| /************************************************************************ |
| * Copyright 2003 Digi International (www.digi.com) |
| * |
| * Copyright (C) 2004 IBM Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the |
| * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
| * PURPOSE. See the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 * Temple Place - Suite 330, Boston, |
| * MA 02111-1307, USA. |
| * |
| * Contact Information: |
| * Scott H Kilau <Scott_Kilau@digi.com> |
| * Wendy Xiong <wendyx@us.ibm.com> |
| * |
| ***********************************************************************/ |
| #include <linux/delay.h> /* For udelay */ |
| #include <linux/serial_reg.h> /* For the various UART offsets */ |
| #include <linux/tty.h> |
| #include <linux/pci.h> |
| #include <asm/io.h> |
| |
| #include "jsm.h" /* Driver main header file */ |
| |
| static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; |
| |
| /* |
| * This function allows calls to ensure that all outstanding |
| * PCI writes have been completed, by doing a PCI read against |
| * a non-destructive, read-only location on the Neo card. |
| * |
| * In this case, we are reading the DVID (Read-only Device Identification) |
| * value of the Neo card. |
| */ |
| static inline void neo_pci_posting_flush(struct jsm_board *bd) |
| { |
| readb(bd->re_map_membase + 0x8D); |
| } |
| |
| static void neo_set_cts_flow_control(struct jsm_channel *ch) |
| { |
| u8 ier, efr; |
| ier = readb(&ch->ch_neo_uart->ier); |
| efr = readb(&ch->ch_neo_uart->efr); |
| |
| jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n"); |
| |
| /* Turn on auto CTS flow control */ |
| ier |= (UART_17158_IER_CTSDSR); |
| efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR); |
| |
| /* Turn off auto Xon flow control */ |
| efr &= ~(UART_17158_EFR_IXON); |
| |
| /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| /* Turn on table D, with 8 char hi/low watermarks */ |
| writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); |
| |
| /* Feed the UART our trigger levels */ |
| writeb(8, &ch->ch_neo_uart->tfifo); |
| ch->ch_t_tlevel = 8; |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| } |
| |
| static void neo_set_rts_flow_control(struct jsm_channel *ch) |
| { |
| u8 ier, efr; |
| ier = readb(&ch->ch_neo_uart->ier); |
| efr = readb(&ch->ch_neo_uart->efr); |
| |
| jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n"); |
| |
| /* Turn on auto RTS flow control */ |
| ier |= (UART_17158_IER_RTSDTR); |
| efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR); |
| |
| /* Turn off auto Xoff flow control */ |
| ier &= ~(UART_17158_IER_XOFF); |
| efr &= ~(UART_17158_EFR_IXOFF); |
| |
| /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); |
| ch->ch_r_watermark = 4; |
| |
| writeb(56, &ch->ch_neo_uart->rfifo); |
| ch->ch_r_tlevel = 56; |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| |
| /* |
| * From the Neo UART spec sheet: |
| * The auto RTS/DTR function must be started by asserting |
| * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after |
| * it is enabled. |
| */ |
| ch->ch_mostat |= (UART_MCR_RTS); |
| } |
| |
| |
| static void neo_set_ixon_flow_control(struct jsm_channel *ch) |
| { |
| u8 ier, efr; |
| ier = readb(&ch->ch_neo_uart->ier); |
| efr = readb(&ch->ch_neo_uart->efr); |
| |
| jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n"); |
| |
| /* Turn off auto CTS flow control */ |
| ier &= ~(UART_17158_IER_CTSDSR); |
| efr &= ~(UART_17158_EFR_CTSDSR); |
| |
| /* Turn on auto Xon flow control */ |
| efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON); |
| |
| /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); |
| ch->ch_r_watermark = 4; |
| |
| writeb(32, &ch->ch_neo_uart->rfifo); |
| ch->ch_r_tlevel = 32; |
| |
| /* Tell UART what start/stop chars it should be looking for */ |
| writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); |
| writeb(0, &ch->ch_neo_uart->xonchar2); |
| |
| writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); |
| writeb(0, &ch->ch_neo_uart->xoffchar2); |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| } |
| |
| static void neo_set_ixoff_flow_control(struct jsm_channel *ch) |
| { |
| u8 ier, efr; |
| ier = readb(&ch->ch_neo_uart->ier); |
| efr = readb(&ch->ch_neo_uart->efr); |
| |
| jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n"); |
| |
| /* Turn off auto RTS flow control */ |
| ier &= ~(UART_17158_IER_RTSDTR); |
| efr &= ~(UART_17158_EFR_RTSDTR); |
| |
| /* Turn on auto Xoff flow control */ |
| ier |= (UART_17158_IER_XOFF); |
| efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); |
| |
| /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| /* Turn on table D, with 8 char hi/low watermarks */ |
| writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); |
| |
| writeb(8, &ch->ch_neo_uart->tfifo); |
