| /* |
| * intelfb |
| * |
| * Linux framebuffer driver for Intel(R) 865G integrated graphics chips. |
| * |
| * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org> |
| * 2004 Sylvain Meyer |
| * |
| * This driver consists of two parts. The first part (intelfbdrv.c) provides |
| * the basic fbdev interfaces, is derived in part from the radeonfb and |
| * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c) |
| * provides the code to program the hardware. Most of it is derived from |
| * the i810/i830 XFree86 driver. The HW-specific code is covered here |
| * under a dual license (GPL and MIT/XFree86 license). |
| * |
| * Author: David Dawes |
| * |
| */ |
| |
| /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/fb.h> |
| #include <linux/ioport.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pagemap.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/io.h> |
| |
| #include "intelfb.h" |
| #include "intelfbhw.h" |
| |
| struct pll_min_max { |
| int min_m, max_m, min_m1, max_m1; |
| int min_m2, max_m2, min_n, max_n; |
| int min_p, max_p, min_p1, max_p1; |
| int min_vco, max_vco, p_transition_clk, ref_clk; |
| int p_inc_lo, p_inc_hi; |
| }; |
| |
| #define PLLS_I8xx 0 |
| #define PLLS_I9xx 1 |
| #define PLLS_MAX 2 |
| |
| static struct pll_min_max plls[PLLS_MAX] = { |
| { 108, 140, 18, 26, |
| 6, 16, 3, 16, |
| 4, 128, 0, 31, |
| 930000, 1400000, 165000, 48000, |
| 4, 2 }, //I8xx |
| |
| { 75, 120, 10, 20, |
| 5, 9, 4, 7, |
| 5, 80, 1, 8, |
| 1400000, 2800000, 200000, 96000, |
| 10, 5 } //I9xx |
| }; |
| |
| int |
| intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo) |
| { |
| u32 tmp; |
| if (!pdev || !dinfo) |
| return 1; |
| |
| switch (pdev->device) { |
| case PCI_DEVICE_ID_INTEL_830M: |
| dinfo->name = "Intel(R) 830M"; |
| dinfo->chipset = INTEL_830M; |
| dinfo->mobile = 1; |
| dinfo->pll_index = PLLS_I8xx; |
| return 0; |
| case PCI_DEVICE_ID_INTEL_845G: |
| dinfo->name = "Intel(R) 845G"; |
| dinfo->chipset = INTEL_845G; |
| dinfo->mobile = 0; |
| dinfo->pll_index = PLLS_I8xx; |
| return 0; |
| case PCI_DEVICE_ID_INTEL_85XGM: |
| tmp = 0; |
| dinfo->mobile = 1; |
| dinfo->pll_index = PLLS_I8xx; |
| pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp); |
| switch ((tmp >> INTEL_85X_VARIANT_SHIFT) & |
| INTEL_85X_VARIANT_MASK) { |
| case INTEL_VAR_855GME: |
| dinfo->name = "Intel(R) 855GME"; |
| dinfo->chipset = INTEL_855GME; |
| return 0; |
| case INTEL_VAR_855GM: |
| dinfo->name = "Intel(R) 855GM"; |
| dinfo->chipset = INTEL_855GM; |
| return 0; |
| case INTEL_VAR_852GME: |
| dinfo->name = "Intel(R) 852GME"; |
| dinfo->chipset = INTEL_852GME; |
| return 0; |
| case INTEL_VAR_852GM: |
| dinfo->name = "Intel(R) 852GM"; |
| dinfo->chipset = INTEL_852GM; |
| return 0; |
| default: |
| dinfo->name = "Intel(R) 852GM/855GM"; |
| dinfo->chipset = INTEL_85XGM; |
| return 0; |
| } |
| break; |
| case PCI_DEVICE_ID_INTEL_865G: |
| dinfo->name = "Intel(R) 865G"; |
| dinfo->chipset = INTEL_865G; |
| dinfo->mobile = 0; |
| dinfo->pll_index = PLLS_I8xx; |
| return 0; |
| case PCI_DEVICE_ID_INTEL_915G: |
| dinfo->name = "Intel(R) 915G"; |
| dinfo->chipset = INTEL_915G; |
| dinfo->mobile = 0; |
| dinfo->pll_index = PLLS_I9xx; |
| return 0; |
| case PCI_DEVICE_ID_INTEL_915GM: |
| dinfo->name = "Intel(R) 915GM"; |
| dinfo->chipset = INTEL_915GM; |
| dinfo->mobile = 1; |
| dinfo->pll_index = PLLS_I9xx; |
| return 0; |
| case PCI_DEVICE_ID_INTEL_945G: |
| dinfo->name = "Intel(R) 945G"; |
| dinfo->chipset = INTEL_945G; |
| dinfo->mobile = 0; |
| dinfo->pll_index = PLLS_I9xx; |
| return 0; |
| case PCI_DEVICE_ID_INTEL_945GM: |
| dinfo->name = "Intel(R) 945GM"; |
| dinfo->chipset = INTEL_945GM; |
| dinfo->mobile = 1; |
| dinfo->pll_index = PLLS_I9xx; |
| return 0; |
| default: |
| return 1; |
| } |
| } |
| |
| int |
| intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size, |
| int *stolen_size) |
| { |
| struct pci_dev *bridge_dev; |
| u16 tmp; |
| int stolen_overhead; |
| |
| if (!pdev || !aperture_size || !stolen_size) |
| return 1; |
| |
| /* Find the bridge device. It is always 0:0.0 */ |
| if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) { |
| ERR_MSG("cannot find bridge device\n"); |
| return 1; |
| } |
| |
| /* Get the fb aperture size and "stolen" memory amount. */ |
| tmp = 0; |
| pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp); |
| switch (pdev->device) { |
| case PCI_DEVICE_ID_INTEL_915G: |
| case PCI_DEVICE_ID_INTEL_915GM: |
| case PCI_DEVICE_ID_INTEL_945G: |
| case PCI_DEVICE_ID_INTEL_945GM: |
| /* 915 and 945 chipsets support a 256MB aperture. |
| Aperture size is determined by inspected the |
| base address of the aperture. */ |
| if (pci_resource_start(pdev, 2) & 0x08000000) |
| *aperture_size = MB(128); |
| else |
| *aperture_size = MB(256); |
| break; |
| default: |
| if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M) |
| *aperture_size = MB(64); |
| else |
| *aperture_size = MB(128); |
| break; |
| } |
| |
| /* Stolen memory size is reduced by the GTT and the popup. |
| GTT is 1K per MB of aperture size, and popup is 4K. */ |
| stolen_overhead = (*aperture_size / MB(1)) + 4; |
| switch(pdev->device) { |
| case PCI_DEVICE_ID_INTEL_830M: |
| case PCI_DEVICE_ID_INTEL_845G: |
| switch (tmp & INTEL_830_GMCH_GMS_MASK) { |
| case INTEL_830_GMCH_GMS_STOLEN_512: |
| *stolen_size = KB(512) - KB(stolen_overhead); |
| return 0; |
| case INTEL_830_GMCH_GMS_STOLEN_1024: |
| *stolen_size = MB(1) - KB(stolen_overhead); |
| return 0; |
| case INTEL_830_GMCH_GMS_STOLEN_8192: |
| *stolen_size = MB(8) - KB(stolen_overhead); |
| return 0; |
| case INTEL_830_GMCH_GMS_LOCAL: |
| ERR_MSG("only local memory found\n"); |
| return 1; |
| case INTEL_830_GMCH_GMS_DISABLED: |
| ERR_MSG("video memory is disabled\n"); |
| return 1; |
| default: |
| ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n", |
| tmp & INTEL_830_GMCH_GMS_MASK); |
| return 1; |
| } |
| break; |
| default: |
| switch (tmp & INTEL_855_GMCH_GMS_MASK) { |
| case INTEL_855_GMCH_GMS_STOLEN_1M: |
| *stolen_size = MB(1) - KB(stolen_overhead); |
| return 0; |
| case INTEL_855_GMCH_GMS_STOLEN_4M: |
| *stolen_size = MB(4) - KB(stolen_overhead); |
| return 0; |
| case INTEL_855_GMCH_GMS_STOLEN_8M: |
| *stolen_size = MB(8) - KB(stolen_overhead); |
| return 0; |
| case INTEL_855_GMCH_GMS_STOLEN_16M: |
| *stolen_size = MB(16) - KB(stolen_overhead); |
| return 0; |
| case INTEL_855_GMCH_GMS_STOLEN_32M: |
| *stolen_size = MB(32) - KB(stolen_overhead); |
| return 0; |
| case INTEL_915G_GMCH_GMS_STOLEN_48M: |
| *stolen_size = MB(48) - KB(stolen_overhead); |
| return 0; |
| case INTEL_915G_GMCH_GMS_STOLEN_64M: |
| *stolen_size = MB(64) - KB(stolen_overhead); |
| return 0; |
| case INTEL_855_GMCH_GMS_DISABLED: |
| ERR_MSG("video memory is disabled\n"); |
| return 0; |
| default: |
| ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n", |
| tmp & INTEL_855_GMCH_GMS_MASK); |
