| /* |
| * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com |
| * |
| * arch/arm/mach-exynos/mcpm-exynos.c |
| * |
| * Based on arch/arm/mach-vexpress/dcscb.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/arm-cci.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/of_address.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/cp15.h> |
| #include <asm/mcpm.h> |
| |
| #include "regs-pmu.h" |
| #include "common.h" |
| |
| #define EXYNOS5420_CPUS_PER_CLUSTER 4 |
| #define EXYNOS5420_NR_CLUSTERS 2 |
| |
| /* |
| * The common v7_exit_coherency_flush API could not be used because of the |
| * Erratum 799270 workaround. This macro is the same as the common one (in |
| * arch/arm/include/asm/cacheflush.h) except for the erratum handling. |
| */ |
| #define exynos_v7_exit_coherency_flush(level) \ |
| asm volatile( \ |
| "stmfd sp!, {fp, ip}\n\t"\ |
| "mrc p15, 0, r0, c1, c0, 0 @ get SCTLR\n\t" \ |
| "bic r0, r0, #"__stringify(CR_C)"\n\t" \ |
| "mcr p15, 0, r0, c1, c0, 0 @ set SCTLR\n\t" \ |
| "isb\n\t"\ |
| "bl v7_flush_dcache_"__stringify(level)"\n\t" \ |
| "clrex\n\t"\ |
| "mrc p15, 0, r0, c1, c0, 1 @ get ACTLR\n\t" \ |
| "bic r0, r0, #(1 << 6) @ disable local coherency\n\t" \ |
| /* Dummy Load of a device register to avoid Erratum 799270 */ \ |
| "ldr r4, [%0]\n\t" \ |
| "and r4, r4, #0\n\t" \ |
| "orr r0, r0, r4\n\t" \ |
| "mcr p15, 0, r0, c1, c0, 1 @ set ACTLR\n\t" \ |
| "isb\n\t" \ |
| "dsb\n\t" \ |
| "ldmfd sp!, {fp, ip}" \ |
| : \ |
| : "Ir" (S5P_INFORM0) \ |
| : "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ |
| "r9", "r10", "lr", "memory") |
| |
| /* |
| * We can't use regular spinlocks. In the switcher case, it is possible |
| * for an outbound CPU to call power_down() after its inbound counterpart |
| * is already live using the same logical CPU number which trips lockdep |
| * debugging. |
| */ |
| static arch_spinlock_t exynos_mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED; |
| static int |
| cpu_use_count[EXYNOS5420_CPUS_PER_CLUSTER][EXYNOS5420_NR_CLUSTERS]; |
| |
| #define exynos_cluster_usecnt(cluster) \ |
| (cpu_use_count[0][cluster] + \ |
| cpu_use_count[1][cluster] + \ |
| cpu_use_count[2][cluster] + \ |
| cpu_use_count[3][cluster]) |
| |
| #define exynos_cluster_unused(cluster) !exynos_cluster_usecnt(cluster) |
| |
| static int exynos_cluster_power_control(unsigned int cluster, int enable) |
| { |
| unsigned int tries = 100; |
| unsigned int val; |
| |
| if (enable) { |
| exynos_cluster_power_up(cluster); |
| val = S5P_CORE_LOCAL_PWR_EN; |
| } else { |
| exynos_cluster_power_down(cluster); |
| val = 0; |
| } |
| |
| /* Wait until cluster power control is applied */ |
| while (tries--) { |
| if (exynos_cluster_power_state(cluster) == val) |
| return 0; |
| |
| cpu_relax(); |
| } |
| pr_debug("timed out waiting for cluster %u to power %s\n", cluster, |
| enable ? "on" : "off"); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int exynos_power_up(unsigned int cpu, unsigned int cluster) |
| { |
| unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER); |
| int err = 0; |
| |
| pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); |
| if (cpu >= EXYNOS5420_CPUS_PER_CLUSTER || |
| cluster >= EXYNOS5420_NR_CLUSTERS) |
| return -EINVAL; |
| |
| /* |
| * Since this is called with IRQs enabled, and no arch_spin_lock_irq |
| * variant exists, we need to disable IRQs manually here. |
| */ |
| local_irq_disable(); |
| arch_spin_lock(&exynos_mcpm_lock); |
| |