| ch->ch_t_tlevel = 8; |
| |
| /* Tell UART what start/stop chars it should be looking for */ |
| writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); |
| writeb(0, &ch->ch_neo_uart->xonchar2); |
| |
| writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); |
| writeb(0, &ch->ch_neo_uart->xoffchar2); |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| } |
| |
| static void neo_set_no_input_flow_control(struct jsm_channel *ch) |
| { |
| u8 ier, efr; |
| ier = readb(&ch->ch_neo_uart->ier); |
| efr = readb(&ch->ch_neo_uart->efr); |
| |
| jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n"); |
| |
| /* Turn off auto RTS flow control */ |
| ier &= ~(UART_17158_IER_RTSDTR); |
| efr &= ~(UART_17158_EFR_RTSDTR); |
| |
| /* Turn off auto Xoff flow control */ |
| ier &= ~(UART_17158_IER_XOFF); |
| if (ch->ch_c_iflag & IXON) |
| efr &= ~(UART_17158_EFR_IXOFF); |
| else |
| efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); |
| |
| /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| /* Turn on table D, with 8 char hi/low watermarks */ |
| writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); |
| |
| ch->ch_r_watermark = 0; |
| |
| writeb(16, &ch->ch_neo_uart->tfifo); |
| ch->ch_t_tlevel = 16; |
| |
| writeb(16, &ch->ch_neo_uart->rfifo); |
| ch->ch_r_tlevel = 16; |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| } |
| |
| static void neo_set_no_output_flow_control(struct jsm_channel *ch) |
| { |
| u8 ier, efr; |
| ier = readb(&ch->ch_neo_uart->ier); |
| efr = readb(&ch->ch_neo_uart->efr); |
| |
| jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n"); |
| |
| /* Turn off auto CTS flow control */ |
| ier &= ~(UART_17158_IER_CTSDSR); |
| efr &= ~(UART_17158_EFR_CTSDSR); |
| |
| /* Turn off auto Xon flow control */ |
| if (ch->ch_c_iflag & IXOFF) |
| efr &= ~(UART_17158_EFR_IXON); |
| else |
| efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON); |
| |
| /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| /* Turn on table D, with 8 char hi/low watermarks */ |
| writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); |
| |
| ch->ch_r_watermark = 0; |
| |
| writeb(16, &ch->ch_neo_uart->tfifo); |
| ch->ch_t_tlevel = 16; |
| |
| writeb(16, &ch->ch_neo_uart->rfifo); |
| ch->ch_r_tlevel = 16; |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| } |
| |
| static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch) |
| { |
| |
| /* if hardware flow control is set, then skip this whole thing */ |
| if (ch->ch_c_cflag & CRTSCTS) |
| return; |
| |
| jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n"); |
| |
| /* Tell UART what start/stop chars it should be looking for */ |
| writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); |
| writeb(0, &ch->ch_neo_uart->xonchar2); |
| |
| writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); |
| writeb(0, &ch->ch_neo_uart->xoffchar2); |
| } |
| |
| static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch) |
| { |
| int qleft = 0; |
| u8 linestatus = 0; |
| u8 error_mask = 0; |
| int n = 0; |
| int total = 0; |
| u16 head; |
| u16 tail; |
| |
| if (!ch) |
| return; |
| |
| /* cache head and tail of queue */ |
| head = ch->ch_r_head & RQUEUEMASK; |
| tail = ch->ch_r_tail & RQUEUEMASK; |
| |
| /* Get our cached LSR */ |
| linestatus = ch->ch_cached_lsr; |
| ch->ch_cached_lsr = 0; |
| |
| /* Store how much space we have left in the queue */ |
| if ((qleft = tail - head - 1) < 0) |
| qleft += RQUEUEMASK + 1; |
| |
| /* |
| * If the UART is not in FIFO mode, force the FIFO copy to |
| * NOT be run, by setting total to 0. |
| * |
| * On the other hand, if the UART IS in FIFO mode, then ask |
| * the UART to give us an approximation of data it has RX'ed. |
| */ |
| if (!(ch->ch_flags & CH_FIFO_ENABLED)) |
| total = 0; |
| else { |
| total = readb(&ch->ch_neo_uart->rfifo); |
| |
| /* |
| * EXAR chip bug - RX FIFO COUNT - Fudge factor. |
| * |
| * This resolves a problem/bug with the Exar chip that sometimes |
| * returns a bogus value in the rfifo register. |
| * The count can be any where from 0-3 bytes "off". |
| * Bizarre, but true. |
| */ |
| total -= 3; |
| } |
| |
| /* |
| * Finally, bound the copy to make sure we don't overflow |
| * our own queue... |
| * The byte by byte copy loop below this loop this will |
| * deal with the queue overflow possibility. |
| */ |
| total = min(total, qleft); |
| |
| while (total > 0) { |
| /* |
| * Grab the linestatus register, we need to check |
| * to see if there are any errors in the FIFO. |
| */ |
| linestatus = readb(&ch->ch_neo_uart->lsr); |
| |
| /* |
| * Break out if there is a FIFO error somewhere. |
| * This will allow us to go byte by byte down below, |
| * finding the exact location of the error. |
| */ |
| if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) |
| break; |
| |
| /* Make sure we don't go over the end of our queue */ |