| return 1; |
| } |
| } |
| } |
| |
| int |
| intelfbhw_check_non_crt(struct intelfb_info *dinfo) |
| { |
| int dvo = 0; |
| |
| if (INREG(LVDS) & PORT_ENABLE) |
| dvo |= LVDS_PORT; |
| if (INREG(DVOA) & PORT_ENABLE) |
| dvo |= DVOA_PORT; |
| if (INREG(DVOB) & PORT_ENABLE) |
| dvo |= DVOB_PORT; |
| if (INREG(DVOC) & PORT_ENABLE) |
| dvo |= DVOC_PORT; |
| |
| return dvo; |
| } |
| |
| const char * |
| intelfbhw_dvo_to_string(int dvo) |
| { |
| if (dvo & DVOA_PORT) |
| return "DVO port A"; |
| else if (dvo & DVOB_PORT) |
| return "DVO port B"; |
| else if (dvo & DVOC_PORT) |
| return "DVO port C"; |
| else if (dvo & LVDS_PORT) |
| return "LVDS port"; |
| else |
| return NULL; |
| } |
| |
| |
| int |
| intelfbhw_validate_mode(struct intelfb_info *dinfo, |
| struct fb_var_screeninfo *var) |
| { |
| int bytes_per_pixel; |
| int tmp; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_validate_mode\n"); |
| #endif |
| |
| bytes_per_pixel = var->bits_per_pixel / 8; |
| if (bytes_per_pixel == 3) |
| bytes_per_pixel = 4; |
| |
| /* Check if enough video memory. */ |
| tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel; |
| if (tmp > dinfo->fb.size) { |
| WRN_MSG("Not enough video ram for mode " |
| "(%d KByte vs %d KByte).\n", |
| BtoKB(tmp), BtoKB(dinfo->fb.size)); |
| return 1; |
| } |
| |
| /* Check if x/y limits are OK. */ |
| if (var->xres - 1 > HACTIVE_MASK) { |
| WRN_MSG("X resolution too large (%d vs %d).\n", |
| var->xres, HACTIVE_MASK + 1); |
| return 1; |
| } |
| if (var->yres - 1 > VACTIVE_MASK) { |
| WRN_MSG("Y resolution too large (%d vs %d).\n", |
| var->yres, VACTIVE_MASK + 1); |
| return 1; |
| } |
| |
| /* Check for interlaced/doublescan modes. */ |
| if (var->vmode & FB_VMODE_INTERLACED) { |
| WRN_MSG("Mode is interlaced.\n"); |
| return 1; |
| } |
| if (var->vmode & FB_VMODE_DOUBLE) { |
| WRN_MSG("Mode is double-scan.\n"); |
| return 1; |
| } |
| |
| /* Check if clock is OK. */ |
| tmp = 1000000000 / var->pixclock; |
| if (tmp < MIN_CLOCK) { |
| WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n", |
| (tmp + 500) / 1000, MIN_CLOCK / 1000); |
| return 1; |
| } |
| if (tmp > MAX_CLOCK) { |
| WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n", |
| (tmp + 500) / 1000, MAX_CLOCK / 1000); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| int |
| intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) |
| { |
| struct intelfb_info *dinfo = GET_DINFO(info); |
| u32 offset, xoffset, yoffset; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_pan_display\n"); |
| #endif |
| |
| xoffset = ROUND_DOWN_TO(var->xoffset, 8); |
| yoffset = var->yoffset; |
| |
| if ((xoffset + var->xres > var->xres_virtual) || |
| (yoffset + var->yres > var->yres_virtual)) |
| return -EINVAL; |
| |
| offset = (yoffset * dinfo->pitch) + |
| (xoffset * var->bits_per_pixel) / 8; |
| |
| offset += dinfo->fb.offset << 12; |
| |
| dinfo->vsync.pan_offset = offset; |
| if ((var->activate & FB_ACTIVATE_VBL) && !intelfbhw_enable_irq(dinfo, 0)) { |
| dinfo->vsync.pan_display = 1; |
| } else { |
| dinfo->vsync.pan_display = 0; |
| OUTREG(DSPABASE, offset); |
| } |
| |
| return 0; |
| } |
| |
| /* Blank the screen. */ |
| void |
| intelfbhw_do_blank(int blank, struct fb_info *info) |
| { |
| struct intelfb_info *dinfo = GET_DINFO(info); |
| u32 tmp; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank); |
| #endif |
| |
| /* Turn plane A on or off */ |
| tmp = INREG(DSPACNTR); |
| if (blank) |
| tmp &= ~DISPPLANE_PLANE_ENABLE; |
| else |
| tmp |= DISPPLANE_PLANE_ENABLE; |
| OUTREG(DSPACNTR, tmp); |
| /* Flush */ |
| tmp = INREG(DSPABASE); |
| OUTREG(DSPABASE, tmp); |
| |
| /* Turn off/on the HW cursor */ |
| #if VERBOSE > 0 |
| DBG_MSG("cursor_on is %d\n", dinfo->cursor_on); |
| #endif |
| if (dinfo->cursor_on) { |
| if (blank) { |
| intelfbhw_cursor_hide(dinfo); |
| } else { |
| intelfbhw_cursor_show(dinfo); |
| } |
| dinfo->cursor_on = 1; |
| } |
| dinfo->cursor_blanked = blank; |
| |
| /* Set DPMS level */ |
| tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK; |
| switch (blank) { |
| case FB_BLANK_UNBLANK: |
| case FB_BLANK_NORMAL: |
| tmp |= ADPA_DPMS_D0; |
| break; |
| case FB_BLANK_VSYNC_SUSPEND: |
| tmp |= ADPA_DPMS_D1; |
| break; |
| case FB_BLANK_HSYNC_SUSPEND: |
| tmp |= ADPA_DPMS_D2; |
| break; |
| case FB_BLANK_POWERDOWN: |
| tmp |= ADPA_DPMS_D3; |
| break; |
| } |
| OUTREG(ADPA, tmp); |
| |
| return; |
| } |
| |
| |
| void |
| intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno, |
| unsigned red, unsigned green, unsigned blue, |
| unsigned transp) |
| { |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n", |
| regno, red, green, blue); |
| #endif |
| |
| u32 palette_reg = (dinfo->pipe == PIPE_A) ? |
| PALETTE_A : PALETTE_B; |
| |
| OUTREG(palette_reg + (regno << 2), |
| (red << PALETTE_8_RED_SHIFT) | |
| (green << PALETTE_8_GREEN_SHIFT) | |
| (blue << PALETTE_8_BLUE_SHIFT)); |
| } |
| |
| |
| int |
| intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw, |
| int flag) |
| { |
| int i; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_read_hw_state\n"); |
| #endif |
| |
| if (!hw || !dinfo) |
| return -1; |
| |
| /* Read in as much of the HW state as possible. */ |
| hw->vga0_divisor = INREG(VGA0_DIVISOR); |
| hw->vga1_divisor = INREG(VGA1_DIVISOR); |
| hw->vga_pd = INREG(VGAPD); |
| hw->dpll_a = INREG(DPLL_A); |
| hw->dpll_b = INREG(DPLL_B); |
| hw->fpa0 = INREG(FPA0); |
| hw->fpa1 = INREG(FPA1); |
| hw->fpb0 = INREG(FPB0); |
| hw->fpb1 = INREG(FPB1); |
| |
| if (flag == 1) |
| return flag; |
| |
| #if 0 |
| /* This seems to be a problem with the 852GM/855GM */ |
| for (i = 0; i < PALETTE_8_ENTRIES; i++) { |
| hw->palette_a[i] = INREG(PALETTE_A + (i << 2)); |
| hw->palette_b[i] = INREG(PALETTE_B + (i << 2)); |
| } |
| #endif |
| |
| if (flag == 2) |
| return flag; |
| |
| hw->htotal_a = INREG(HTOTAL_A); |
| hw->hblank_a = INREG(HBLANK_A); |
| hw->hsync_a = INREG(HSYNC_A); |
| hw->vtotal_a = INREG(VTOTAL_A); |
| hw->vblank_a = INREG(VBLANK_A); |
| hw->vsync_a = INREG(VSYNC_A); |
| hw->src_size_a = INREG(SRC_SIZE_A); |
| hw->bclrpat_a = INREG(BCLRPAT_A); |
| hw->htotal_b = INREG(HTOTAL_B); |
| hw->hblank_b = INREG(HBLANK_B); |
| hw->hsync_b = INREG(HSYNC_B); |
| hw->vtotal_b = INREG(VTOTAL_B); |
| hw->vblank_b = INREG(VBLANK_B); |
| hw->vsync_b = INREG(VSYNC_B); |
| hw->src_size_b = INREG(SRC_SIZE_B); |
| hw->bclrpat_b = INREG(BCLRPAT_B); |
| |
| if (flag == 3) |
| return flag; |
| |
| hw->adpa = INREG(ADPA); |
| hw->dvoa = INREG(DVOA); |
| hw->dvob = INREG(DVOB); |
| hw->dvoc = INREG(DVOC); |
| hw->dvoa_srcdim = INREG(DVOA_SRCDIM); |
| hw->dvob_srcdim = INREG(DVOB_SRCDIM); |
| hw->dvoc_srcdim = INREG(DVOC_SRCDIM); |
| hw->lvds = INREG(LVDS); |
| |
| if (flag == 4) |
| return flag; |
| |
| hw->pipe_a_conf = INREG(PIPEACONF); |
| hw->pipe_b_conf = INREG(PIPEBCONF); |
| hw->disp_arb = INREG(DISPARB); |
| |
