McaIrqEnable); |
| |
| rio_dprintk (RIO_DEBUG_INIT, "Ivec is %x\n", Ivec); |
| |
| switch ( Ivec & McaIrqMask ) |
| { |
| case McaIrq9: |
| rio_dprintk (RIO_DEBUG_INIT, "IRQ9\n"); |
| break; |
| case McaIrq3: |
| rio_dprintk (RIO_DEBUG_INIT, "IRQ3\n"); |
| break; |
| case McaIrq4: |
| rio_dprintk (RIO_DEBUG_INIT, "IRQ4\n"); |
| break; |
| case McaIrq7: |
| rio_dprintk (RIO_DEBUG_INIT, "IRQ7\n"); |
| break; |
| case McaIrq10: |
| rio_dprintk (RIO_DEBUG_INIT, "IRQ10\n"); |
| break; |
| case McaIrq11: |
| rio_dprintk (RIO_DEBUG_INIT, "IRQ11\n"); |
| break; |
| case McaIrq12: |
| rio_dprintk (RIO_DEBUG_INIT, "IRQ12\n"); |
| break; |
| case McaIrq15: |
| rio_dprintk (RIO_DEBUG_INIT, "IRQ15\n"); |
| break; |
| } |
| |
| /* |
| ** If the card enable bit isn't set, then set it! |
| */ |
| if ((Ivec & McaCardEnable) != McaCardEnable) { |
| rio_dprintk (RIO_DEBUG_INIT, "McaCardEnable not set - setting!\n"); |
| outb(McaIrqEnable,Ivec|McaCardEnable); |
| } else |
| rio_dprintk (RIO_DEBUG_INIT, "McaCardEnable already set\n"); |
| |
| /* |
| ** Convert the IRQ enable mask into something useful |
| */ |
| Ivec = RIOMcaToIvec[Ivec & McaIrqMask]; |
| |
| /* |
| ** Find the physical address |
| */ |
| rio_dprintk (RIO_DEBUG_INIT, "inb(McaMemory) is %x\n", inb(McaMemory)); |
| Paddr = McaAddress(inb(McaMemory)); |
| |
| rio_dprintk (RIO_DEBUG_INIT, "MCA card has Ivec %d Addr %x\n", Ivec, Paddr); |
| |
| if ( Paddr != 0 ) |
| { |
| |
| /* |
| ** Tell the memory mapper that we want to talk to it |
| */ |
| Handle = RIOMapin( Paddr, RIO_MCA_MEM_SIZE, &Caddr ); |
| |
| if ( Handle == -1 ) { |
| rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at %x\n", RIO_MCA_MEM_SIZE, Paddr; |
| continue; |
| } |
| |
| rio_dprintk (RIO_DEBUG_INIT, "Board mapped to vaddr 0x%x\n", Caddr); |
| |
| /* |
| ** And check that it is actually there! |
| */ |
| if ( RIOBoardTest( Paddr,Caddr,RIO_MCA,SlotNumber ) == RIO_SUCCESS ) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "Board has passed test\n"); |
| rio_dprintk (RIO_DEBUG_INIT, "Slot %d. Type %d. Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n", |
| SlotNumber, RIO_MCA, Paddr, Caddr, Mode); |
| |
| /* |
| ** Board has passed its scrub test. Fill in all the |
| ** transient stuff. |
| */ |
| p->RIOHosts[RIONumHosts].Slot = SlotNumber; |
| p->RIOHosts[RIONumHosts].Ivec = Ivec; |
| p->RIOHosts[RIONumHosts].Type = RIO_MCA; |
| p->RIOHosts[RIONumHosts].Copy = bcopy; |
| p->RIOHosts[RIONumHosts].PaddrP = Paddr; |
| p->RIOHosts[RIONumHosts].Caddr = Caddr; |
| p->RIOHosts[RIONumHosts].CardP = (struct DpRam *)Caddr; |
| p->RIOHosts[RIONumHosts].Mode = Mode; |
| WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt , 0xff); |
| p->RIOHosts[RIONumHosts].UniqueNum = |
| ((RBYTE(p->RIOHosts[RIONumHosts].Unique[0])&0xFF)<<0)| |
| ((RBYTE(p->RIOHosts[RIONumHosts].Unique[1])&0xFF)<<8)| |
| ((RBYTE(p->RIOHosts[RIONumHosts].Unique[2])&0xFF)<<16)| |
| ((RBYTE(p->RIOHosts[RIONumHosts].Unique[3])&0xFF)<<24); |
| RIONumHosts++; |
| ret++; |
| } |
| else |
| { |
| /* |
| ** It failed the test, so ignore it. |
| */ |
| rio_dprintk (RIO_DEBUG_INIT, "TEST FAILED\n"); |
| RIOMapout(Paddr, RIO_MCA_MEM_SIZE, Caddr ); |
| } |
| } |
| else |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "Slot %d - Paddr zero!\n", SlotNumber); |
| } |
| } |
| else |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "Slot %d NOT RIO\n", SlotNumber); |
| } |
| } |
| /* |
| ** Now we have checked all the slots, turn off the MCA slot selector |
| */ |
| outb(McaSlotSelect,0); |
| rio_dprintk (RIO_DEBUG_INIT, "Slot %d NOT RIO\n", SlotNumber); |
| return ret; |
| } |
| |
| int RIOEISAinit( int Mode ) |
| { |
| static int EISADone = 0; |
| uint Paddr; |
| int PollIntMixMsgDone = 0; |
| caddr_t Caddr; |
| ushort Ident; |
| uchar EisaSlot; |
| uchar Ivec; |
| int ret = 0; |
| |
| /* |
| ** The only valid mode information for EISA hosts is fast or slow |
| ** links. |
| */ |
| Mode = (Mode & FAST_LINKS) ? EISA_TP_FAST_LINKS : EISA_TP_SLOW_LINKS; |
| |
| if ( EISADone ) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "RIOEISAinit() - already done, return.\n"); |
| return(0); |
| } |
| |
| EISADone++; |
| |
| rio_dprintk (RIO_DEBUG_INIT, "RIOEISAinit()\n"); |
| |
| |
| /* |
| ** First check all cards to see if ANY are set for polled mode operation. |
| ** If so, set ALL to polled. |
| */ |
| |
| for ( EisaSlot=1; EisaSlot<=RIO_MAX_EISA_SLOTS; EisaSlot++ ) |