| n = min(((u32) total), (RQUEUESIZE - (u32) head)); |
| |
| /* |
| * Cut down n even further if needed, this is to fix |
| * a problem with memcpy_fromio() with the Neo on the |
| * IBM pSeries platform. |
| * 15 bytes max appears to be the magic number. |
| */ |
| n = min((u32) n, (u32) 12); |
| |
| /* |
| * Since we are grabbing the linestatus register, which |
| * will reset some bits after our read, we need to ensure |
| * we don't miss our TX FIFO emptys. |
| */ |
| if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| |
| linestatus = 0; |
| |
| /* Copy data from uart to the queue */ |
| memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n); |
| /* |
| * Since RX_FIFO_DATA_ERROR was 0, we are guarenteed |
| * that all the data currently in the FIFO is free of |
| * breaks and parity/frame/orun errors. |
| */ |
| memset(ch->ch_equeue + head, 0, n); |
| |
| /* Add to and flip head if needed */ |
| head = (head + n) & RQUEUEMASK; |
| total -= n; |
| qleft -= n; |
| ch->ch_rxcount += n; |
| } |
| |
| /* |
| * Create a mask to determine whether we should |
| * insert the character (if any) into our queue. |
| */ |
| if (ch->ch_c_iflag & IGNBRK) |
| error_mask |= UART_LSR_BI; |
| |
| /* |
| * Now cleanup any leftover bytes still in the UART. |
| * Also deal with any possible queue overflow here as well. |
| */ |
| while (1) { |
| |
| /* |
| * Its possible we have a linestatus from the loop above |
| * this, so we "OR" on any extra bits. |
| */ |
| linestatus |= readb(&ch->ch_neo_uart->lsr); |
| |
| /* |
| * If the chip tells us there is no more data pending to |
| * be read, we can then leave. |
| * But before we do, cache the linestatus, just in case. |
| */ |
| if (!(linestatus & UART_LSR_DR)) { |
| ch->ch_cached_lsr = linestatus; |
| break; |
| } |
| |
| /* No need to store this bit */ |
| linestatus &= ~UART_LSR_DR; |
| |
| /* |
| * Since we are grabbing the linestatus register, which |
| * will reset some bits after our read, we need to ensure |
| * we don't miss our TX FIFO emptys. |
| */ |
| if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) { |
| linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR); |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| } |
| |
| /* |
| * Discard character if we are ignoring the error mask. |
| */ |
| if (linestatus & error_mask) { |
| u8 discard; |
| linestatus = 0; |
| memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1); |
| continue; |
| } |
| |
| /* |
| * If our queue is full, we have no choice but to drop some data. |
| * The assumption is that HWFLOW or SWFLOW should have stopped |
| * things way way before we got to this point. |
| * |
| * I decided that I wanted to ditch the oldest data first, |
| * I hope thats okay with everyone? Yes? Good. |
| */ |
| while (qleft < 1) { |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, |
| "Queue full, dropping DATA:%x LSR:%x\n", |
| ch->ch_rqueue[tail], ch->ch_equeue[tail]); |
| |
| ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK; |
| ch->ch_err_overrun++; |
| qleft++; |
| } |
| |
| memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1); |
| ch->ch_equeue[head] = (u8) linestatus; |
| |
| jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, |
| "DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]); |
| |
| /* Ditch any remaining linestatus value. */ |
| linestatus = 0; |
| |
| /* Add to and flip head if needed */ |
| head = (head + 1) & RQUEUEMASK; |
| |
| qleft--; |
| ch->ch_rxcount++; |
| } |
| |
| /* |
| * Write new final heads to channel structure. |
| */ |
| ch->ch_r_head = head & RQUEUEMASK; |
| ch->ch_e_head = head & EQUEUEMASK; |
| jsm_input(ch); |
| } |
| |
| static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch) |
| { |
| u16 head; |
| u16 tail; |
| int n; |
| int s; |
| int qlen; |
| u32 len_written = 0; |
| |
| if (!ch) |
| return; |
| |
| /* No data to write to the UART */ |
| if (ch->ch_w_tail == ch->ch_w_head) |
| return; |
| |
| /* If port is "stopped", don't send any data to the UART */ |
| if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING)) |
| return; |
| /* |
| * If FIFOs are disabled. Send data directly to txrx register |
| */ |
| if (!(ch->ch_flags & CH_FIFO_ENABLED)) { |
| u8 lsrbits = readb(&ch->ch_neo_uart->lsr); |
| |
| ch->ch_cached_lsr |= lsrbits; |
| if (ch->ch_cached_lsr & UART_LSR_THRE) { |
| ch->ch_cached_lsr &= ~(UART_LSR_THRE); |
| |
| writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx); |
| jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev, |
| "Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]); |
| ch->ch_w_tail++; |
| ch->ch_w_tail &= WQUEUEMASK; |
| ch->ch_txcount++; |
| } |
| return; |
| } |
| |
| /* |
| * We have to do it this way, because of the EXAR TXFIFO count bug. |
| */ |
| if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM))) |