| if (flag == 5) |
| return flag; |
| |
| hw->cursor_a_control = INREG(CURSOR_A_CONTROL); |
| hw->cursor_b_control = INREG(CURSOR_B_CONTROL); |
| hw->cursor_a_base = INREG(CURSOR_A_BASEADDR); |
| hw->cursor_b_base = INREG(CURSOR_B_BASEADDR); |
| |
| if (flag == 6) |
| return flag; |
| |
| for (i = 0; i < 4; i++) { |
| hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2)); |
| hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2)); |
| } |
| |
| if (flag == 7) |
| return flag; |
| |
| hw->cursor_size = INREG(CURSOR_SIZE); |
| |
| if (flag == 8) |
| return flag; |
| |
| hw->disp_a_ctrl = INREG(DSPACNTR); |
| hw->disp_b_ctrl = INREG(DSPBCNTR); |
| hw->disp_a_base = INREG(DSPABASE); |
| hw->disp_b_base = INREG(DSPBBASE); |
| hw->disp_a_stride = INREG(DSPASTRIDE); |
| hw->disp_b_stride = INREG(DSPBSTRIDE); |
| |
| if (flag == 9) |
| return flag; |
| |
| hw->vgacntrl = INREG(VGACNTRL); |
| |
| if (flag == 10) |
| return flag; |
| |
| hw->add_id = INREG(ADD_ID); |
| |
| if (flag == 11) |
| return flag; |
| |
| for (i = 0; i < 7; i++) { |
| hw->swf0x[i] = INREG(SWF00 + (i << 2)); |
| hw->swf1x[i] = INREG(SWF10 + (i << 2)); |
| if (i < 3) |
| hw->swf3x[i] = INREG(SWF30 + (i << 2)); |
| } |
| |
| for (i = 0; i < 8; i++) |
| hw->fence[i] = INREG(FENCE + (i << 2)); |
| |
| hw->instpm = INREG(INSTPM); |
| hw->mem_mode = INREG(MEM_MODE); |
| hw->fw_blc_0 = INREG(FW_BLC_0); |
| hw->fw_blc_1 = INREG(FW_BLC_1); |
| |
| hw->hwstam = INREG16(HWSTAM); |
| hw->ier = INREG16(IER); |
| hw->iir = INREG16(IIR); |
| hw->imr = INREG16(IMR); |
| |
| return 0; |
| } |
| |
| |
| static int calc_vclock3(int index, int m, int n, int p) |
| { |
| if (p == 0 || n == 0) |
| return 0; |
| return plls[index].ref_clk * m / n / p; |
| } |
| |
| static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds) |
| { |
| struct pll_min_max *pll = &plls[index]; |
| u32 m, vco, p; |
| |
| m = (5 * (m1 + 2)) + (m2 + 2); |
| n += 2; |
| vco = pll->ref_clk * m / n; |
| |
| if (index == PLLS_I8xx) { |
| p = ((p1 + 2) * (1 << (p2 + 1))); |
| } else { |
| p = ((p1) * (p2 ? 5 : 10)); |
| } |
| return vco / p; |
| } |
| |
| #if REGDUMP |
| static void |
| intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2) |
| { |
| int p1, p2; |
| |
| if (IS_I9XX(dinfo)) { |
| if (dpll & DPLL_P1_FORCE_DIV2) |
| p1 = 1; |
| else |
| p1 = (dpll >> DPLL_P1_SHIFT) & 0xff; |
| |
| p1 = ffs(p1); |
| |
| p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK; |
| } else { |
| if (dpll & DPLL_P1_FORCE_DIV2) |
| p1 = 0; |
| else |
| p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK; |
| p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK; |
| } |
| |
| *o_p1 = p1; |
| *o_p2 = p2; |
| } |
| #endif |
| |
| |
| void |
| intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw) |
| { |
| #if REGDUMP |
| int i, m1, m2, n, p1, p2; |
| int index = dinfo->pll_index; |
| DBG_MSG("intelfbhw_print_hw_state\n"); |
| |
| if (!hw || !dinfo) |
| return; |
| /* Read in as much of the HW state as possible. */ |
| printk("hw state dump start\n"); |
| printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor); |
| printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor); |
| printk(" VGAPD: 0x%08x\n", hw->vga_pd); |
| n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| |
| intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2); |
| |
| printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", |
| m1, m2, n, p1, p2); |
| printk(" VGA0: clock is %d\n", |
| calc_vclock(index, m1, m2, n, p1, p2, 0)); |
| |
| n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| |
| intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2); |
| printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", |
| m1, m2, n, p1, p2); |
| printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0)); |
| |
| printk(" DPLL_A: 0x%08x\n", hw->dpll_a); |
| printk(" DPLL_B: 0x%08x\n", hw->dpll_b); |
| printk(" FPA0: 0x%08x\n", hw->fpa0); |
| printk(" FPA1: 0x%08x\n", hw->fpa1); |
| printk(" FPB0: 0x%08x\n", hw->fpb0); |
| printk(" FPB1: 0x%08x\n", hw->fpb1); |
| |
| n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| |
| intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2); |
| |
| printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", |
| m1, m2, n, p1, p2); |
| printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0)); |
| |
| n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; |
| |
| intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2); |
| |
| printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", |
| m1, m2, n, p1, p2); |
| printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0)); |
| |
| #if 0 |
| printk(" PALETTE_A:\n"); |
| for (i = 0; i < PALETTE_8_ENTRIES) |
| printk(" %3d: 0x%08x\n", i, hw->palette_a[i]); |
| printk(" PALETTE_B:\n"); |
| for (i = 0; i < PALETTE_8_ENTRIES) |
| printk(" %3d: 0x%08x\n", i, hw->palette_b[i]); |
| #endif |
| |
| printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a); |
| printk(" HBLANK_A: 0x%08x\n", hw->hblank_a); |
| printk(" HSYNC_A: 0x%08x\n", hw->hsync_a); |
| printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a); |
| printk(" VBLANK_A: 0x%08x\n", hw->vblank_a); |
| printk(" VSYNC_A: 0x%08x\n", hw->vsync_a); |
| printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a); |
| printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a); |
| printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b); |
| printk(" HBLANK_B: 0x%08x\n", hw->hblank_b); |
| printk(" HSYNC_B: 0x%08x\n", hw->hsync_b); |
| printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b); |
| printk(" VBLANK_B: 0x%08x\n", hw->vblank_b); |
| printk(" VSYNC_B: 0x%08x\n", hw->vsync_b); |
| printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b); |
| printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b); |
| |
| printk(" ADPA: 0x%08x\n", hw->adpa); |
| printk(" DVOA: 0x%08x\n", hw->dvoa); |
| printk(" DVOB: 0x%08x\n", hw->dvob); |
| printk(" DVOC: 0x%08x\n", hw->dvoc); |
| printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim); |
| printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim); |
| printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim); |
| printk(" LVDS: 0x%08x\n", hw->lvds); |
| |
| printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf); |
| printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf); |
| printk(" DISPARB: 0x%08x\n", hw->disp_arb); |
| |
| printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control); |
| printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control); |
| printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base); |
| printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base); |
| |
| printk(" CURSOR_A_PALETTE: "); |
| for (i = 0; i < 4; i++) { |
| printk("0x%08x", hw->cursor_a_palette[i]); |
| if (i < 3) |
| printk(", "); |
| } |
| printk("\n"); |