| { |
| Ident = (INBZ(EisaSlot,EISA_PRODUCT_IDENT_HI)<<8) | |
| INBZ(EisaSlot,EISA_PRODUCT_IDENT_LO); |
| |
| if ( Ident == RIO_EISA_IDENT ) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "Found Specialix product\n"); |
| |
| if ( INBZ(EisaSlot,EISA_PRODUCT_NUMBER) != RIO_EISA_PRODUCT_CODE ) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "Not Specialix RIO - Product number %x\n", |
| INBZ(EisaSlot, EISA_PRODUCT_NUMBER)); |
| continue; /* next slot */ |
| } |
| /* |
| ** Its a Specialix RIO! |
| */ |
| rio_dprintk (RIO_DEBUG_INIT, "RIO Revision %d\n", |
| INBZ(EisaSlot, EISA_REVISION_NUMBER)); |
| |
| RIOMachineType |= (1<<RIO_EISA); |
| |
| /* |
| ** Just check we haven't found too many wonderful objects |
| */ |
| if ( RIONumHosts >= RIO_HOSTS ) |
| { |
| Rprintf(RIOMesgTooManyCards); |
| return 0; |
| } |
| |
| /* |
| ** Ensure that the enable bit is set! |
| */ |
| OUTBZ( EisaSlot, EISA_ENABLE, RIO_EISA_ENABLE_BIT ); |
| |
| /* |
| ** EISA_INTERRUPT_VEC contains the interrupt vector. |
| */ |
| Ivec = INBZ(EisaSlot,EISA_INTERRUPT_VEC); |
| |
| #ifdef RIODEBUG |
| switch ( Ivec & EISA_INTERRUPT_MASK ) |
| { |
| case EISA_IRQ_3: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 3\n"); |
| break; |
| case EISA_IRQ_4: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 4\n"); |
| break; |
| case EISA_IRQ_5: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 5\n"); |
| break; |
| case EISA_IRQ_6: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 6\n"); |
| break; |
| case EISA_IRQ_7: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 7\n"); |
| break; |
| case EISA_IRQ_9: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 9\n"); |
| break; |
| case EISA_IRQ_10: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 10\n"); |
| break; |
| case EISA_IRQ_11: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 11\n"); |
| break; |
| case EISA_IRQ_12: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 12\n"); |
| break; |
| case EISA_IRQ_14: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 14\n"); |
| break; |
| case EISA_IRQ_15: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 15\n"); |
| break; |
| case EISA_POLLED: |
| rio_dprintk (RIO_DEBUG_INIT, "EISA POLLED\n"); |
| break; |
| default: |
| rio_dprintk (RIO_DEBUG_INIT, NULL,DBG_INIT|DBG_FAIL,"Shagged interrupt number!\n"); |
| Ivec &= EISA_CONTROL_MASK; |
| } |
| #endif |
| |
| if ( (Ivec & EISA_INTERRUPT_MASK) == |
| EISA_POLLED ) |
| { |
| RIOWillPoll = 1; |
| break; /* From EisaSlot loop */ |
| } |
| } |
| } |
| |
| /* |
| ** Do it all again now we know whether to change all cards to polled |
| ** mode or not |
| */ |
| |
| for ( EisaSlot=1; EisaSlot<=RIO_MAX_EISA_SLOTS; EisaSlot++ ) |
| { |
| Ident = (INBZ(EisaSlot,EISA_PRODUCT_IDENT_HI)<<8) | |
| INBZ(EisaSlot,EISA_PRODUCT_IDENT_LO); |
| |
| if ( Ident == RIO_EISA_IDENT ) |
| { |
| if ( INBZ(EisaSlot,EISA_PRODUCT_NUMBER) != RIO_EISA_PRODUCT_CODE ) |
| continue; /* next slot */ |
| |
| /* |
| ** Its a Specialix RIO! |
| */ |
| |
| /* |
| ** Ensure that the enable bit is set! |
| */ |
| OUTBZ( EisaSlot, EISA_ENABLE, RIO_EISA_ENABLE_BIT ); |
| |
| /* |
| ** EISA_INTERRUPT_VEC contains the interrupt vector. |
| */ |
| Ivec = INBZ(EisaSlot,EISA_INTERRUPT_VEC); |
| |
| if ( RIOWillPoll ) |
| { |
| /* |
| ** If we are going to operate in polled mode, but this |
| ** board is configured to be interrupt driven, display |
| ** the message explaining the situation to the punter, |
| ** assuming we haven't already done so. |
| */ |
| |
| if ( !PollIntMixMsgDone && |
| (Ivec & EISA_INTERRUPT_MASK) != EISA_POLLED ) |
| { |
| Rprintf(RIOMesgAllPolled); |
| PollIntMixMsgDone = 1; |
| } |
| |
| /* |
| ** Ungraciously ignore whatever the board reports as its |
| ** interrupt vector... |
| */ |
| |
| Ivec &= ~EISA_INTERRUPT_MASK; |
| |
| /* |
| ** ...and force it to dance to the poll tune. |
| */ |
| |
| Ivec |= EISA_POLLED; |
| } |
| |
| /* |
| ** Convert the IRQ enable mask into something useful (0-15) |
| */ |
| Ivec = RIOEisaToIvec(Ivec); |
| |
| rio_dprintk (RIO_DEBUG_INIT, "EISA host in slot %d has Ivec 0x%x\n", |
| EisaSlot, Ivec); |
| |
| /* |
| ** Find the physical address |
| */ |
| Paddr = (INBZ(EisaSlot,EISA_MEMORY_BASE_HI)<<24) | |
| (INBZ(EisaSlot,EISA_MEMORY_BASE_LO)<<16); |
| |
| rio_dprintk (RIO_DEBUG_INIT, "EISA card has Ivec %d Addr %x\n", Ivec, Paddr); |