| return; |
| |
| len_written = 0; |
| n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel; |
| |
| /* cache head and tail of queue */ |
| head = ch->ch_w_head & WQUEUEMASK; |
| tail = ch->ch_w_tail & WQUEUEMASK; |
| qlen = (head - tail) & WQUEUEMASK; |
| |
| /* Find minimum of the FIFO space, versus queue length */ |
| n = min(n, qlen); |
| |
| while (n > 0) { |
| |
| s = ((head >= tail) ? head : WQUEUESIZE) - tail; |
| s = min(s, n); |
| |
| if (s <= 0) |
| break; |
| |
| memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s); |
| /* Add and flip queue if needed */ |
| tail = (tail + s) & WQUEUEMASK; |
| n -= s; |
| ch->ch_txcount += s; |
| len_written += s; |
| } |
| |
| /* Update the final tail */ |
| ch->ch_w_tail = tail & WQUEUEMASK; |
| |
| if (len_written >= ch->ch_t_tlevel) |
| ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| |
| if (!jsm_tty_write(&ch->uart_port)) |
| uart_write_wakeup(&ch->uart_port); |
| } |
| |
| static void neo_parse_modem(struct jsm_channel *ch, u8 signals) |
| { |
| u8 msignals = signals; |
| |
| jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev, |
| "neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals); |
| |
| if (!ch) |
| return; |
| |
| /* Scrub off lower bits. They signify delta's, which I don't care about */ |
| msignals &= 0xf0; |
| |
| if (msignals & UART_MSR_DCD) |
| ch->ch_mistat |= UART_MSR_DCD; |
| else |
| ch->ch_mistat &= ~UART_MSR_DCD; |
| |
| if (msignals & UART_MSR_DSR) |
| ch->ch_mistat |= UART_MSR_DSR; |
| else |
| ch->ch_mistat &= ~UART_MSR_DSR; |
| |
| if (msignals & UART_MSR_RI) |
| ch->ch_mistat |= UART_MSR_RI; |
| else |
| ch->ch_mistat &= ~UART_MSR_RI; |
| |
| if (msignals & UART_MSR_CTS) |
| ch->ch_mistat |= UART_MSR_CTS; |
| else |
| ch->ch_mistat &= ~UART_MSR_CTS; |
| |
| jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev, |
| "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n", |
| ch->ch_portnum, |
| !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR), |
| !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS), |
| !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS), |
| !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR), |
| !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI), |
| !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD)); |
| } |
| |
| /* Make the UART raise any of the output signals we want up */ |
| static void neo_assert_modem_signals(struct jsm_channel *ch) |
| { |
| u8 out; |
| |
| if (!ch) |
| return; |
| |
| out = ch->ch_mostat; |
| |
| writeb(out, &ch->ch_neo_uart->mcr); |
| |
| /* flush write operation */ |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| /* |
| * Flush the WRITE FIFO on the Neo. |
| * |
| * NOTE: Channel lock MUST be held before calling this function! |
| */ |
| static void neo_flush_uart_write(struct jsm_channel *ch) |
| { |
| u8 tmp = 0; |
| int i = 0; |
| |
| if (!ch) |
| return; |
| |
| writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); |
| |
| for (i = 0; i < 10; i++) { |
| |
| /* Check to see if the UART feels it completely flushed the FIFO. */ |
| tmp = readb(&ch->ch_neo_uart->isr_fcr); |
| if (tmp & 4) { |
| jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, |
| "Still flushing TX UART... i: %d\n", i); |
| udelay(10); |
| } |
| else |
| break; |
| } |
| |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| } |
| |
| |
| /* |
| * Flush the READ FIFO on the Neo. |
| * |
| * NOTE: Channel lock MUST be held before calling this function! |
| */ |
| static void neo_flush_uart_read(struct jsm_channel *ch) |
| { |
| u8 tmp = 0; |
| int i = 0; |
| |
| if (!ch) |
| return; |
| |
| writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr); |
| |
| for (i = 0; i < 10; i++) { |
| |
| /* Check to see if the UART feels it completely flushed the FIFO. */ |
| tmp = readb(&ch->ch_neo_uart->isr_fcr); |
| if (tmp & 2) { |
| jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, |
| "Still flushing RX UART... i: %d\n", i); |
| udelay(10); |
| } |
| else |
| break; |
| } |
| } |
| |
| /* |
| * No locks are assumed to be held when calling this function. |
| */ |
| static void neo_clear_break(struct jsm_channel *ch, int force) |
| { |
| unsigned long lock_flags; |
| |
| spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| |
| /* Turn break off, and unset some variables */ |
| if (ch->ch_flags & CH_BREAK_SENDING) { |
| u8 temp = readb(&ch->ch_neo_uart->lcr); |
| writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); |
| |
| ch->ch_flags &= ~(CH_BREAK_SENDING); |
| jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, |
| "clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies); |
| |
| /* flush write operation */ |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| } |
| |
| /* |
| * Parse the ISR register. |
| */ |
| static inline void neo_parse_isr(struct jsm_board *brd, u32 port) |