| printk(" CURSOR_B_PALETTE: "); |
| for (i = 0; i < 4; i++) { |
| printk("0x%08x", hw->cursor_b_palette[i]); |
| if (i < 3) |
| printk(", "); |
| } |
| printk("\n"); |
| |
| printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size); |
| |
| printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl); |
| printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl); |
| printk(" DSPABASE: 0x%08x\n", hw->disp_a_base); |
| printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base); |
| printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride); |
| printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride); |
| |
| printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl); |
| printk(" ADD_ID: 0x%08x\n", hw->add_id); |
| |
| for (i = 0; i < 7; i++) { |
| printk(" SWF0%d 0x%08x\n", i, |
| hw->swf0x[i]); |
| } |
| for (i = 0; i < 7; i++) { |
| printk(" SWF1%d 0x%08x\n", i, |
| hw->swf1x[i]); |
| } |
| for (i = 0; i < 3; i++) { |
| printk(" SWF3%d 0x%08x\n", i, |
| hw->swf3x[i]); |
| } |
| for (i = 0; i < 8; i++) |
| printk(" FENCE%d 0x%08x\n", i, |
| hw->fence[i]); |
| |
| printk(" INSTPM 0x%08x\n", hw->instpm); |
| printk(" MEM_MODE 0x%08x\n", hw->mem_mode); |
| printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0); |
| printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1); |
| |
| printk(" HWSTAM 0x%04x\n", hw->hwstam); |
| printk(" IER 0x%04x\n", hw->ier); |
| printk(" IIR 0x%04x\n", hw->iir); |
| printk(" IMR 0x%04x\n", hw->imr); |
| printk("hw state dump end\n"); |
| #endif |
| } |
| |
| |
| |
| /* Split the M parameter into M1 and M2. */ |
| static int |
| splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2) |
| { |
| int m1, m2; |
| int testm; |
| struct pll_min_max *pll = &plls[index]; |
| |
| /* no point optimising too much - brute force m */ |
| for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) { |
| for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) { |
| testm = (5 * (m1 + 2)) + (m2 + 2); |
| if (testm == m) { |
| *retm1 = (unsigned int)m1; |
| *retm2 = (unsigned int)m2; |
| return 0; |
| } |
| } |
| } |
| return 1; |
| } |
| |
| /* Split the P parameter into P1 and P2. */ |
| static int |
| splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2) |
| { |
| int p1, p2; |
| struct pll_min_max *pll = &plls[index]; |
| |
| if (index == PLLS_I9xx) { |
| p2 = (p % 10) ? 1 : 0; |
| |
| p1 = p / (p2 ? 5 : 10); |
| |
| *retp1 = (unsigned int)p1; |
| *retp2 = (unsigned int)p2; |
| return 0; |
| } |
| |
| if (p % 4 == 0) |
| p2 = 1; |
| else |
| p2 = 0; |
| p1 = (p / (1 << (p2 + 1))) - 2; |
| if (p % 4 == 0 && p1 < pll->min_p1) { |
| p2 = 0; |
| p1 = (p / (1 << (p2 + 1))) - 2; |
| } |
| if (p1 < pll->min_p1 || p1 > pll->max_p1 || |
| (p1 + 2) * (1 << (p2 + 1)) != p) { |
| return 1; |
| } else { |
| *retp1 = (unsigned int)p1; |
| *retp2 = (unsigned int)p2; |
| return 0; |
| } |
| } |
| |
| static int |
| calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1, |
| u32 *retp2, u32 *retclock) |
| { |
| u32 m1, m2, n, p1, p2, n1, testm; |
| u32 f_vco, p, p_best = 0, m, f_out = 0; |
| u32 err_max, err_target, err_best = 10000000; |
| u32 n_best = 0, m_best = 0, f_best, f_err; |
| u32 p_min, p_max, p_inc, div_max; |
| struct pll_min_max *pll = &plls[index]; |
| |
| /* Accept 0.5% difference, but aim for 0.1% */ |
| err_max = 5 * clock / 1000; |
| err_target = clock / 1000; |
| |
| DBG_MSG("Clock is %d\n", clock); |
| |
| div_max = pll->max_vco / clock; |
| |
| p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi; |
| p_min = p_inc; |
| p_max = ROUND_DOWN_TO(div_max, p_inc); |
| if (p_min < pll->min_p) |
| p_min = pll->min_p; |
| if (p_max > pll->max_p) |
| p_max = pll->max_p; |
| |
| DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc); |
| |
| p = p_min; |
| do { |
| if (splitp(index, p, &p1, &p2)) { |
| WRN_MSG("cannot split p = %d\n", p); |
| p += p_inc; |
| continue; |
| } |
| n = pll->min_n; |
| f_vco = clock * p; |
| |
| do { |
| m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk; |
| if (m < pll->min_m) |
| m = pll->min_m + 1; |
| if (m > pll->max_m) |
| m = pll->max_m - 1; |
| for (testm = m - 1; testm <= m; testm++) { |
| f_out = calc_vclock3(index, m, n, p); |
| if (splitm(index, testm, &m1, &m2)) { |
| WRN_MSG("cannot split m = %d\n", m); |
| n++; |
| continue; |
| } |
| if (clock > f_out) |
| f_err = clock - f_out; |
| else/* slightly bias the error for bigger clocks */ |
| f_err = f_out - clock + 1; |
| |
| if (f_err < err_best) { |
| m_best = testm; |
| n_best = n; |
| p_best = p; |
| f_best = f_out; |
| err_best = f_err; |
| } |
| } |
| n++; |
| } while ((n <= pll->max_n) && (f_out >= clock)); |
| p += p_inc; |
| } while ((p <= p_max)); |
| |
| if (!m_best) { |
| WRN_MSG("cannot find parameters for clock %d\n", clock); |
| return 1; |
| } |
| m = m_best; |
| n = n_best; |
| p = p_best; |
| splitm(index, m, &m1, &m2); |
| splitp(index, p, &p1, &p2); |
| n1 = n - 2; |
| |
| DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), " |
| "f: %d (%d), VCO: %d\n", |
| m, m1, m2, n, n1, p, p1, p2, |
| calc_vclock3(index, m, n, p), |
| calc_vclock(index, m1, m2, n1, p1, p2, 0), |
| calc_vclock3(index, m, n, p) * p); |
| *retm1 = m1; |
| *retm2 = m2; |
| *retn = n1; |
| *retp1 = p1; |
| *retp2 = p2; |
| *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0); |
| |
| return 0; |
| } |
| |
| static __inline__ int |
| check_overflow(u32 value, u32 limit, const char *description) |
| { |
| if (value > limit) { |
| WRN_MSG("%s value %d exceeds limit %d\n", |
| description, value, limit); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* It is assumed that hw is filled in with the initial state information. */ |
| int |
| intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw, |
| struct fb_var_screeninfo *var) |
| { |
| int pipe = PIPE_A; |
| u32 *dpll, *fp0, *fp1; |
| u32 m1, m2, n, p1, p2, clock_target, clock; |
| u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive; |
| u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive; |
| u32 vsync_pol, hsync_pol; |
| u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf; |
| u32 stride_alignment; |
| |
| DBG_MSG("intelfbhw_mode_to_hw\n"); |
| |
| /* Disable VGA */ |
| hw->vgacntrl |= VGA_DISABLE; |
| |
| /* Check whether pipe A or pipe B is enabled. */ |
| if (hw->pipe_a_conf & PIPECONF_ENABLE) |
| pipe = PIPE_A; |
| else if (hw->pipe_b_conf & PIPECONF_ENABLE) |
| pipe = PIPE_B; |
| |
| /* Set which pipe's registers will be set. */ |
| if (pipe == PIPE_B) { |
| dpll = &hw->dpll_b; |
| fp0 = &hw->fpb0; |
| fp1 = &hw->fpb1; |
| hs = &hw->hsync_b; |
| hb = &hw->hblank_b; |
| ht = &hw->htotal_b; |
| vs = &hw->vsync_b; |
| vb = &hw->vblank_b; |
| vt = &hw->vtotal_b; |
| ss = &hw->src_size_b; |
| pipe_conf = &hw->pipe_b_conf; |
| } else { |
| dpll = &hw->dpll_a; |
| fp0 = &hw->fpa0; |
| fp1 = &hw->fpa1; |
| hs = &hw->hsync_a; |