| |
| if ( Paddr == 0 ) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, |
| "Board in slot %d configured for address zero!\n", EisaSlot); |
| continue; |
| } |
| |
| /* |
| ** Tell the memory mapper that we want to talk to it |
| */ |
| rio_dprintk (RIO_DEBUG_INIT, "About to map EISA card \n"); |
| |
| if (RIOMapin( Paddr, RIO_EISA_MEM_SIZE, &Caddr) == -1) { |
| rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at %x\n", |
| RIO_EISA_MEM_SIZE,Paddr); |
| continue; |
| } |
| |
| rio_dprintk (RIO_DEBUG_INIT, "Board mapped to vaddr 0x%x\n", Caddr); |
| |
| /* |
| ** And check that it is actually there! |
| */ |
| if ( RIOBoardTest( Paddr,Caddr,RIO_EISA,EisaSlot) == RIO_SUCCESS ) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "Board has passed test\n"); |
| rio_dprintk (RIO_DEBUG_INIT, |
| "Slot %d. Ivec %d. Type %d. Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n", |
| EisaSlot,Ivec,RIO_EISA,Paddr,Caddr,Mode); |
| |
| /* |
| ** Board has passed its scrub test. Fill in all the |
| ** transient stuff. |
| */ |
| p->RIOHosts[RIONumHosts].Slot = EisaSlot; |
| p->RIOHosts[RIONumHosts].Ivec = Ivec; |
| p->RIOHosts[RIONumHosts].Type = RIO_EISA; |
| p->RIOHosts[RIONumHosts].Copy = bcopy; |
| p->RIOHosts[RIONumHosts].PaddrP = Paddr; |
| p->RIOHosts[RIONumHosts].Caddr = Caddr; |
| p->RIOHosts[RIONumHosts].CardP = (struct DpRam *)Caddr; |
| p->RIOHosts[RIONumHosts].Mode = Mode; |
| /* |
| ** because the EISA prom is mapped into IO space, we |
| ** need to copy the unqiue number into the memory area |
| ** that it would have occupied, so that the download |
| ** code can determine its ID and card type. |
| */ |
| WBYTE(p->RIOHosts[RIONumHosts].Unique[0],INBZ(EisaSlot,EISA_UNIQUE_NUM_0)); |
| WBYTE(p->RIOHosts[RIONumHosts].Unique[1],INBZ(EisaSlot,EISA_UNIQUE_NUM_1)); |
| WBYTE(p->RIOHosts[RIONumHosts].Unique[2],INBZ(EisaSlot,EISA_UNIQUE_NUM_2)); |
| WBYTE(p->RIOHosts[RIONumHosts].Unique[3],INBZ(EisaSlot,EISA_UNIQUE_NUM_3)); |
| p->RIOHosts[RIONumHosts].UniqueNum = |
| ((RBYTE(p->RIOHosts[RIONumHosts].Unique[0])&0xFF)<<0)| |
| ((RBYTE(p->RIOHosts[RIONumHosts].Unique[1])&0xFF)<<8)| |
| ((RBYTE(p->RIOHosts[RIONumHosts].Unique[2])&0xFF)<<16)| |
| ((RBYTE(p->RIOHosts[RIONumHosts].Unique[3])&0xFF)<<24); |
| INBZ(EisaSlot,EISA_INTERRUPT_RESET); |
| RIONumHosts++; |
| ret++; |
| } |
| else |
| { |
| /* |
| ** It failed the test, so ignore it. |
| */ |
| rio_dprintk (RIO_DEBUG_INIT, "TEST FAILED\n"); |
| |
| RIOMapout(Paddr, RIO_EISA_MEM_SIZE, Caddr ); |
| } |
| } |
| } |
| if (RIOMachineType & RIO_EISA) |
| return ret+1; |
| return ret; |
| } |
| #endif |
| |
| |
| #ifndef linux |
| |
| #define CONFIG_ADDRESS 0xcf8 |
| #define CONFIG_DATA 0xcfc |
| #define FORWARD_REG 0xcfa |
| |
| |
| static int |
| read_config(int bus_number, int device_num, int r_number) |
| { |
| unsigned int cav; |
| unsigned int val; |
| |
| /* |
| Build config_address_value: |
| |
| 31 24 23 16 15 11 10 8 7 0 |
| ------------------------------------------------------ |
| |1| 0000000 | bus_number | device # | 000 | register | |
| ------------------------------------------------------ |
| */ |
| |
| cav = r_number & 0xff; |
| cav |= ((device_num & 0x1f) << 11); |
| cav |= ((bus_number & 0xff) << 16); |
| cav |= 0x80000000; /* Enable bit */ |
| outpd(CONFIG_ADDRESS,cav); |
| val = inpd(CONFIG_DATA); |
| outpd(CONFIG_ADDRESS,0); |
| return val; |
| } |
| |
| static |
| write_config(bus_number,device_num,r_number,val) |
| { |
| unsigned int cav; |
| |
| /* |
| Build config_address_value: |
| |
| 31 24 23 16 15 11 10 8 7 0 |
| ------------------------------------------------------ |
| |1| 0000000 | bus_number | device # | 000 | register | |
| ------------------------------------------------------ |
| */ |
| |
| cav = r_number & 0xff; |
| cav |= ((device_num & 0x1f) << 11); |
| cav |= ((bus_number & 0xff) << 16); |
| cav |= 0x80000000; /* Enable bit */ |
| outpd(CONFIG_ADDRESS, cav); |
| outpd(CONFIG_DATA, val); |
| outpd(CONFIG_ADDRESS, 0); |
| return val; |
| } |
| #else |
| /* XXX Implement these... */ |
| static int |
| read_config(int bus_number, int device_num, int r_number) |
| { |
| return 0; |
| } |
| |
| static int |
| write_config(int bus_number, int device_num, int r_number) |
| { |
| return 0; |
| } |
| |
| #endif |
| |
| int |
| RIOPCIinit(p, Mode) |
| struct rio_info *p; |
| int Mode; |
| { |
| #define MAX_PCI_SLOT 32 |