| { |
| struct jsm_channel *ch; |
| u8 isr; |
| u8 cause; |
| unsigned long lock_flags; |
| |
| if (!brd) |
| return; |
| |
| if (port > brd->maxports) |
| return; |
| |
| ch = brd->channels[port]; |
| if (!ch) |
| return; |
| |
| /* Here we try to figure out what caused the interrupt to happen */ |
| while (1) { |
| |
| isr = readb(&ch->ch_neo_uart->isr_fcr); |
| |
| /* Bail if no pending interrupt */ |
| if (isr & UART_IIR_NO_INT) |
| break; |
| |
| /* |
| * Yank off the upper 2 bits, which just show that the FIFO's are enabled. |
| */ |
| isr &= ~(UART_17158_IIR_FIFO_ENABLED); |
| |
| jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| "%s:%d isr: %x\n", __FILE__, __LINE__, isr); |
| |
| if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) { |
| /* Read data from uart -> queue */ |
| neo_copy_data_from_uart_to_queue(ch); |
| |
| /* Call our tty layer to enforce queue flow control if needed. */ |
| spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| jsm_check_queue_flow_control(ch); |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| } |
| |
| if (isr & UART_IIR_THRI) { |
| /* Transfer data (if any) from Write Queue -> UART. */ |
| spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| neo_copy_data_from_queue_to_uart(ch); |
| } |
| |
| if (isr & UART_17158_IIR_XONXOFF) { |
| cause = readb(&ch->ch_neo_uart->xoffchar1); |
| |
| jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| "Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause); |
| |
| /* |
| * Since the UART detected either an XON or |
| * XOFF match, we need to figure out which |
| * one it was, so we can suspend or resume data flow. |
| */ |
| spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| if (cause == UART_17158_XON_DETECT) { |
| /* Is output stopped right now, if so, resume it */ |
| if (brd->channels[port]->ch_flags & CH_STOP) { |
| ch->ch_flags &= ~(CH_STOP); |
| } |
| jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| "Port %d. XON detected in incoming data\n", port); |
| } |
| else if (cause == UART_17158_XOFF_DETECT) { |
| if (!(brd->channels[port]->ch_flags & CH_STOP)) { |
| ch->ch_flags |= CH_STOP; |
| jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| "Setting CH_STOP\n"); |
| } |
| jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| "Port: %d. XOFF detected in incoming data\n", port); |
| } |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| } |
| |
| if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) { |
| /* |
| * If we get here, this means the hardware is doing auto flow control. |
| * Check to see whether RTS/DTR or CTS/DSR caused this interrupt. |
| */ |
| cause = readb(&ch->ch_neo_uart->mcr); |
| |
| /* Which pin is doing auto flow? RTS or DTR? */ |
| spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| if ((cause & 0x4) == 0) { |
| if (cause & UART_MCR_RTS) |
| ch->ch_mostat |= UART_MCR_RTS; |
| else |
| ch->ch_mostat &= ~(UART_MCR_RTS); |
| } else { |
| if (cause & UART_MCR_DTR) |
| ch->ch_mostat |= UART_MCR_DTR; |
| else |
| ch->ch_mostat &= ~(UART_MCR_DTR); |
| } |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| } |
| |
| /* Parse any modem signal changes */ |
| jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| "MOD_STAT: sending to parse_modem_sigs\n"); |
| neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); |
| } |
| } |
| |
| static inline void neo_parse_lsr(struct jsm_board *brd, u32 port) |
| { |
| struct jsm_channel *ch; |
| int linestatus; |
| unsigned long lock_flags; |
| |
| if (!brd) |
| return; |
| |
| if (port > brd->maxports) |
| return; |
| |
| ch = brd->channels[port]; |
| if (!ch) |
| return; |
| |
| linestatus = readb(&ch->ch_neo_uart->lsr); |
| |
| jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| "%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus); |
| |
| ch->ch_cached_lsr |= linestatus; |
| |
| if (ch->ch_cached_lsr & UART_LSR_DR) { |
| /* Read data from uart -> queue */ |
| neo_copy_data_from_uart_to_queue(ch); |
| spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| jsm_check_queue_flow_control(ch); |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| } |
| |
| /* |
| * This is a special flag. It indicates that at least 1 |
| * RX error (parity, framing, or break) has happened. |
| * Mark this in our struct, which will tell me that I have |
| *to do the special RX+LSR read for this FIFO load. |
| */ |
| if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) |
| jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, |
| "%s:%d Port: %d Got an RX error, need to parse LSR\n", |
| __FILE__, __LINE__, port); |
| |
| /* |
| * The next 3 tests should *NOT* happen, as the above test |
| * should encapsulate all 3... At least, thats what Exar says. |
| */ |
| |
| if (linestatus & UART_LSR_PE) { |
| ch->ch_err_parity++; |
| jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, |