| hb = &hw->hblank_a; |
| ht = &hw->htotal_a; |
| vs = &hw->vsync_a; |
| vb = &hw->vblank_a; |
| vt = &hw->vtotal_a; |
| ss = &hw->src_size_a; |
| pipe_conf = &hw->pipe_a_conf; |
| } |
| |
| /* Use ADPA register for sync control. */ |
| hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY; |
| |
| /* sync polarity */ |
| hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ? |
| ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW; |
| vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ? |
| ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW; |
| hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) | |
| (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT)); |
| hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) | |
| (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT); |
| |
| /* Connect correct pipe to the analog port DAC */ |
| hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT); |
| hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT); |
| |
| /* Set DPMS state to D0 (on) */ |
| hw->adpa &= ~ADPA_DPMS_CONTROL_MASK; |
| hw->adpa |= ADPA_DPMS_D0; |
| |
| hw->adpa |= ADPA_DAC_ENABLE; |
| |
| *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE); |
| *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK); |
| *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0); |
| |
| /* Desired clock in kHz */ |
| clock_target = 1000000000 / var->pixclock; |
| |
| if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, |
| &n, &p1, &p2, &clock)) { |
| WRN_MSG("calc_pll_params failed\n"); |
| return 1; |
| } |
| |
| /* Check for overflow. */ |
| if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter")) |
| return 1; |
| if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter")) |
| return 1; |
| if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter")) |
| return 1; |
| if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter")) |
| return 1; |
| if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter")) |
| return 1; |
| |
| *dpll &= ~DPLL_P1_FORCE_DIV2; |
| *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) | |
| (DPLL_P1_MASK << DPLL_P1_SHIFT)); |
| |
| if (IS_I9XX(dinfo)) { |
| *dpll |= (p2 << DPLL_I9XX_P2_SHIFT); |
| *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT; |
| } else { |
| *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT); |
| } |
| |
| *fp0 = (n << FP_N_DIVISOR_SHIFT) | |
| (m1 << FP_M1_DIVISOR_SHIFT) | |
| (m2 << FP_M2_DIVISOR_SHIFT); |
| *fp1 = *fp0; |
| |
| hw->dvob &= ~PORT_ENABLE; |
| hw->dvoc &= ~PORT_ENABLE; |
| |
| /* Use display plane A. */ |
| hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE; |
| hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE; |
| hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK; |
| switch (intelfb_var_to_depth(var)) { |
| case 8: |
| hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE; |
| break; |
| case 15: |
| hw->disp_a_ctrl |= DISPPLANE_15_16BPP; |
| break; |
| case 16: |
| hw->disp_a_ctrl |= DISPPLANE_16BPP; |
| break; |
| case 24: |
| hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA; |
| break; |
| } |
| hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT); |
| hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT); |
| |
| /* Set CRTC registers. */ |
| hactive = var->xres; |
| hsync_start = hactive + var->right_margin; |
| hsync_end = hsync_start + var->hsync_len; |
| htotal = hsync_end + var->left_margin; |
| hblank_start = hactive; |
| hblank_end = htotal; |
| |
| DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n", |
| hactive, hsync_start, hsync_end, htotal, hblank_start, |
| hblank_end); |
| |
| vactive = var->yres; |
| vsync_start = vactive + var->lower_margin; |
| vsync_end = vsync_start + var->vsync_len; |
| vtotal = vsync_end + var->upper_margin; |
| vblank_start = vactive; |
| vblank_end = vtotal; |
| vblank_end = vsync_end + 1; |
| |
| DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n", |
| vactive, vsync_start, vsync_end, vtotal, vblank_start, |
| vblank_end); |
| |
| /* Adjust for register values, and check for overflow. */ |
| hactive--; |
| if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive")) |
| return 1; |
| hsync_start--; |
| if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start")) |
| return 1; |
| hsync_end--; |
| if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end")) |
| return 1; |
| htotal--; |
| if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal")) |
| return 1; |
| hblank_start--; |
| if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start")) |
| return 1; |
| hblank_end--; |
| if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end")) |
| return 1; |
| |
| vactive--; |
| if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive")) |
| return 1; |
| vsync_start--; |
| if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start")) |
| return 1; |
| vsync_end--; |
| if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end")) |
| return 1; |
| vtotal--; |
| if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal")) |
| return 1; |
| vblank_start--; |
| if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start")) |
| return 1; |
| vblank_end--; |
| if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end")) |
| return 1; |
| |
| *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT); |
| *hb = (hblank_start << HBLANKSTART_SHIFT) | |
| (hblank_end << HSYNCEND_SHIFT); |
| *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT); |
| |
| *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT); |
| *vb = (vblank_start << VBLANKSTART_SHIFT) | |
| (vblank_end << VSYNCEND_SHIFT); |
| *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT); |
| *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) | |
| (vactive << SRC_SIZE_VERT_SHIFT); |
| |
| hw->disp_a_stride = dinfo->pitch; |
| DBG_MSG("pitch is %d\n", hw->disp_a_stride); |
| |
| hw->disp_a_base = hw->disp_a_stride * var->yoffset + |
| var->xoffset * var->bits_per_pixel / 8; |
| |
| hw->disp_a_base += dinfo->fb.offset << 12; |
| |
| /* Check stride alignment. */ |
| stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX : |
| STRIDE_ALIGNMENT; |
| if (hw->disp_a_stride % stride_alignment != 0) { |
| WRN_MSG("display stride %d has bad alignment %d\n", |
| hw->disp_a_stride, stride_alignment); |
| return 1; |
| } |
| |
| /* Set the palette to 8-bit mode. */ |
| *pipe_conf &= ~PIPECONF_GAMMA; |
| return 0; |
| } |
| |
| /* Program a (non-VGA) video mode. */ |
| int |
| intelfbhw_program_mode(struct intelfb_info *dinfo, |
| const struct intelfb_hwstate *hw, int blank) |
| { |
| int pipe = PIPE_A; |
| u32 tmp; |
| const u32 *dpll, *fp0, *fp1, *pipe_conf; |
| const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss; |
| u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg; |
| u32 hsync_reg, htotal_reg, hblank_reg; |
| u32 vsync_reg, vtotal_reg, vblank_reg; |