| #define RIO_PCI_JET_CARD 0x200011CB |
| |
| static int slot; /* count of machine's PCI slots searched so far */ |
| caddr_t Caddr; /* Virtual address of the current PCI host card. */ |
| unsigned char Ivec; /* interrupt vector for the current PCI host */ |
| unsigned long Paddr; /* Physical address for the current PCI host */ |
| int Handle; /* Handle to Virtual memory allocated for current PCI host */ |
| |
| |
| rio_dprintk (RIO_DEBUG_INIT, "Search for a RIO PCI card - start at slot %d\n", slot); |
| |
| /* |
| ** Initialise the search status |
| */ |
| p->RIOLastPCISearch = RIO_FAIL; |
| |
| while ( (slot < MAX_PCI_SLOT) & (p->RIOLastPCISearch != RIO_SUCCESS) ) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "Currently testing slot %d\n", slot); |
| |
| if (read_config(0,slot,0) == RIO_PCI_JET_CARD) { |
| p->RIOHosts[p->RIONumHosts].Ivec = 0; |
| Paddr = read_config(0,slot,0x18); |
| Paddr = Paddr - (Paddr & 0x1); /* Mask off the io bit */ |
| |
| if ( (Paddr == 0) || ((Paddr & 0xffff0000) == 0xffff0000) ) { |
| rio_dprintk (RIO_DEBUG_INIT, "Goofed up slot\n"); /* what! */ |
| slot++; |
| continue; |
| } |
| |
| p->RIOHosts[p->RIONumHosts].PaddrP = Paddr; |
| Ivec = (read_config(0,slot,0x3c) & 0xff); |
| |
| rio_dprintk (RIO_DEBUG_INIT, "PCI Host at 0x%x, Intr %d\n", (int)Paddr, Ivec); |
| |
| Handle = RIOMapin( Paddr, RIO_PCI_MEM_SIZE, &Caddr ); |
| if (Handle == -1) { |
| rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at 0x%x\n", RIO_PCI_MEM_SIZE, (int)Paddr); |
| slot++; |
| continue; |
| } |
| p->RIOHosts[p->RIONumHosts].Ivec = Ivec + 32; |
| p->intr_tid = iointset(p->RIOHosts[p->RIONumHosts].Ivec, |
| (int (*)())rio_intr, (char *)p->RIONumHosts); |
| if (RIOBoardTest( Paddr, Caddr, RIO_PCI, 0 ) == RIO_SUCCESS) { |
| rio_dprintk (RIO_DEBUG_INIT, ("Board has passed test\n"); |
| rio_dprintk (RIO_DEBUG_INIT, ("Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n", Paddr, Caddr, Mode); |
| |
| /* |
| ** Board has passed its scrub test. Fill in all the |
| ** transient stuff. |
| */ |
| p->RIOHosts[p->RIONumHosts].Slot = 0; |
| p->RIOHosts[p->RIONumHosts].Ivec = Ivec + 32; |
| p->RIOHosts[p->RIONumHosts].Type = RIO_PCI; |
| p->RIOHosts[p->RIONumHosts].Copy = rio_pcicopy; |
| p->RIOHosts[p->RIONumHosts].PaddrP = Paddr; |
| p->RIOHosts[p->RIONumHosts].Caddr = Caddr; |
| p->RIOHosts[p->RIONumHosts].CardP = (struct DpRam *)Caddr; |
| p->RIOHosts[p->RIONumHosts].Mode = Mode; |
| |
| #if 0 |
| WBYTE(p->RIOHosts[p->RIONumHosts].Control, |
| BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| p->RIOHosts[p->RIONumHosts].Mode | |
| INTERRUPT_DISABLE ); |
| WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff); |
| WBYTE(p->RIOHosts[p->RIONumHosts].Control, |
| BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| p->RIOHosts[p->RIONumHosts].Mode | |
| INTERRUPT_DISABLE ); |
| WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff); |
| #else |
| WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt, 0xff); |
| #endif |
| p->RIOHosts[p->RIONumHosts].UniqueNum = |
| ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[0])&0xFF)<<0)| |
| ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[1])&0xFF)<<8)| |
| ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[2])&0xFF)<<16)| |
| ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[3])&0xFF)<<24); |
| |
| rio_dprintk (RIO_DEBUG_INIT, "Unique no 0x%x.\n", |
| p->RIOHosts[p->RIONumHosts].UniqueNum); |
| |
| p->RIOLastPCISearch = RIO_SUCCESS; |
| p->RIONumHosts++; |
| } |
| } |
| slot++; |
| } |
| |
| if ( slot >= MAX_PCI_SLOT ) { |
| rio_dprintk (RIO_DEBUG_INIT, "All %d PCI slots have tested for RIO cards !!!\n", |
| MAX_PCI_SLOT); |
| } |
| |
| |
| /* |
| ** I don't think we want to do this anymore |
| ** |
| |
| if (!p->RIOLastPCISearch == RIO_FAIL ) { |
| p->RIOFailed++; |
| } |
| |
| ** |
| */ |
| } |
| |
| #ifdef FUTURE_RELEASE |
| void riohalt( void ) |
| { |
| int host; |
| for ( host=0; host<p->RIONumHosts; host++ ) |
| { |
| rio_dprintk (RIO_DEBUG_INIT, "Stop host %d\n", host); |
| (void)RIOBoardTest( p->RIOHosts[host].PaddrP, p->RIOHosts[host].Caddr, p->RIOHosts[host].Type,p->RIOHosts[host].Slot ); |
| } |
| } |
| #endif |
| #endif |
| |
| static uchar val[] = { |
| #ifdef VERY_LONG_TEST |
| 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 0xa5, 0xff, 0x5a, 0x00, 0xff, 0xc9, 0x36, |
| #endif |
| 0xff, 0x00, 0x00 }; |
| |