| "%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port); |
| } |
| |
| if (linestatus & UART_LSR_FE) { |
| ch->ch_err_frame++; |
| jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, |
| "%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port); |
| } |
| |
| if (linestatus & UART_LSR_BI) { |
| ch->ch_err_break++; |
| jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, |
| "%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port); |
| } |
| |
| if (linestatus & UART_LSR_OE) { |
| /* |
| * Rx Oruns. Exar says that an orun will NOT corrupt |
| * the FIFO. It will just replace the holding register |
| * with this new data byte. So basically just ignore this. |
| * Probably we should eventually have an orun stat in our driver... |
| */ |
| ch->ch_err_overrun++; |
| jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, |
| "%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port); |
| } |
| |
| if (linestatus & UART_LSR_THRE) { |
| spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| |
| /* Transfer data (if any) from Write Queue -> UART. */ |
| neo_copy_data_from_queue_to_uart(ch); |
| } |
| else if (linestatus & UART_17158_TX_AND_FIFO_CLR) { |
| spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| |
| /* Transfer data (if any) from Write Queue -> UART. */ |
| neo_copy_data_from_queue_to_uart(ch); |
| } |
| } |
| |
| /* |
| * neo_param() |
| * Send any/all changes to the line to the UART. |
| */ |
| static void neo_param(struct jsm_channel *ch) |
| { |
| u8 lcr = 0; |
| u8 uart_lcr = 0; |
| u8 ier = 0; |
| u32 baud = 9600; |
| int quot = 0; |
| struct jsm_board *bd; |
| |
| bd = ch->ch_bd; |
| if (!bd) |
| return; |
| |
| /* |
| * If baud rate is zero, flush queues, and set mval to drop DTR. |
| */ |
| if ((ch->ch_c_cflag & (CBAUD)) == 0) { |
| ch->ch_r_head = ch->ch_r_tail = 0; |
| ch->ch_e_head = ch->ch_e_tail = 0; |
| ch->ch_w_head = ch->ch_w_tail = 0; |
| |
| neo_flush_uart_write(ch); |
| neo_flush_uart_read(ch); |
| |
| ch->ch_flags |= (CH_BAUD0); |
| ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR); |
| neo_assert_modem_signals(ch); |
| ch->ch_old_baud = 0; |
| return; |
| |
| } else if (ch->ch_custom_speed) { |
| baud = ch->ch_custom_speed; |
| if (ch->ch_flags & CH_BAUD0) |
| ch->ch_flags &= ~(CH_BAUD0); |
| } else { |
| int i; |
| unsigned int cflag; |
| static struct { |
| unsigned int rate; |
| unsigned int cflag; |
| } baud_rates[] = { |
| { 921600, B921600 }, |
| { 460800, B460800 }, |
| { 230400, B230400 }, |
| { 115200, B115200 }, |
| { 57600, B57600 }, |
| { 38400, B38400 }, |
| { 19200, B19200 }, |
| { 9600, B9600 }, |
| { 4800, B4800 }, |
| { 2400, B2400 }, |
| { 1200, B1200 }, |
| { 600, B600 }, |
| { 300, B300 }, |
| { 200, B200 }, |
| { 150, B150 }, |
| { 134, B134 }, |
| { 110, B110 }, |
| { 75, B75 }, |
| { 50, B50 }, |
| }; |
| |
| cflag = C_BAUD(ch->uart_port.info->tty); |
| baud = 9600; |
| for (i = 0; i < ARRAY_SIZE(baud_rates); i++) { |
| if (baud_rates[i].cflag == cflag) { |
| baud = baud_rates[i].rate; |
| break; |
| } |
| } |
| |
| if (ch->ch_flags & CH_BAUD0) |
| ch->ch_flags &= ~(CH_BAUD0); |
| } |
| |
| if (ch->ch_c_cflag & PARENB) |
| lcr |= UART_LCR_PARITY; |
| |
| if (!(ch->ch_c_cflag & PARODD)) |
| lcr |= UART_LCR_EPAR; |
| |
| /* |
| * Not all platforms support mark/space parity, |
| * so this will hide behind an ifdef. |
| */ |
| #ifdef CMSPAR |
| if (ch->ch_c_cflag & CMSPAR) |
| lcr |= UART_LCR_SPAR; |
| #endif |
| |
| if (ch->ch_c_cflag & CSTOPB) |
| lcr |= UART_LCR_STOP; |
| |
| switch (ch->ch_c_cflag & CSIZE) { |
| case CS5: |
| lcr |= UART_LCR_WLEN5; |
| break; |
| case CS6: |
| lcr |= UART_LCR_WLEN6; |
| break; |
| case CS7: |
| lcr |= UART_LCR_WLEN7; |
| break; |
| case CS8: |
| default: |
| lcr |= UART_LCR_WLEN8; |
| break; |
| } |
| |
| ier = readb(&ch->ch_neo_uart->ier); |
| uart_lcr = readb(&ch->ch_neo_uart->lcr); |
| |
| if (baud == 0) |
| baud = 9600; |
| |
| quot = ch->ch_bd->bd_dividend / baud; |
| |
| if (quot != 0) { |
| ch->ch_old_baud = baud; |
| writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr); |
| writeb((quot & 0xff), &ch->ch_neo_uart->txrx); |
| writeb((quot >> 8), &ch->ch_neo_uart->ier); |
| writeb(lcr, &ch->ch_neo_uart->lcr); |
| } |
| |
| if (uart_lcr != lcr) |
| writeb(lcr, &ch->ch_neo_uart->lcr); |
| |
| if (ch->ch_c_cflag & CREAD) |
| ier |= (UART_IER_RDI | UART_IER_RLSI); |
| |
| ier |= (UART_IER_THRI | UART_IER_MSI); |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| |
| /* Set new start/stop chars */ |
| neo_set_new_start_stop_chars(ch); |
| |
| if (ch->ch_c_cflag & CRTSCTS) |
| neo_set_cts_flow_control(ch); |
| else if (ch->ch_c_iflag & IXON) { |
| /* If start/stop is set to disable, then we should disable flow control */ |
| if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) |
| neo_set_no_output_flow_control(ch); |