| u32 src_size_reg; |
| u32 count, tmp_val[3]; |
| |
| /* Assume single pipe, display plane A, analog CRT. */ |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_program_mode\n"); |
| #endif |
| |
| /* Disable VGA */ |
| tmp = INREG(VGACNTRL); |
| tmp |= VGA_DISABLE; |
| OUTREG(VGACNTRL, tmp); |
| |
| /* Check whether pipe A or pipe B is enabled. */ |
| if (hw->pipe_a_conf & PIPECONF_ENABLE) |
| pipe = PIPE_A; |
| else if (hw->pipe_b_conf & PIPECONF_ENABLE) |
| pipe = PIPE_B; |
| |
| dinfo->pipe = pipe; |
| |
| if (pipe == PIPE_B) { |
| dpll = &hw->dpll_b; |
| fp0 = &hw->fpb0; |
| fp1 = &hw->fpb1; |
| pipe_conf = &hw->pipe_b_conf; |
| hs = &hw->hsync_b; |
| hb = &hw->hblank_b; |
| ht = &hw->htotal_b; |
| vs = &hw->vsync_b; |
| vb = &hw->vblank_b; |
| vt = &hw->vtotal_b; |
| ss = &hw->src_size_b; |
| dpll_reg = DPLL_B; |
| fp0_reg = FPB0; |
| fp1_reg = FPB1; |
| pipe_conf_reg = PIPEBCONF; |
| hsync_reg = HSYNC_B; |
| htotal_reg = HTOTAL_B; |
| hblank_reg = HBLANK_B; |
| vsync_reg = VSYNC_B; |
| vtotal_reg = VTOTAL_B; |
| vblank_reg = VBLANK_B; |
| src_size_reg = SRC_SIZE_B; |
| } else { |
| dpll = &hw->dpll_a; |
| fp0 = &hw->fpa0; |
| fp1 = &hw->fpa1; |
| pipe_conf = &hw->pipe_a_conf; |
| hs = &hw->hsync_a; |
| hb = &hw->hblank_a; |
| ht = &hw->htotal_a; |
| vs = &hw->vsync_a; |
| vb = &hw->vblank_a; |
| vt = &hw->vtotal_a; |
| ss = &hw->src_size_a; |
| dpll_reg = DPLL_A; |
| fp0_reg = FPA0; |
| fp1_reg = FPA1; |
| pipe_conf_reg = PIPEACONF; |
| hsync_reg = HSYNC_A; |
| htotal_reg = HTOTAL_A; |
| hblank_reg = HBLANK_A; |
| vsync_reg = VSYNC_A; |
| vtotal_reg = VTOTAL_A; |
| vblank_reg = VBLANK_A; |
| src_size_reg = SRC_SIZE_A; |
| } |
| |
| /* turn off pipe */ |
| tmp = INREG(pipe_conf_reg); |
| tmp &= ~PIPECONF_ENABLE; |
| OUTREG(pipe_conf_reg, tmp); |
| |
| count = 0; |
| do { |
| tmp_val[count%3] = INREG(0x70000); |
| if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2])) |
| break; |
| count++; |
| udelay(1); |
| if (count % 200 == 0) { |
| tmp = INREG(pipe_conf_reg); |
| tmp &= ~PIPECONF_ENABLE; |
| OUTREG(pipe_conf_reg, tmp); |
| } |
| } while(count < 2000); |
| |
| OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE); |
| |
| /* Disable planes A and B. */ |
| tmp = INREG(DSPACNTR); |
| tmp &= ~DISPPLANE_PLANE_ENABLE; |
| OUTREG(DSPACNTR, tmp); |
| tmp = INREG(DSPBCNTR); |
| tmp &= ~DISPPLANE_PLANE_ENABLE; |
| OUTREG(DSPBCNTR, tmp); |
| |
| /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */ |
| mdelay(20); |
| |
| OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE); |
| OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE); |
| OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE); |
| |
| /* Disable Sync */ |
| tmp = INREG(ADPA); |
| tmp &= ~ADPA_DPMS_CONTROL_MASK; |
| tmp |= ADPA_DPMS_D3; |
| OUTREG(ADPA, tmp); |
| |
| /* do some funky magic - xyzzy */ |
| OUTREG(0x61204, 0xabcd0000); |
| |
| /* turn off PLL */ |
| tmp = INREG(dpll_reg); |
| dpll_reg &= ~DPLL_VCO_ENABLE; |
| OUTREG(dpll_reg, tmp); |
| |
| /* Set PLL parameters */ |
| OUTREG(fp0_reg, *fp0); |
| OUTREG(fp1_reg, *fp1); |
| |
| /* Enable PLL */ |
| OUTREG(dpll_reg, *dpll); |
| |
| /* Set DVOs B/C */ |
| OUTREG(DVOB, hw->dvob); |
| OUTREG(DVOC, hw->dvoc); |
| |
| /* undo funky magic */ |
| OUTREG(0x61204, 0x00000000); |
| |
| /* Set ADPA */ |
| OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE); |
| OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3); |
| |
| /* Set pipe parameters */ |
| OUTREG(hsync_reg, *hs); |
| OUTREG(hblank_reg, *hb); |
| OUTREG(htotal_reg, *ht); |
| OUTREG(vsync_reg, *vs); |
| OUTREG(vblank_reg, *vb); |
| OUTREG(vtotal_reg, *vt); |
| OUTREG(src_size_reg, *ss); |
| |
| /* Enable pipe */ |
| OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE); |
| |
| /* Enable sync */ |
| tmp = INREG(ADPA); |
| tmp &= ~ADPA_DPMS_CONTROL_MASK; |
| tmp |= ADPA_DPMS_D0; |
| OUTREG(ADPA, tmp); |
| |
| /* setup display plane */ |
| if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) { |
| /* |
| * i830M errata: the display plane must be enabled |
| * to allow writes to the other bits in the plane |
| * control register. |
| */ |
| tmp = INREG(DSPACNTR); |
| if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) { |
| tmp |= DISPPLANE_PLANE_ENABLE; |
| OUTREG(DSPACNTR, tmp); |
| OUTREG(DSPACNTR, |
| hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE); |
| mdelay(1); |
| } |
| } |
| |
| OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE); |
| OUTREG(DSPASTRIDE, hw->disp_a_stride); |
| OUTREG(DSPABASE, hw->disp_a_base); |
| |
| /* Enable plane */ |
| if (!blank) { |
| tmp = INREG(DSPACNTR); |
| tmp |= DISPPLANE_PLANE_ENABLE; |
| OUTREG(DSPACNTR, tmp); |
| OUTREG(DSPABASE, hw->disp_a_base); |
| } |
| |
| return 0; |
| } |
| |
| /* forward declarations */ |
| static void refresh_ring(struct intelfb_info *dinfo); |
| static void reset_state(struct intelfb_info *dinfo); |
| static void do_flush(struct intelfb_info *dinfo); |
| |
| static int |
| wait_ring(struct intelfb_info *dinfo, int n) |
| { |
| int i = 0; |
| unsigned long end; |
| u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("wait_ring: %d\n", n); |
| #endif |
| |
| end = jiffies + (HZ * 3); |
| while (dinfo->ring_space < n) { |
| dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; |
| if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head) |
| dinfo->ring_space = dinfo->ring_head |
| - (dinfo->ring_tail + RING_MIN_FREE); |
| else |
| dinfo->ring_space = (dinfo->ring.size + |
| dinfo->ring_head) |
| - (dinfo->ring_tail + RING_MIN_FREE); |
| if (dinfo->ring_head != last_head) { |
| end = jiffies + (HZ * 3); |
| last_head = dinfo->ring_head; |
| } |
| i++; |
| if (time_before(end, jiffies)) { |
| if (!i) { |
| /* Try again */ |
| reset_state(dinfo); |
| refresh_ring(dinfo); |
| do_flush(dinfo); |
| end = jiffies + (HZ * 3); |
| i = 1; |
| } else { |
| WRN_MSG("ring buffer : space: %d wanted %d\n", |
| dinfo->ring_space, n); |
| WRN_MSG("lockup - turning off hardware " |
| "acceleration\n"); |
| dinfo->ring_lockup = 1; |
| break; |
| } |
| } |
| udelay(1); |
| } |
| return i; |
| } |
| |
| static void |
| do_flush(struct intelfb_info *dinfo) { |
| START_RING(2); |
| OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE); |
| OUT_RING(MI_NOOP); |
| ADVANCE_RING(); |
| } |
| |
| void |
| intelfbhw_do_sync(struct intelfb_info *dinfo) |
| { |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_do_sync\n"); |
| #endif |
| |
| if (!dinfo->accel) |
| return; |
| |
| /* |
| * Send a flush, then wait until the ring is empty. This is what |
| * the XFree86 driver does, and actually it doesn't seem a lot worse |
| * than the recommended method (both have problems). |
| */ |
| do_flush(dinfo); |
| wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE); |
| dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE; |
| } |
| |
| static void |