| #define TEST_END sizeof(val) |
| |
| /* |
| ** RAM test a board. |
| ** Nothing too complicated, just enough to check it out. |
| */ |
| int |
| RIOBoardTest(paddr, caddr, type, slot) |
| paddr_t paddr; |
| caddr_t caddr; |
| uchar type; |
| int slot; |
| { |
| struct DpRam *DpRam = (struct DpRam *)caddr; |
| char *ram[4]; |
| int size[4]; |
| int op, bank; |
| int nbanks; |
| |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Reset host type=%d, DpRam=0x%x, slot=%d\n", |
| type,(int)DpRam, slot); |
| |
| RIOHostReset(type, DpRam, slot); |
| |
| /* |
| ** Scrub the memory. This comes in several banks: |
| ** DPsram1 - 7000h bytes |
| ** DPsram2 - 200h bytes |
| ** DPsram3 - 7000h bytes |
| ** scratch - 1000h bytes |
| */ |
| |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Setup ram/size arrays\n"); |
| |
| size[0] = DP_SRAM1_SIZE; |
| size[1] = DP_SRAM2_SIZE; |
| size[2] = DP_SRAM3_SIZE; |
| size[3] = DP_SCRATCH_SIZE; |
| |
| ram[0] = (char *)&DpRam->DpSram1[0]; |
| ram[1] = (char *)&DpRam->DpSram2[0]; |
| ram[2] = (char *)&DpRam->DpSram3[0]; |
| nbanks = (type == RIO_PCI) ? 3 : 4; |
| if (nbanks == 4) |
| ram[3] = (char *)&DpRam->DpScratch[0]; |
| |
| |
| if (nbanks == 3) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Memory: 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x)\n", |
| (int)ram[0], size[0], (int)ram[1], size[1], (int)ram[2], size[2]); |
| } else { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x)\n", |
| (int)ram[0], size[0], (int)ram[1], size[1], (int)ram[2], size[2], (int)ram[3], |
| size[3]); |
| } |
| |
| /* |
| ** This scrub operation will test for crosstalk between |
| ** banks. TEST_END is a magic number, and relates to the offset |
| ** within the 'val' array used by Scrub. |
| */ |
| for (op=0; op<TEST_END; op++) { |
| for (bank=0; bank<nbanks; bank++) { |
| if (RIOScrub(op, (BYTE *)ram[bank], size[bank]) == RIO_FAIL) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: RIOScrub band %d, op %d failed\n", |
| bank, op); |
| return RIO_FAIL; |
| } |
| } |
| } |
| |
| rio_dprintk (RIO_DEBUG_INIT, "Test completed\n"); |
| return RIO_SUCCESS; |
| } |
| |
| |
| /* |
| ** Scrub an area of RAM. |
| ** Define PRETEST and POSTTEST for a more thorough checking of the |
| ** state of the memory. |
| ** Call with op set to an index into the above 'val' array to determine |
| ** which value will be written into memory. |
| ** Call with op set to zero means that the RAM will not be read and checked |
| ** before it is written. |
| ** Call with op not zero, and the RAM will be read and compated with val[op-1] |
| ** to check that the data from the previous phase was retained. |
| */ |
| static int |
| RIOScrub(op, ram, size) |
| int op; |
| BYTE * ram; |
| int size; |
| { |
| int off; |
| unsigned char oldbyte; |
| unsigned char newbyte; |
| unsigned char invbyte; |
| unsigned short oldword; |
| unsigned short newword; |
| unsigned short invword; |
| unsigned short swapword; |
| |
| if (op) { |
| oldbyte = val[op-1]; |
| oldword = oldbyte | (oldbyte<<8); |
| } else |
| oldbyte = oldword = 0; /* Tell the compiler we've initilalized them. */ |
| newbyte = val[op]; |
| newword = newbyte | (newbyte<<8); |
| invbyte = ~newbyte; |
| invword = invbyte | (invbyte<<8); |
| |
| /* |
| ** Check that the RAM contains the value that should have been left there |
| ** by the previous test (not applicable for pass zero) |
| */ |
| if (op) { |
| for (off=0; off<size; off++) { |
| if (RBYTE(ram[off]) != oldbyte) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Pre Check 1: BYTE at offset 0x%x should have been=%x, was=%x\n", off, oldbyte, RBYTE(ram[off])); |
| return RIO_FAIL; |
| } |
| } |
| for (off=0; off<size; off+=2) { |
| if (*(ushort *)&ram[off] != oldword) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Pre Check: WORD at offset 0x%x should have been=%x, was=%x\n",off,oldword,*(ushort *)&ram[off]); |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Pre Check: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1])); |
| return RIO_FAIL; |
| } |
| } |
| } |
| |
| /* |
| ** Now write the INVERSE of the test data into every location, using |
| ** BYTE write operations, first checking before each byte is written |
| ** that the location contains the old value still, and checking after |
| ** the write that the location contains the data specified - this is |
| ** the BYTE read/write test. |