| cpu_use_count[cpu][cluster]++; |
| if (cpu_use_count[cpu][cluster] == 1) { |
| bool was_cluster_down = |
| (exynos_cluster_usecnt(cluster) == 1); |
| |
| /* |
| * Turn on the cluster (L2/COMMON) and then power on the |
| * cores. |
| */ |
| if (was_cluster_down) |
| err = exynos_cluster_power_control(cluster, 1); |
| |
| if (!err) |
| exynos_cpu_power_up(cpunr); |
| else |
| exynos_cluster_power_control(cluster, 0); |
| } else if (cpu_use_count[cpu][cluster] != 2) { |
| /* |
| * The only possible values are: |
| * 0 = CPU down |
| * 1 = CPU (still) up |
| * 2 = CPU requested to be up before it had a chance |
| * to actually make itself down. |
| * Any other value is a bug. |
| */ |
| BUG(); |
| } |
| |
| arch_spin_unlock(&exynos_mcpm_lock); |
| local_irq_enable(); |
| |
| return err; |
| } |
| |
| /* |
| * NOTE: This function requires the stack data to be visible through power down |
| * and can only be executed on processors like A15 and A7 that hit the cache |
| * with the C bit clear in the SCTLR register. |
| */ |
| static void exynos_power_down(void) |
| { |
| unsigned int mpidr, cpu, cluster; |
| bool last_man = false, skip_wfi = false; |
| unsigned int cpunr; |
| |
| mpidr = read_cpuid_mpidr(); |
| cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER); |
| |
| pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); |
| BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER || |
| cluster >= EXYNOS5420_NR_CLUSTERS); |
| |
| __mcpm_cpu_going_down(cpu, cluster); |
| |
| arch_spin_lock(&exynos_mcpm_lock); |
| BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP); |
| cpu_use_count[cpu][cluster]--; |
| if (cpu_use_count[cpu][cluster] == 0) { |
| exynos_cpu_power_down(cpunr); |
| |
| if (exynos_cluster_unused(cluster)) |
| /* TODO: Turn off the cluster here to save power. */ |
| last_man = true; |
| } else if (cpu_use_count[cpu][cluster] == 1) { |
| /* |
| * A power_up request went ahead of us. |
| * Even if we do not want to shut this CPU down, |
| * the caller expects a certain state as if the WFI |
| * was aborted. So let's continue with cache cleaning. |
| */ |
| skip_wfi = true; |
| } else { |
| BUG(); |
| } |
| |
| if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) { |
| arch_spin_unlock(&exynos_mcpm_lock); |
| |
| if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) { |
| /* |
| * On the Cortex-A15 we need to disable |
| * L2 prefetching before flushing the cache. |
| */ |
| asm volatile( |
| "mcr p15, 1, %0, c15, c0, 3\n\t" |
| "isb\n\t" |
| "dsb" |
| : : "r" (0x400)); |
| } |
| |
| /* Flush all cache levels for this cluster. */ |
| exynos_v7_exit_coherency_flush(all); |
| |
| /* |
| * Disable cluster-level coherency by masking |
| * incoming snoops and DVM messages: |
| */ |
| cci_disable_port_by_cpu(mpidr); |
| |
| __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); |
| } else { |
| arch_spin_unlock(&exynos_mcpm_lock); |
| |
| /* Disable and flush the local CPU cache. */ |
| exynos_v7_exit_coherency_flush(louis); |
| } |
| |
| __mcpm_cpu_down(cpu, cluster); |
| |
| /* Now we are prepared for power-down, do it: */ |
| if (!skip_wfi) |
| wfi(); |
| |
| /* Not dead at this point? Let our caller cope. */ |
| } |
| |
| static int exynos_wait_for_powerdown(unsigned int cpu, unsigned int cluster) |
| { |
| unsigned int tries = 100; |
| unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER); |
| |
| pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); |
| BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER || |
| cluster >= EXYNOS5420_NR_CLUSTERS); |
| |
| /* Wait for the core state to be OFF */ |
| while (tries--) { |
| if (ACCESS_ONCE(cpu_use_count[cpu][cluster]) == 0) { |
| if ((exynos_cpu_power_state(cpunr) == 0)) |
| return 0; /* success: the CPU is halted */ |
| } |
| |
| /* Otherwise, wait and retry: */ |
| msleep(1); |
| } |
| |
| return -ETIMEDOUT; /* timeout */ |
| } |
| |
| static const struct mcpm_platform_ops exynos_power_ops = { |
| .power_up = exynos_power_up, |
| .power_down = exynos_power_down, |
| .wait_for_powerdown = exynos_wait_for_powerdown, |
| }; |
| |
| static void __init exynos_mcpm_usage_count_init(void) |
| { |
| unsigned int mpidr, cpu, cluster; |
| |
| mpidr = read_cpuid_mpidr(); |
| cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| |
| pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); |
| BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER || |
| cluster >= EXYNOS5420_NR_CLUSTERS); |
| |
| cpu_use_count[cpu][cluster] = 1; |
| } |
| |
| /* |
| * Enable cluster-level coherency, in preparation for turning on the MMU. |
| */ |
| static void __naked exynos_pm_power_up_setup(unsigned int affinity_level) |
| { |
| asm volatile ("\n" |
| "cmp r0, #1\n" |
| "bxne lr\n" |
| "b cci_enable_port_for_self"); |
| } |
| |
| static void __init exynos_cache_off(void) |
| { |
| if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) { |
| /* disable L2 prefetching on the Cortex-A15 */ |
| asm volatile( |
| "mcr p15, 1, %0, c15, c0, 3\n\t" |
| "isb\n\t" |
| "dsb" |
| : : "r" (0x400)); |
| } |
| exynos_v7_exit_coherency_flush(all); |
| } |
| |
| static const struct of_device_id exynos_dt_mcpm_match[] = { |
| { .compatible = "samsung,exynos5420" }, |
| { .compatible = "samsung,exynos5800" }, |
| {}, |
| }; |
| |
| static int __init exynos_mcpm_init(void) |
| { |
| struct device_node *node; |
| void __iomem *ns_sram_base_addr; |
| int ret; |
| |
| node = of_find_matching_node(NULL, exynos_dt_mcpm_match); |
| if (!node) |
| return -ENODEV; |
| of_node_put(node); |
| |
| if (!cci_probed()) |
| return -ENODEV; |
| |
| node = of_find_compatible_node(NULL, NULL, |
| "samsung,exynos4210-sysram-ns"); |
| if (!node) |
| return -ENODEV; |
| |
| ns_sram_base_addr = of_iomap(node, 0); |
| of_node_put(node); |
| if (!ns_sram_base_addr) { |
| pr_err("failed to map non-secure iRAM base address\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * To increase the stability of KFC reset we need to program |
| * the PMU SPARE3 register |
| */ |
| __raw_writel(EXYNOS5420_SWRESET_KFC_SEL, S5P_PMU_SPARE3); |
| |
| exynos_mcpm_usage_count_init(); |
| |
| ret = mcpm_platform_register(&exynos_power_ops); |
| if (!ret) |
| ret = mcpm_sync_init(exynos_pm_power_up_setup); |
| if (!ret) |
| ret = mcpm_loopback(exynos_cache_off); /* turn on the CCI */ |
| if (ret) { |
| iounmap(ns_sram_base_addr); |
| return ret; |
| } |
| |
| mcpm_smp_set_ops(); |
| |
| pr_info("Exynos MCPM support installed\n"); |
| |
| /* |
| * U-Boot SPL is hardcoded to jump to the start of ns_sram_base_addr |
| * as part of secondary_cpu_start(). Let's redirect it to the |
| * mcpm_entry_point(). |
| */ |
| __raw_writel(0xe59f0000, ns_sram_base_addr); /* ldr r0, [pc, #0] */ |
| __raw_writel(0xe12fff10, ns_sram_base_addr + 4); /* bx r0 */ |
| __raw_writel(virt_to_phys(mcpm_entry_point), ns_sram_base_addr + 8); |
| |
| iounmap(ns_sram_base_addr); |
| |
| return ret; |
| } |
| |
| early_initcall(exynos_mcpm_init); |