| refresh_ring(struct intelfb_info *dinfo) |
| { |
| #if VERBOSE > 0 |
| DBG_MSG("refresh_ring\n"); |
| #endif |
| |
| dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; |
| dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK; |
| if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head) |
| dinfo->ring_space = dinfo->ring_head |
| - (dinfo->ring_tail + RING_MIN_FREE); |
| else |
| dinfo->ring_space = (dinfo->ring.size + dinfo->ring_head) |
| - (dinfo->ring_tail + RING_MIN_FREE); |
| } |
| |
| static void |
| reset_state(struct intelfb_info *dinfo) |
| { |
| int i; |
| u32 tmp; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("reset_state\n"); |
| #endif |
| |
| for (i = 0; i < FENCE_NUM; i++) |
| OUTREG(FENCE + (i << 2), 0); |
| |
| /* Flush the ring buffer if it's enabled. */ |
| tmp = INREG(PRI_RING_LENGTH); |
| if (tmp & RING_ENABLE) { |
| #if VERBOSE > 0 |
| DBG_MSG("reset_state: ring was enabled\n"); |
| #endif |
| refresh_ring(dinfo); |
| intelfbhw_do_sync(dinfo); |
| DO_RING_IDLE(); |
| } |
| |
| OUTREG(PRI_RING_LENGTH, 0); |
| OUTREG(PRI_RING_HEAD, 0); |
| OUTREG(PRI_RING_TAIL, 0); |
| OUTREG(PRI_RING_START, 0); |
| } |
| |
| /* Stop the 2D engine, and turn off the ring buffer. */ |
| void |
| intelfbhw_2d_stop(struct intelfb_info *dinfo) |
| { |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel, |
| dinfo->ring_active); |
| #endif |
| |
| if (!dinfo->accel) |
| return; |
| |
| dinfo->ring_active = 0; |
| reset_state(dinfo); |
| } |
| |
| /* |
| * Enable the ring buffer, and initialise the 2D engine. |
| * It is assumed that the graphics engine has been stopped by previously |
| * calling intelfb_2d_stop(). |
| */ |
| void |
| intelfbhw_2d_start(struct intelfb_info *dinfo) |
| { |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n", |
| dinfo->accel, dinfo->ring_active); |
| #endif |
| |
| if (!dinfo->accel) |
| return; |
| |
| /* Initialise the primary ring buffer. */ |
| OUTREG(PRI_RING_LENGTH, 0); |
| OUTREG(PRI_RING_TAIL, 0); |
| OUTREG(PRI_RING_HEAD, 0); |
| |
| OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK); |
| OUTREG(PRI_RING_LENGTH, |
| ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) | |
| RING_NO_REPORT | RING_ENABLE); |
| refresh_ring(dinfo); |
| dinfo->ring_active = 1; |
| } |
| |
| /* 2D fillrect (solid fill or invert) */ |
| void |
| intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h, |
| u32 color, u32 pitch, u32 bpp, u32 rop) |
| { |
| u32 br00, br09, br13, br14, br16; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, " |
| "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop); |
| #endif |
| |
| br00 = COLOR_BLT_CMD; |
| br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8)); |
| br13 = (rop << ROP_SHIFT) | pitch; |
| br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT); |
| br16 = color; |
| |
| switch (bpp) { |
| case 8: |
| br13 |= COLOR_DEPTH_8; |
| break; |
| case 16: |
| br13 |= COLOR_DEPTH_16; |
| break; |
| case 32: |
| br13 |= COLOR_DEPTH_32; |
| br00 |= WRITE_ALPHA | WRITE_RGB; |
| break; |
| } |
| |
| START_RING(6); |
| OUT_RING(br00); |
| OUT_RING(br13); |
| OUT_RING(br14); |
| OUT_RING(br09); |
| OUT_RING(br16); |
| OUT_RING(MI_NOOP); |
| ADVANCE_RING(); |
| |
| #if VERBOSE > 0 |
| DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head, |
| dinfo->ring_tail, dinfo->ring_space); |
| #endif |
| } |
| |
| void |
| intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury, |
| u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp) |
| { |
| u32 br00, br09, br11, br12, br13, br22, br23, br26; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n", |
| curx, cury, dstx, dsty, w, h, pitch, bpp); |
| #endif |
| |
| br00 = XY_SRC_COPY_BLT_CMD; |
| br09 = dinfo->fb_start; |
| br11 = (pitch << PITCH_SHIFT); |
| br12 = dinfo->fb_start; |
| br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT); |
| br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT); |
| br23 = ((dstx + w) << WIDTH_SHIFT) | |
| ((dsty + h) << HEIGHT_SHIFT); |
| br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT); |
| |
| switch (bpp) { |
| case 8: |
| br13 |= COLOR_DEPTH_8; |
| break; |
| case 16: |
| br13 |= COLOR_DEPTH_16; |
| break; |
| case 32: |
| br13 |= COLOR_DEPTH_32; |
| br00 |= WRITE_ALPHA | WRITE_RGB; |
| break; |
| } |
| |
| START_RING(8); |
| OUT_RING(br00); |
| OUT_RING(br13); |
| OUT_RING(br22); |
| OUT_RING(br23); |
| OUT_RING(br09); |
| OUT_RING(br26); |
| OUT_RING(br11); |
| OUT_RING(br12); |
| ADVANCE_RING(); |
| } |
| |
| int |
| intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w, |
| u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp) |
| { |
| int nbytes, ndwords, pad, tmp; |
| u32 br00, br09, br13, br18, br19, br22, br23; |
| int dat, ix, iy, iw; |
| int i, j; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h); |
| #endif |
| |
| /* size in bytes of a padded scanline */ |
| nbytes = ROUND_UP_TO(w, 16) / 8; |
| |
| /* Total bytes of padded scanline data to write out. */ |
| nbytes = nbytes * h; |
| |
| /* |
| * Check if the glyph data exceeds the immediate mode limit. |
| * It would take a large font (1K pixels) to hit this limit. |
| */ |
| if (nbytes > MAX_MONO_IMM_SIZE) |
| return 0; |
| |
| /* Src data is packaged a dword (32-bit) at a time. */ |
| ndwords = ROUND_UP_TO(nbytes, 4) / 4; |
| |
| /* |
| * Ring has to be padded to a quad word. But because the command starts |
| with 7 bytes, pad only if there is an even number of ndwords |
| */ |
| pad = !(ndwords % 2); |
| |
| tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords; |
| br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp; |
| br09 = dinfo->fb_start; |
| br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT); |
| br18 = bg; |
| br19 = fg; |
| br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT); |
| br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT); |
| |
| switch (bpp) { |
| case 8: |
| br13 |= COLOR_DEPTH_8; |
| break; |
| case 16: |
| br13 |= COLOR_DEPTH_16; |
| break; |
| case 32: |
| br13 |= COLOR_DEPTH_32; |
| br00 |= WRITE_ALPHA | WRITE_RGB; |
| break; |
| } |
| |
| START_RING(8 + ndwords); |
| OUT_RING(br00); |
| OUT_RING(br13); |
| OUT_RING(br22); |
| OUT_RING(br23); |
| OUT_RING(br09); |
| OUT_RING(br18); |
| OUT_RING(br19); |
| ix = iy = 0; |
| iw = ROUND_UP_TO(w, 8) / 8; |
| while (ndwords--) { |
| dat = 0; |
| for (j = 0; j < 2; ++j) { |
| for (i = 0; i < 2; ++i) { |
| if (ix != iw || i == 0) |
| dat |= cdat[iy*iw + ix++] << (i+j*2)*8; |
| } |
| if (ix == iw && iy != (h-1)) { |
| ix = 0; |
| ++iy; |
| } |
| } |
| OUT_RING(dat); |
| } |
| if (pad) |
| OUT_RING(MI_NOOP); |
| ADVANCE_RING(); |
| |
| return 1; |
| } |
| |
| /* HW cursor functions. */ |
| void |
| intelfbhw_cursor_init(struct intelfb_info *dinfo) |
| { |
| u32 tmp; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_cursor_init\n"); |
| #endif |
| |
| if (dinfo->mobile || IS_I9XX(dinfo)) { |