| */ |
| for (off=0; off<size; off++) { |
| if (op && (RBYTE(ram[off]) != oldbyte)) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Pre Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off, oldbyte, RBYTE(ram[off])); |
| return RIO_FAIL; |
| } |
| WBYTE(ram[off],invbyte); |
| if (RBYTE(ram[off]) != invbyte) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Inv Check: BYTE at offset 0x%x should have been=%x, was=%x\n", off, invbyte, RBYTE(ram[off])); |
| return RIO_FAIL; |
| } |
| } |
| |
| /* |
| ** now, use WORD operations to write the test value into every location, |
| ** check as before that the location contains the previous test value |
| ** before overwriting, and that it contains the data value written |
| ** afterwards. |
| ** This is the WORD operation test. |
| */ |
| for (off=0; off<size; off+=2) { |
| if (*(ushort *)&ram[off] != invword) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Inv Check: WORD at offset 0x%x should have been=%x, was=%x\n", off, invword, *(ushort *)&ram[off]); |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Inv Check: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1])); |
| return RIO_FAIL; |
| } |
| |
| *(ushort *)&ram[off] = newword; |
| if ( *(ushort *)&ram[off] != newword ) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 1: WORD at offset 0x%x should have been=%x, was=%x\n", off, newword, *(ushort *)&ram[off]); |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 1: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1])); |
| return RIO_FAIL; |
| } |
| } |
| |
| /* |
| ** now run through the block of memory again, first in byte mode |
| ** then in word mode, and check that all the locations contain the |
| ** required test data. |
| */ |
| for (off=0; off<size; off++) { |
| if (RBYTE(ram[off]) != newbyte) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Byte Check: BYTE at offset 0x%x should have been=%x, was=%x\n", off, newbyte, RBYTE(ram[off])); |
| return RIO_FAIL; |
| } |
| } |
| |
| for (off=0; off<size; off+=2) { |
| if ( *(ushort *)&ram[off] != newword ) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 2: WORD at offset 0x%x should have been=%x, was=%x\n", off, newword, *(ushort *)&ram[off]); |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 2: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1])); |
| return RIO_FAIL; |
| } |
| } |
| |
| /* |
| ** time to check out byte swapping errors |
| */ |
| swapword = invbyte | (newbyte << 8); |
| |
| for (off=0; off<size; off+=2) { |
| WBYTE(ram[off],invbyte); |
| WBYTE(ram[off+1],newbyte); |
| } |
| |
| for ( off=0; off<size; off+=2 ) { |
| if (*(ushort *)&ram[off] != swapword) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 1: WORD at offset 0x%x should have been=%x, was=%x\n", off, swapword, *((ushort *)&ram[off])); |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 1: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1])); |
| return RIO_FAIL; |
| } |
| *((ushort *)&ram[off]) = ~swapword; |
| } |
| |
| for (off=0; off<size; off+=2) { |
| if (RBYTE(ram[off]) != newbyte) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off, newbyte, RBYTE(ram[off])); |
| return RIO_FAIL; |
| } |
| if (RBYTE(ram[off+1]) != invbyte) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off+1, invbyte, RBYTE(ram[off+1])); |
| return RIO_FAIL; |
| } |
| *((ushort *)&ram[off]) = newword; |
| } |
| return RIO_SUCCESS; |
| } |
| |
| /* |
| ** try to ensure that every host is either in polled mode |
| ** or is in interrupt mode. Only allow interrupt mode if |
| ** all hosts can interrupt (why?) |
| ** and force into polled mode if told to. Patch up the |
| ** interrupt vector & salute The Queen when you've done. |
| */ |
| #if 0 |
| static void |
| RIOAllocateInterrupts(p) |
| struct rio_info * p; |
| { |
| int Host; |
| |
| /* |
| ** Easy case - if we have been told to poll, then we poll. |
| */ |
| if (p->mode & POLLED_MODE) { |
| RIOStopInterrupts(p, 0, 0); |
| return; |
| } |
| |
| /* |
| ** check - if any host has been set to polled mode, then all must be. |
| */ |
| for (Host=0; Host<p->RIONumHosts; Host++) { |
| if ( (p->RIOHosts[Host].Type != RIO_AT) && |
| (p->RIOHosts[Host].Ivec == POLLED) ) { |
| RIOStopInterrupts(p, 1, Host ); |
| return; |
| } |
| } |
| for (Host=0; Host<p->RIONumHosts; Host++) { |
| if (p->RIOHosts[Host].Type == RIO_AT) { |
| if ( (p->RIOHosts[Host].Ivec - 32) == 0) { |
| RIOStopInterrupts(p, 2, Host ); |
| return; |
| } |
| } |
| } |
| } |
| |
| /* |
| ** something has decided that we can't be doing with these |
| ** new-fangled interrupt thingies. Set everything up to just |
| ** poll. |
| */ |
| static void |
| RIOStopInterrupts(p, Reason, Host) |
| struct rio_info * p; |
| int Reason; |
| int Host; |
| { |
| #ifdef FUTURE_RELEASE |
| switch (Reason) { |
| case 0: /* forced into polling by rio_polled */ |
| break; |
| case 1: /* SCU has set 'Host' into polled mode */ |
| break; |
| case 2: /* there aren't enough interrupt vectors for 'Host' */ |
| break; |
| } |
| #endif |
| |
| for (Host=0; Host<p->RIONumHosts; Host++ ) { |
| struct Host *HostP = &p->RIOHosts[Host]; |
| |
| switch (HostP->Type) { |
| case RIO_AT: |
| /* |
| ** The AT host has it's interrupts disabled by clearing the |
| ** int_enable bit. |
| */ |
| HostP->Mode &= ~INTERRUPT_ENABLE; |
| HostP->Ivec = POLLED; |
| break; |
| #ifdef FUTURE_RELEASE |
| case RIO_EISA: |
| /* |
| ** The EISA host has it's interrupts disabled by setting the |
| ** Ivec to zero |
| */ |
| HostP->Ivec = POLLED; |
| break; |
| #endif |
| case RIO_PCI: |
| /* |
| ** The PCI host has it's interrupts disabled by clearing the |
| ** int_enable bit, like a regular host card. |
| */ |
| HostP->Mode &= ~RIO_PCI_INT_ENABLE; |
| HostP->Ivec = POLLED; |
| break; |
| #ifdef FUTURE_RELEASE |
| case RIO_MCA: |
| /* |
| ** There's always one, isn't there? |
| ** The MCA host card cannot have it's interrupts disabled. |
| */ |
| RIOPatchVec(HostP); |
| break; |
| #endif |
| } |
| } |
| } |
| |
| /* |
| ** This function is called at init time to setup the data structures. |
| */ |
| void |
| RIOAllocDataStructs(p) |
| struct rio_info * p; |
| { |
| int port, |
| host, |
| tm; |
| |
| p->RIOPortp = (struct Port *)sysbrk(RIO_PORTS * sizeof(struct Port)); |
| if (!p->RIOPortp) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: No memory for port structures\n"); |
| p->RIOFailed++; |
| return; |
| } |
| bzero( p->RIOPortp, sizeof(struct Port) * RIO_PORTS ); |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: allocated and cleared memory for port structs\n"); |
| rio_dprintk (RIO_DEBUG_INIT, "First RIO port struct @0x%x, size=0x%x bytes\n", |
| (int)p->RIOPortp, sizeof(struct Port)); |
| |
| for( port=0; port<RIO_PORTS; port++ ) { |
| p->RIOPortp[port].PortNum = port; |
| p->RIOPortp[port].TtyP = &p->channel[port]; |
| sreset (p->RIOPortp[port].InUse); /* Let the first guy uses it */ |
| p->RIOPortp[port].portSem = -1; /* Let the first guy takes it */ |
| p->RIOPortp[port].ParamSem = -1; /* Let the first guy takes it */ |
| p->RIOPortp[port].timeout_id = 0; /* Let the first guy takes it */ |
| } |
| |
| p->RIOHosts = (struct Host *)sysbrk(RIO_HOSTS * sizeof(struct Host)); |
| if (!p->RIOHosts) { |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: No memory for host structures\n"); |
| p->RIOFailed++; |
| return; |
| } |
| bzero(p->RIOHosts, sizeof(struct Host)*RIO_HOSTS); |
| rio_dprintk (RIO_DEBUG_INIT, "RIO-init: allocated and cleared memory for host structs\n"); |
| rio_dprintk (RIO_DEBUG_INIT, "First RIO host struct @0x%x, size=0x%x bytes\n", |
| (int)p->RIOHosts, sizeof(struct Host)); |
| |
| for( host=0; host<RIO_HOSTS; host++ ) { |
| spin_lock_init (&p->RIOHosts[host].HostLock); |
| p->RIOHosts[host].timeout_id = 0; /* Let the first guy takes it */ |
| } |
| /* |
| ** check that the buffer size is valid, round down to the next power of |
| ** two if necessary; if the result is zero, then, hey, no double buffers. |
| */ |
| for ( tm = 1; tm && tm <= p->RIOConf.BufferSize; tm <<= 1 ) |
| ; |
| tm >>= 1; |
| p->RIOBufferSize = tm; |
| p->RIOBufferMask = tm ? tm - 1 : 0; |
| } |
| |
| /* |
| ** this function gets called whenever the data structures need to be |
| ** re-setup, for example, after a riohalt (why did I ever invent it?) |
| */ |
| void |
| RIOSetupDataStructs(p) |
| struct rio_info * p; |
| { |
| int host, entry, rup; |
| |
| for ( host=0; host<RIO_HOSTS; host++ ) { |
| struct Host *HostP = &p->RIOHosts[host]; |
| for ( entry=0; entry<LINKS_PER_UNIT; entry++ ) { |
| HostP->Topology[entry].Unit = ROUTE_DISCONNECT; |
| HostP->Topology[entry].Link = NO_LINK; |
| } |
| bcopy("HOST X", HostP->Name, 7); |
| HostP->Name[5] = '1'+host; |
| for (rup=0; rup<(MAX_RUP + LINKS_PER_UNIT); rup++) { |
| if (rup < MAX_RUP) { |
| for (entry=0; entry<LINKS_PER_UNIT; entry++ ) { |
| HostP->Mapping[rup].Topology[entry].Unit = ROUTE_DISCONNECT; |
| HostP->Mapping[rup].Topology[entry].Link = NO_LINK; |
| } |
| RIODefaultName(p, HostP, rup); |
| } |
| spin_lock_init(&HostP->UnixRups[rup].RupLock); |
| } |
| } |
| } |
| #endif |
| |
| int |
| RIODefaultName(p, HostP, UnitId) |
| struct rio_info * p; |
| struct Host * HostP; |
| uint UnitId; |
| { |
| #ifdef CHECK |
| CheckHost( Host ); |
| CheckUnitId( UnitId ); |
| #endif |
| bcopy("UNKNOWN RTA X-XX",HostP->Mapping[UnitId].Name,17); |
| HostP->Mapping[UnitId].Name[12]='1'+(HostP-p->RIOHosts); |
| if ((UnitId+1) > 9) { |
| HostP->Mapping[UnitId].Name[14]='0'+((UnitId+1)/10); |
| HostP->Mapping[UnitId].Name[15]='0'+((UnitId+1)%10); |
| } |
| else { |
| HostP->Mapping[UnitId].Name[14]='1'+UnitId; |
| HostP->Mapping[UnitId].Name[15]=0; |
| } |
| return 0; |
| } |
| |
| #define RIO_RELEASE "Linux" |
| #define RELEASE_ID "1.0" |
| |
| #if 0 |
| static int |
| RIOReport(p) |
| struct rio_info * p; |
| { |
| char * RIORelease = RIO_RELEASE; |
| char * RIORelID = RELEASE_ID; |
| int host; |
| |
| rio_dprintk (RIO_DEBUG_INIT, "RIO : Release: %s ID: %s\n", RIORelease, RIORelID); |
| |
| if ( p->RIONumHosts==0 ) { |
| rio_dprintk (RIO_DEBUG_INIT, "\nNo Hosts configured\n"); |
| return(0); |
| } |
| |
| for ( host=0; host < p->RIONumHosts; host++ ) { |
| struct Host *HostP = &p->RIOHosts[host]; |
| switch ( HostP->Type ) { |
| case RIO_AT: |
| rio_dprintk (RIO_DEBUG_INIT, "AT BUS : found the card at 0x%x\n", HostP->PaddrP); |
| } |
| } |
| return 0; |
| } |
| #endif |
| |
| static struct rioVersion stVersion; |
| |
| struct rioVersion * |
| RIOVersid(void) |
| { |
| strlcpy(stVersion.version, "RIO driver for linux V1.0", |
| sizeof(stVersion.version)); |
| strlcpy(stVersion.buildDate, __DATE__, |
| sizeof(stVersion.buildDate)); |
| |
| return &stVersion; |
| } |
| |
| #if 0 |
| int |
| RIOMapin(paddr, size, vaddr) |
| paddr_t paddr; |
| int size; |
| caddr_t * vaddr; |
| { |
| *vaddr = (caddr_t)permap( (long)paddr, size); |
| return ((int)*vaddr); |
| } |
| |
| void |
| RIOMapout(paddr, size, vaddr) |
| paddr_t paddr; |
| long size; |
| caddr_t vaddr; |
| { |
| } |
| #endif |
| |
| |
| void |
| RIOHostReset(Type, DpRamP, Slot) |
| uint Type; |
| volatile struct DpRam *DpRamP; |
| uint Slot; |
| { |
| /* |
| ** Reset the Tpu |
| */ |
| rio_dprintk (RIO_DEBUG_INIT, "RIOHostReset: type 0x%x", Type); |
| switch ( Type ) { |
| case RIO_AT: |
| rio_dprintk (RIO_DEBUG_INIT, " (RIO_AT)\n"); |
| WBYTE(DpRamP->DpControl, BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| INTERRUPT_DISABLE | BYTE_OPERATION | |
| SLOW_LINKS | SLOW_AT_BUS); |
| WBYTE(DpRamP->DpResetTpu, 0xFF); |
| rio_udelay (3); |
| |
| rio_dprintk (RIO_DEBUG_INIT, "RIOHostReset: Don't know if it worked. Try reset again\n"); |
| WBYTE(DpRamP->DpControl, BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| INTERRUPT_DISABLE | BYTE_OPERATION | |
| SLOW_LINKS | SLOW_AT_BUS); |
| WBYTE(DpRamP->DpResetTpu, 0xFF); |
| rio_udelay (3); |
| break; |
| #ifdef FUTURE_RELEASE |
| case RIO_EISA: |
| /* |
| ** Bet this doesn't work! |
| */ |
| OUTBZ( Slot, EISA_CONTROL_PORT, |
| EISA_TP_RUN | EISA_TP_BUS_DISABLE | |
| EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM ); |
| OUTBZ( Slot, EISA_CONTROL_PORT, |
| EISA_TP_RESET | EISA_TP_BUS_DISABLE | |
| EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM ); |
| suspend( 3 ); |
| OUTBZ( Slot, EISA_CONTROL_PORT, |
| EISA_TP_RUN | EISA_TP_BUS_DISABLE | |
| EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM ); |
| break; |
| case RIO_MCA: |
| WBYTE(DpRamP->DpControl , McaTpBootFromRam | McaTpBusDisable ); |
| WBYTE(DpRamP->DpResetTpu , 0xFF ); |
| suspend( 3 ); |
| WBYTE(DpRamP->DpControl , McaTpBootFromRam | McaTpBusDisable ); |
| WBYTE(DpRamP->DpResetTpu , 0xFF ); |
| suspend( 3 ); |
| break; |
| #endif |
| case RIO_PCI: |
| rio_dprintk (RIO_DEBUG_INIT, " (RIO_PCI)\n"); |
| DpRamP->DpControl = RIO_PCI_BOOT_FROM_RAM; |
| DpRamP->DpResetInt = 0xFF; |
| DpRamP->DpResetTpu = 0xFF; |
| rio_udelay (100); |
| /* for (i=0; i<6000; i++); */ |
| /* suspend( 3 ); */ |
| break; |
| #ifdef FUTURE_RELEASE |
| default: |
| Rprintf(RIOMesgNoSupport,Type,DpRamP,Slot); |
| return; |
| #endif |
| |
| default: |
| rio_dprintk (RIO_DEBUG_INIT, " (UNKNOWN)\n"); |
| break; |
| } |
| return; |
| } |