| else |
| neo_set_ixon_flow_control(ch); |
| } |
| else |
| neo_set_no_output_flow_control(ch); |
| |
| if (ch->ch_c_cflag & CRTSCTS) |
| neo_set_rts_flow_control(ch); |
| else if (ch->ch_c_iflag & IXOFF) { |
| /* If start/stop is set to disable, then we should disable flow control */ |
| if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) |
| neo_set_no_input_flow_control(ch); |
| else |
| neo_set_ixoff_flow_control(ch); |
| } |
| else |
| neo_set_no_input_flow_control(ch); |
| /* |
| * Adjust the RX FIFO Trigger level if baud is less than 9600. |
| * Not exactly elegant, but this is needed because of the Exar chip's |
| * delay on firing off the RX FIFO interrupt on slower baud rates. |
| */ |
| if (baud < 9600) { |
| writeb(1, &ch->ch_neo_uart->rfifo); |
| ch->ch_r_tlevel = 1; |
| } |
| |
| neo_assert_modem_signals(ch); |
| |
| /* Get current status of the modem signals now */ |
| neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); |
| return; |
| } |
| |
| /* |
| * jsm_neo_intr() |
| * |
| * Neo specific interrupt handler. |
| */ |
| static irqreturn_t neo_intr(int irq, void *voidbrd) |
| { |
| struct jsm_board *brd = (struct jsm_board *) voidbrd; |
| struct jsm_channel *ch; |
| int port = 0; |
| int type = 0; |
| int current_port; |
| u32 tmp; |
| u32 uart_poll; |
| unsigned long lock_flags; |
| unsigned long lock_flags2; |
| int outofloop_count = 0; |
| |
| brd->intr_count++; |
| |
| /* Lock out the slow poller from running on this board. */ |
| spin_lock_irqsave(&brd->bd_intr_lock, lock_flags); |
| |
| /* |
| * Read in "extended" IRQ information from the 32bit Neo register. |
| * Bits 0-7: What port triggered the interrupt. |
| * Bits 8-31: Each 3bits indicate what type of interrupt occurred. |
| */ |
| uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET); |
| |
| jsm_printk(INTR, INFO, &brd->pci_dev, |
| "%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll); |
| |
| if (!uart_poll) { |
| jsm_printk(INTR, INFO, &brd->pci_dev, |
| "Kernel interrupted to me, but no pending interrupts...\n"); |
| spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); |
| return IRQ_NONE; |
| } |
| |
| /* At this point, we have at least SOMETHING to service, dig further... */ |
| |
| current_port = 0; |
| |
| /* Loop on each port */ |
| while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){ |
| |
| tmp = uart_poll; |
| outofloop_count++; |
| |
| /* Check current port to see if it has interrupt pending */ |
| if ((tmp & jsm_offset_table[current_port]) != 0) { |
| port = current_port; |
| type = tmp >> (8 + (port * 3)); |
| type &= 0x7; |
| } else { |
| current_port++; |
| continue; |
| } |
| |
| jsm_printk(INTR, INFO, &brd->pci_dev, |
| "%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type); |
| |
| /* Remove this port + type from uart_poll */ |
| uart_poll &= ~(jsm_offset_table[port]); |
| |
| if (!type) { |
| /* If no type, just ignore it, and move onto next port */ |
| jsm_printk(INTR, ERR, &brd->pci_dev, |
| "Interrupt with no type! port: %d\n", port); |
| continue; |
| } |
| |
| /* Switch on type of interrupt we have */ |
| switch (type) { |
| |
| case UART_17158_RXRDY_TIMEOUT: |
| /* |
| * RXRDY Time-out is cleared by reading data in the |
| * RX FIFO until it falls below the trigger level. |
| */ |
| |
| /* Verify the port is in range. */ |
| if (port > brd->nasync) |
| continue; |
| |
| ch = brd->channels[port]; |
| neo_copy_data_from_uart_to_queue(ch); |
| |
| /* Call our tty layer to enforce queue flow control if needed. */ |
| spin_lock_irqsave(&ch->ch_lock, lock_flags2); |
| jsm_check_queue_flow_control(ch); |
| spin_unlock_irqrestore(&ch->ch_lock, lock_flags2); |
| |
| continue; |
| |
| case UART_17158_RX_LINE_STATUS: |
| /* |
| * RXRDY and RX LINE Status (logic OR of LSR[4:1]) |
| */ |
| neo_parse_lsr(brd, port); |
| continue; |
| |
| case UART_17158_TXRDY: |
| /* |
| * TXRDY interrupt clears after reading ISR register for the UART channel. |
| */ |
| |
| /* |
| * Yes, this is odd... |
| * Why would I check EVERY possibility of type of |
| * interrupt, when we know its TXRDY??? |
| * Becuz for some reason, even tho we got triggered for TXRDY, |
| * it seems to be occassionally wrong. Instead of TX, which |
| * it should be, I was getting things like RXDY too. Weird. |
| */ |
| neo_parse_isr(brd, port); |
| continue; |
| |
| case UART_17158_MSR: |
| /* |
| * MSR or flow control was seen. |
| */ |
| neo_parse_isr(brd, port); |
| continue; |
| |
| default: |
| /* |
| * The UART triggered us with a bogus interrupt type. |
| * It appears the Exar chip, when REALLY bogged down, will throw |
| * these once and awhile. |
| * Its harmless, just ignore it and move on. |
| */ |
| jsm_printk(INTR, ERR, &brd->pci_dev, |
| "%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type); |
| continue; |
| } |
| } |
| |
| spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); |
| |
| jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n"); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Neo specific way of turning off the receiver. |
| * Used as a way to enforce queue flow control when in |
| * hardware flow control mode. |
| */ |
| static void neo_disable_receiver(struct jsm_channel *ch) |
| { |
| u8 tmp = readb(&ch->ch_neo_uart->ier); |
| tmp &= ~(UART_IER_RDI); |
| writeb(tmp, &ch->ch_neo_uart->ier); |
| |
| /* flush write operation */ |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| |
| /* |
| * Neo specific way of turning on the receiver. |
| * Used as a way to un-enforce queue flow control when in |
| * hardware flow control mode. |
| */ |
| static void neo_enable_receiver(struct jsm_channel *ch) |
| { |
| u8 tmp = readb(&ch->ch_neo_uart->ier); |
| tmp |= (UART_IER_RDI); |
| writeb(tmp, &ch->ch_neo_uart->ier); |
| |
| /* flush write operation */ |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| static void neo_send_start_character(struct jsm_channel *ch) |
| { |
| if (!ch) |
| return; |
| |
| if (ch->ch_startc != __DISABLED_CHAR) { |
| ch->ch_xon_sends++; |
| writeb(ch->ch_startc, &ch->ch_neo_uart->txrx); |
| |
| /* flush write operation */ |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| } |
| |
| static void neo_send_stop_character(struct jsm_channel *ch) |
| { |
| if (!ch) |
| return; |
| |
| if (ch->ch_stopc != __DISABLED_CHAR) { |
| ch->ch_xoff_sends++; |
| writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx); |
| |
| /* flush write operation */ |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| } |
| |
| /* |
| * neo_uart_init |
| */ |
| static void neo_uart_init(struct jsm_channel *ch) |
| { |
| writeb(0, &ch->ch_neo_uart->ier); |
| writeb(0, &ch->ch_neo_uart->efr); |
| writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr); |
| |
| /* Clear out UART and FIFO */ |
| readb(&ch->ch_neo_uart->txrx); |
| writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); |
| readb(&ch->ch_neo_uart->lsr); |
| readb(&ch->ch_neo_uart->msr); |
| |
| ch->ch_flags |= CH_FIFO_ENABLED; |
| |
| /* Assert any signals we want up */ |
| writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); |
| } |
| |
| /* |
| * Make the UART completely turn off. |
| */ |
| static void neo_uart_off(struct jsm_channel *ch) |
| { |
| /* Turn off UART enhanced bits */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Stop all interrupts from occurring. */ |
| writeb(0, &ch->ch_neo_uart->ier); |
| } |
| |
| static u32 neo_get_uart_bytes_left(struct jsm_channel *ch) |
| { |
| u8 left = 0; |
| u8 lsr = readb(&ch->ch_neo_uart->lsr); |
| |
| /* We must cache the LSR as some of the bits get reset once read... */ |
| ch->ch_cached_lsr |= lsr; |
| |
| /* Determine whether the Transmitter is empty or not */ |
| if (!(lsr & UART_LSR_TEMT)) |
| left = 1; |
| else { |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| left = 0; |
| } |
| |
| return left; |
| } |
| |
| /* Channel lock MUST be held by the calling function! */ |
| static void neo_send_break(struct jsm_channel *ch) |
| { |
| /* |
| * Set the time we should stop sending the break. |
| * If we are already sending a break, toss away the existing |
| * time to stop, and use this new value instead. |
| */ |
| |
| /* Tell the UART to start sending the break */ |
| if (!(ch->ch_flags & CH_BREAK_SENDING)) { |
| u8 temp = readb(&ch->ch_neo_uart->lcr); |
| writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr); |
| ch->ch_flags |= (CH_BREAK_SENDING); |
| |
| /* flush write operation */ |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| } |
| |
| /* |
| * neo_send_immediate_char. |
| * |
| * Sends a specific character as soon as possible to the UART, |
| * jumping over any bytes that might be in the write queue. |
| * |
| * The channel lock MUST be held by the calling function. |
| */ |
| static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c) |
| { |
| if (!ch) |
| return; |
| |
| writeb(c, &ch->ch_neo_uart->txrx); |
| |
| /* flush write operation */ |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| struct board_ops jsm_neo_ops = { |
| .intr = neo_intr, |
| .uart_init = neo_uart_init, |
| .uart_off = neo_uart_off, |
| .param = neo_param, |
| .assert_modem_signals = neo_assert_modem_signals, |
| .flush_uart_write = neo_flush_uart_write, |
| .flush_uart_read = neo_flush_uart_read, |
| .disable_receiver = neo_disable_receiver, |
| .enable_receiver = neo_enable_receiver, |
| .send_break = neo_send_break, |
| .clear_break = neo_clear_break, |
| .send_start_character = neo_send_start_character, |
| .send_stop_character = neo_send_stop_character, |
| .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart, |
| .get_uart_bytes_left = neo_get_uart_bytes_left, |
| .send_immediate_char = neo_send_immediate_char |
| }; |