| if (!dinfo->cursor.physical) |
| return; |
| tmp = INREG(CURSOR_A_CONTROL); |
| tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE | |
| CURSOR_MEM_TYPE_LOCAL | |
| (1 << CURSOR_PIPE_SELECT_SHIFT)); |
| tmp |= CURSOR_MODE_DISABLE; |
| OUTREG(CURSOR_A_CONTROL, tmp); |
| OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); |
| } else { |
| tmp = INREG(CURSOR_CONTROL); |
| tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE | |
| CURSOR_ENABLE | CURSOR_STRIDE_MASK); |
| tmp = CURSOR_FORMAT_3C; |
| OUTREG(CURSOR_CONTROL, tmp); |
| OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12); |
| tmp = (64 << CURSOR_SIZE_H_SHIFT) | |
| (64 << CURSOR_SIZE_V_SHIFT); |
| OUTREG(CURSOR_SIZE, tmp); |
| } |
| } |
| |
| void |
| intelfbhw_cursor_hide(struct intelfb_info *dinfo) |
| { |
| u32 tmp; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_cursor_hide\n"); |
| #endif |
| |
| dinfo->cursor_on = 0; |
| if (dinfo->mobile || IS_I9XX(dinfo)) { |
| if (!dinfo->cursor.physical) |
| return; |
| tmp = INREG(CURSOR_A_CONTROL); |
| tmp &= ~CURSOR_MODE_MASK; |
| tmp |= CURSOR_MODE_DISABLE; |
| OUTREG(CURSOR_A_CONTROL, tmp); |
| /* Flush changes */ |
| OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); |
| } else { |
| tmp = INREG(CURSOR_CONTROL); |
| tmp &= ~CURSOR_ENABLE; |
| OUTREG(CURSOR_CONTROL, tmp); |
| } |
| } |
| |
| void |
| intelfbhw_cursor_show(struct intelfb_info *dinfo) |
| { |
| u32 tmp; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_cursor_show\n"); |
| #endif |
| |
| dinfo->cursor_on = 1; |
| |
| if (dinfo->cursor_blanked) |
| return; |
| |
| if (dinfo->mobile || IS_I9XX(dinfo)) { |
| if (!dinfo->cursor.physical) |
| return; |
| tmp = INREG(CURSOR_A_CONTROL); |
| tmp &= ~CURSOR_MODE_MASK; |
| tmp |= CURSOR_MODE_64_4C_AX; |
| OUTREG(CURSOR_A_CONTROL, tmp); |
| /* Flush changes */ |
| OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); |
| } else { |
| tmp = INREG(CURSOR_CONTROL); |
| tmp |= CURSOR_ENABLE; |
| OUTREG(CURSOR_CONTROL, tmp); |
| } |
| } |
| |
| void |
| intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y) |
| { |
| u32 tmp; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y); |
| #endif |
| |
| /* |
| * Sets the position. The coordinates are assumed to already |
| * have any offset adjusted. Assume that the cursor is never |
| * completely off-screen, and that x, y are always >= 0. |
| */ |
| |
| tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) | |
| ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT); |
| OUTREG(CURSOR_A_POSITION, tmp); |
| |
| if (IS_I9XX(dinfo)) { |
| OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); |
| } |
| } |
| |
| void |
| intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg) |
| { |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_cursor_setcolor\n"); |
| #endif |
| |
| OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK); |
| OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK); |
| OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK); |
| OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK); |
| } |
| |
| void |
| intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height, |
| u8 *data) |
| { |
| u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual; |
| int i, j, w = width / 8; |
| int mod = width % 8, t_mask, d_mask; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_cursor_load\n"); |
| #endif |
| |
| if (!dinfo->cursor.virtual) |
| return; |
| |
| t_mask = 0xff >> mod; |
| d_mask = ~(0xff >> mod); |
| for (i = height; i--; ) { |
| for (j = 0; j < w; j++) { |
| writeb(0x00, addr + j); |
| writeb(*(data++), addr + j+8); |
| } |
| if (mod) { |
| writeb(t_mask, addr + j); |
| writeb(*(data++) & d_mask, addr + j+8); |
| } |
| addr += 16; |
| } |
| } |
| |
| void |
| intelfbhw_cursor_reset(struct intelfb_info *dinfo) { |
| u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual; |
| int i, j; |
| |
| #if VERBOSE > 0 |
| DBG_MSG("intelfbhw_cursor_reset\n"); |
| #endif |
| |
| if (!dinfo->cursor.virtual) |
| return; |
| |
| for (i = 64; i--; ) { |
| for (j = 0; j < 8; j++) { |
| writeb(0xff, addr + j+0); |
| writeb(0x00, addr + j+8); |
| } |
| addr += 16; |
| } |
| } |
| |
| static irqreturn_t |
| intelfbhw_irq(int irq, void *dev_id) { |
| int handled = 0; |
| u16 tmp; |
| struct intelfb_info *dinfo = (struct intelfb_info *)dev_id; |
| |
| spin_lock(&dinfo->int_lock); |
| |
| tmp = INREG16(IIR); |
| tmp &= VSYNC_PIPE_A_INTERRUPT; |
| |
| if (tmp == 0) { |
| spin_unlock(&dinfo->int_lock); |
| return IRQ_RETVAL(handled); |
| } |
| |
| OUTREG16(IIR, tmp); |
| |
| if (tmp & VSYNC_PIPE_A_INTERRUPT) { |
| dinfo->vsync.count++; |
| if (dinfo->vsync.pan_display) { |
| dinfo->vsync.pan_display = 0; |
| OUTREG(DSPABASE, dinfo->vsync.pan_offset); |
| } |
| wake_up_interruptible(&dinfo->vsync.wait); |
| handled = 1; |
| } |
| |
| spin_unlock(&dinfo->int_lock); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| int |
| intelfbhw_enable_irq(struct intelfb_info *dinfo, int reenable) { |
| |
| if (!test_and_set_bit(0, &dinfo->irq_flags)) { |
| if (request_irq(dinfo->pdev->irq, intelfbhw_irq, SA_SHIRQ, "intelfb", dinfo)) { |
| clear_bit(0, &dinfo->irq_flags); |
| return -EINVAL; |
| } |
| |
| spin_lock_irq(&dinfo->int_lock); |
| OUTREG16(HWSTAM, 0xfffe); |
| OUTREG16(IMR, 0x0); |
| OUTREG16(IER, VSYNC_PIPE_A_INTERRUPT); |
| spin_unlock_irq(&dinfo->int_lock); |
| } else if (reenable) { |
| u16 ier; |
| |
| spin_lock_irq(&dinfo->int_lock); |
| ier = INREG16(IER); |
| if ((ier & VSYNC_PIPE_A_INTERRUPT)) { |
| DBG_MSG("someone disabled the IRQ [%08X]\n", ier); |
| OUTREG(IER, VSYNC_PIPE_A_INTERRUPT); |
| } |
| spin_unlock_irq(&dinfo->int_lock); |
| } |
| return 0; |
| } |
| |
| void |
| intelfbhw_disable_irq(struct intelfb_info *dinfo) { |
| u16 tmp; |
| |
| if (test_and_clear_bit(0, &dinfo->irq_flags)) { |
| if (dinfo->vsync.pan_display) { |
| dinfo->vsync.pan_display = 0; |
| OUTREG(DSPABASE, dinfo->vsync.pan_offset); |
| } |
| spin_lock_irq(&dinfo->int_lock); |
| OUTREG16(HWSTAM, 0xffff); |
| OUTREG16(IMR, 0xffff); |
| OUTREG16(IER, 0x0); |
| |
| tmp = INREG16(IIR); |
| OUTREG16(IIR, tmp); |
| spin_unlock_irq(&dinfo->int_lock); |
| |
| free_irq(dinfo->pdev->irq, dinfo); |
| } |
| } |
| |
| int |
| intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe) { |
| struct intelfb_vsync *vsync; |
| unsigned int count; |
| int ret; |
| |
| switch (pipe) { |
| case 0: |
| vsync = &dinfo->vsync; |
| break; |
| default: |
| return -ENODEV; |
| } |
| |
| ret = intelfbhw_enable_irq(dinfo, 0); |
| if (ret) { |
| return ret; |
| } |
| |
| count = vsync->count; |
| ret = wait_event_interruptible_timeout(vsync->wait, count != vsync->count, HZ/10); |
| if (ret < 0) { |
| return ret; |
| } |
| if (ret == 0) { |
| intelfbhw_enable_irq(dinfo, 1); |
| DBG_MSG("wait_for_vsync timed out!\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |