| /* |
| * Kernel Debug Core |
| * |
| * Maintainer: Jason Wessel <jason.wessel@windriver.com> |
| * |
| * Copyright (C) 2000-2001 VERITAS Software Corporation. |
| * Copyright (C) 2002-2004 Timesys Corporation |
| * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> |
| * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz> |
| * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> |
| * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. |
| * Copyright (C) 2005-2009 Wind River Systems, Inc. |
| * Copyright (C) 2007 MontaVista Software, Inc. |
| * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
| * |
| * Contributors at various stages not listed above: |
| * Jason Wessel ( jason.wessel@windriver.com ) |
| * George Anzinger <george@mvista.com> |
| * Anurekh Saxena (anurekh.saxena@timesys.com) |
| * Lake Stevens Instrument Division (Glenn Engel) |
| * Jim Kingdon, Cygnus Support. |
| * |
| * Original KGDB stub: David Grothe <dave@gcom.com>, |
| * Tigran Aivazian <tigran@sco.com> |
| * |
| * This file is licensed under the terms of the GNU General Public License |
| * version 2. This program is licensed "as is" without any warranty of any |
| * kind, whether express or implied. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/kgdb.h> |
| #include <linux/kdb.h> |
| #include <linux/reboot.h> |
| #include <linux/uaccess.h> |
| #include <asm/cacheflush.h> |
| #include <asm/unaligned.h> |
| #include "debug_core.h" |
| |
| #define KGDB_MAX_THREAD_QUERY 17 |
| |
| /* Our I/O buffers. */ |
| static char remcom_in_buffer[BUFMAX]; |
| static char remcom_out_buffer[BUFMAX]; |
| |
| /* Storage for the registers, in GDB format. */ |
| static unsigned long gdb_regs[(NUMREGBYTES + |
| sizeof(unsigned long) - 1) / |
| sizeof(unsigned long)]; |
| |
| /* |
| * GDB remote protocol parser: |
| */ |
| |
| static int hex(char ch) |
| { |
| if ((ch >= 'a') && (ch <= 'f')) |
| return ch - 'a' + 10; |
| if ((ch >= '0') && (ch <= '9')) |
| return ch - '0'; |
| if ((ch >= 'A') && (ch <= 'F')) |
| return ch - 'A' + 10; |
| return -1; |
| } |
| |
| #ifdef CONFIG_KGDB_KDB |
| static int gdbstub_read_wait(void) |
| { |
| int ret = -1; |
| int i; |
| |
| /* poll any additional I/O interfaces that are defined */ |
| while (ret < 0) |
| for (i = 0; kdb_poll_funcs[i] != NULL; i++) { |
| ret = kdb_poll_funcs[i](); |
| if (ret > 0) |
| break; |
| } |
| return ret; |
| } |
| #else |
| static int gdbstub_read_wait(void) |
| { |
| int ret = dbg_io_ops->read_char(); |
| while (ret == NO_POLL_CHAR) |
| ret = dbg_io_ops->read_char(); |
| return ret; |
| } |
| #endif |
| /* scan for the sequence $<data>#<checksum> */ |
| static void get_packet(char *buffer) |
| { |
| unsigned char checksum; |
| unsigned char xmitcsum; |
| int count; |
| char ch; |
| |
| do { |
| /* |
| * Spin and wait around for the start character, ignore all |
| * other characters: |
| */ |
| while ((ch = (gdbstub_read_wait())) != '$') |
| /* nothing */; |
| |
| kgdb_connected = 1; |
| checksum = 0; |
| xmitcsum = -1; |
| |
| count = 0; |
| |
| /* |
| * now, read until a # or end of buffer is found: |
| */ |
| while (count < (BUFMAX - 1)) { |
| ch = gdbstub_read_wait(); |
| if (ch == '#') |
| break; |
| checksum = checksum + ch; |
| buffer[count] = ch; |
| count = count + 1; |
| } |
| buffer[count] = 0; |
| |
| if (ch == '#') { |
| xmitcsum = hex(gdbstub_read_wait()) << 4; |
| xmitcsum += hex(gdbstub_read_wait()); |
| |
| if (checksum != xmitcsum) |
| /* failed checksum */ |
| dbg_io_ops->write_char('-'); |
| else |
| /* successful transfer */ |
| dbg_io_ops->write_char('+'); |
| if (dbg_io_ops->flush) |
| dbg_io_ops->flush(); |
| } |
| } while (checksum != xmitcsum); |
| } |
| |
| /* |
| * Send the packet in buffer. |
| * Check for gdb connection if asked for. |
| */ |
| static void put_packet(char *buffer) |
| { |
| unsigned char checksum; |
| int count; |
| char ch; |
| |
| /* |
| * $<packet info>#<checksum>. |
| */ |
| while (1) { |
| dbg_io_ops->write_char('$'); |
| checksum = 0; |
| count = 0; |
| |
| while ((ch = buffer[count])) { |
| dbg_io_ops->write_char(ch); |
| checksum += ch; |
| count++; |
| } |
| |
| dbg_io_ops->write_char('#'); |
| dbg_io_ops->write_char(hex_asc_hi(checksum)); |
| dbg_io_ops->write_char(hex_asc_lo(checksum)); |
| if (dbg_io_ops->flush) |
| dbg_io_ops->flush(); |
| |
| /* Now see what we get in reply. */ |
| ch = gdbstub_read_wait(); |
| |
| if (ch == 3) |
| ch = gdbstub_read_wait(); |
| |
| /* If we get an ACK, we are done. */ |
| if (ch == '+') |
| return; |
| |
| /* |
| * If we get the start of another packet, this means |
| * that GDB is attempting to reconnect. We will NAK |
| * the packet being sent, and stop trying to send this |
| * packet. |
| */ |
| if (ch == '$') { |
| dbg_io_ops->write_char('-'); |
| if (dbg_io_ops->flush) |
| dbg_io_ops->flush(); |
| return; |
| } |
| } |
| } |
| |
| static char gdbmsgbuf[BUFMAX + 1]; |
| |
| void gdbstub_msg_write(const char *s, int len) |
| { |
| char *bufptr; |
| int wcount; |
| int i; |
| |
| if (len == 0) |
| len = strlen(s); |
| |
| /* 'O'utput */ |
| gdbmsgbuf[0] = 'O'; |
| |
| /* Fill and send buffers... */ |
| while (len > 0) { |
| bufptr = gdbmsgbuf + 1; |
| |
| /* Calculate how many this time */ |
| if ((len << 1) > (BUFMAX - 2)) |
| wcount = (BUFMAX - 2) >> 1; |
| else |
| wcount = len; |
| |
| /* Pack in hex chars */ |
| for (i = 0; i < wcount; i++) |
| bufptr = pack_hex_byte(bufptr, s[i]); |
| *bufptr = '\0'; |
| |
| /* Move up */ |
| s += wcount; |
| len -= wcount; |
| |
| /* Write packet */ |
| put_packet(gdbmsgbuf); |
| } |
| } |
| |
| /* |
| * Convert the memory pointed to by mem into hex, placing result in |
| * buf. Return a pointer to the last char put in buf (null). May |
| * return an error. |
| */ |
| int kgdb_mem2hex(char *mem, char *buf, int count) |
| { |
| char *tmp; |
| int err; |
| |
| /* |
| * We use the upper half of buf as an intermediate buffer for the |
| * raw memory copy. Hex conversion will work against this one. |
| */ |
| tmp = buf + count; |
| |
| err = probe_kernel_read(tmp, mem, count); |
| if (!err) { |
| while (count > 0) { |
| buf = pack_hex_byte(buf, *tmp); |
| tmp++; |
| count--; |
| } |
| |
| *buf = 0; |
| } |
| |
| return err; |
| } |
| |
| /* |
| * Convert the hex array pointed to by buf into binary to be placed in |
| * mem. Return a pointer to the character AFTER the last byte |
| * written. May return an error. |
| */ |
| int kgdb_hex2mem(char *buf, char *mem, int count) |
| { |
| char *tmp_raw; |
| char *tmp_hex; |
| |
| /* |
| * We use the upper half of buf as an intermediate buffer for the |
| * raw memory that is converted from hex. |
| */ |
| tmp_raw = buf + count * 2; |
| |
| tmp_hex = tmp_raw - 1; |
| while (tmp_hex >= buf) { |
| tmp_raw--; |
| *tmp_raw = hex(*tmp_hex--); |
| *tmp_raw |= hex(*tmp_hex--) << 4; |
| } |
| |
| return probe_kernel_write(mem, tmp_raw, count); |
| } |
| |
| /* |
| * While we find nice hex chars, build a long_val. |
| * Return number of chars processed. |
| */ |
| int kgdb_hex2long(char **ptr, unsigned long *long_val) |
| { |
| int hex_val; |
| int num = 0; |
| int negate = 0; |
| |
| *long_val = 0; |
| |
| if (**ptr == '-') { |
| negate = 1; |
| (*ptr)++; |
| } |
| while (**ptr) { |
| hex_val = hex(**ptr); |
| if (hex_val < 0) |
| break; |
| |
| *long_val = (*long_val << 4) | hex_val; |
| num++; |
| (*ptr)++; |
| } |
| |
| if (negate) |
| *long_val = -*long_val; |
| |
| return num; |
| } |
| |
| /* |
| * Copy the binary array pointed to by buf into mem. Fix $, #, and |
| * 0x7d escaped with 0x7d. Return -EFAULT on failure or 0 on success. |
| * The input buf is overwitten with the result to write to mem. |
| */ |
| static int kgdb_ebin2mem(char *buf, char *mem, int count) |
| { |
| int size = 0; |
| char *c = buf; |
| |
| while (count-- > 0) { |
| c[size] = *buf++; |
| if (c[size] == 0x7d) |
| c[size] = *buf++ ^ 0x20; |
| size++; |
| } |
| |
| return probe_kernel_write(mem, c, size); |
| } |
| |
| /* Write memory due to an 'M' or 'X' packet. */ |
| static int write_mem_msg(int binary) |
| { |
| char *ptr = &remcom_in_buffer[1]; |
| unsigned long addr; |
| unsigned long length; |
| int err; |
| |
| if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' && |
| kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') { |
| if (binary) |
| err = kgdb_ebin2mem(ptr, (char *)addr, length); |
| else |
| err = kgdb_hex2mem(ptr, (char *)addr, length); |
| if (err) |
| return err; |
| if (CACHE_FLUSH_IS_SAFE) |
| flush_icache_range(addr, addr + length); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void error_packet(char *pkt, int error) |
| { |
| error = -error; |
| pkt[0] = 'E'; |
| pkt[1] = hex_asc[(error / 10)]; |
| pkt[2] = hex_asc[(error % 10)]; |
| pkt[3] = '\0'; |
| } |
| |
| /* |
| * Thread ID accessors. We represent a flat TID space to GDB, where |
| * the per CPU idle threads (which under Linux all have PID 0) are |
| * remapped to negative TIDs. |
| */ |
| |
| #define BUF_THREAD_ID_SIZE 16 |
| |
| static char *pack_threadid(char *pkt, unsigned char *id) |
| { |
| char *limit; |
| |
| limit = pkt + BUF_THREAD_ID_SIZE; |
| while (pkt < limit) |
| pkt = pack_hex_byte(pkt, *id++); |
| |
| return pkt; |
| } |
| |
| static void int_to_threadref(unsigned char *id, int value) |
| { |
| unsigned char *scan; |
| int i = 4; |
| |
| scan = (unsigned char *)id; |
| while (i--) |
| *scan++ = 0; |
| put_unaligned_be32(value, scan); |
| } |
| |
| static struct task_struct *getthread(struct pt_regs *regs, int tid) |
| { |
| /* |
| * Non-positive TIDs are remapped to the cpu shadow information |
| */ |
| if (tid == 0 || tid == -1) |
| tid = -atomic_read(&kgdb_active) - 2; |
| if (tid < -1 && tid > -NR_CPUS - 2) { |
| if (kgdb_info[-tid - 2].task) |
| return kgdb_info[-tid - 2].task; |
| else |
| return idle_task(-tid - 2); |
| } |
| if (tid <= 0) { |
| printk(KERN_ERR "KGDB: Internal thread select error\n"); |
| dump_stack(); |
| return NULL; |
| } |
| |
| /* |
| * find_task_by_pid_ns() does not take the tasklist lock anymore |
| * but is nicely RCU locked - hence is a pretty resilient |
| * thing to use: |
| */ |
| return find_task_by_pid_ns(tid, &init_pid_ns); |
| } |
| |
| |
| /* |
| * Remap normal tasks to their real PID, |
| * CPU shadow threads are mapped to -CPU - 2 |
| */ |
| static inline int shadow_pid(int realpid) |
| { |
| if (realpid) |
| return realpid; |
| |
| return -raw_smp_processor_id() - 2; |
| } |
| |
| /* |
| * All the functions that start with gdb_cmd are the various |
| * operations to implement the handlers for the gdbserial protocol |
| * where KGDB is communicating with an external debugger |
| */ |
| |
| /* Handle the '?' status packets */ |
| static void gdb_cmd_status(struct kgdb_state *ks) |
| { |
| /* |
| * We know that this packet is only sent |
| * during initial connect. So to be safe, |
| * we clear out our breakpoints now in case |
| * GDB is reconnecting. |
| */ |
| dbg_remove_all_break(); |
| |
| remcom_out_buffer[0] = 'S'; |
| pack_hex_byte(&remcom_out_buffer[1], ks->signo); |
| } |
| |
| /* Handle the 'g' get registers request */ |
| static void gdb_cmd_getregs(struct kgdb_state *ks) |
| { |
| struct task_struct *thread; |
| void *local_debuggerinfo; |
| int i; |
| |
| thread = kgdb_usethread; |
| if (!thread) { |
| thread = kgdb_info[ks->cpu].task; |
| local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo; |
| } else { |
| local_debuggerinfo = NULL; |
| for_each_online_cpu(i) { |
| /* |
| * Try to find the task on some other |
| * or possibly this node if we do not |
| * find the matching task then we try |
| * to approximate the results. |
| */ |
| if (thread == kgdb_info[i].task) |
| local_debuggerinfo = kgdb_info[i].debuggerinfo; |
| } |
| } |
| |
| /* |
| * All threads that don't have debuggerinfo should be |
| * in schedule() sleeping, since all other CPUs |
| * are in kgdb_wait, and thus have debuggerinfo. |
| */ |
| if (local_debuggerinfo) { |
| pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo); |
| } else { |
| /* |
| * Pull stuff saved during switch_to; nothing |
| * else is accessible (or even particularly |
| * relevant). |
| * |
| * This should be enough for a stack trace. |
| */ |
| sleeping_thread_to_gdb_regs(gdb_regs, thread); |
| } |
| kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES); |
| } |
| |
| /* Handle the 'G' set registers request */ |
| static void gdb_cmd_setregs(struct kgdb_state *ks) |
| { |
| kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES); |
| |
| if (kgdb_usethread && kgdb_usethread != current) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| } else { |
| gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs); |
| strcpy(remcom_out_buffer, "OK"); |
| } |
| } |
| |
| /* Handle the 'm' memory read bytes */ |
| static void gdb_cmd_memread(struct kgdb_state *ks) |
| { |
| char *ptr = &remcom_in_buffer[1]; |
| unsigned long length; |
| unsigned long addr; |
| int err; |
| |
| if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' && |
| kgdb_hex2long(&ptr, &length) > 0) { |
| err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length); |
| if (err) |
| error_packet(remcom_out_buffer, err); |
| } else { |
| error_packet(remcom_out_buffer, -EINVAL); |
| } |
| } |
| |
| /* Handle the 'M' memory write bytes */ |
| static void gdb_cmd_memwrite(struct kgdb_state *ks) |
| { |
| int err = write_mem_msg(0); |
| |
| if (err) |
| error_packet(remcom_out_buffer, err); |
| else |
| strcpy(remcom_out_buffer, "OK"); |
| } |
| |
| /* Handle the 'X' memory binary write bytes */ |
| static void gdb_cmd_binwrite(struct kgdb_state *ks) |
| { |
| int err = write_mem_msg(1); |
| |
| if (err) |
| error_packet(remcom_out_buffer, err); |
| else |
| strcpy(remcom_out_buffer, "OK"); |
| } |
| |
| /* Handle the 'D' or 'k', detach or kill packets */ |
| static void gdb_cmd_detachkill(struct kgdb_state *ks) |
| { |
| int error; |
| |
| /* The detach case */ |
| if (remcom_in_buffer[0] == 'D') { |
| error = dbg_remove_all_break(); |
| if (error < 0) { |
| error_packet(remcom_out_buffer, error); |
| } else { |
| strcpy(remcom_out_buffer, "OK"); |
| kgdb_connected = 0; |
| } |
| put_packet(remcom_out_buffer); |
| } else { |
| /* |
| * Assume the kill case, with no exit code checking, |
| * trying to force detach the debugger: |
| */ |
| dbg_remove_all_break(); |
| kgdb_connected = 0; |
| } |
| } |
| |
| /* Handle the 'R' reboot packets */ |
| static int gdb_cmd_reboot(struct kgdb_state *ks) |
| { |
| /* For now, only honor R0 */ |
| if (strcmp(remcom_in_buffer, "R0") == 0) { |
| printk(KERN_CRIT "Executing emergency reboot\n"); |
| strcpy(remcom_out_buffer, "OK"); |
| put_packet(remcom_out_buffer); |
| |
| /* |
| * Execution should not return from |
| * machine_emergency_restart() |
| */ |
| machine_emergency_restart(); |
| kgdb_connected = 0; |
| |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Handle the 'q' query packets */ |
| static void gdb_cmd_query(struct kgdb_state *ks) |
| { |
| struct task_struct *g; |
| struct task_struct *p; |
| unsigned char thref[8]; |
| char *ptr; |
| int i; |
| int cpu; |
| int finished = 0; |
| |
| switch (remcom_in_buffer[1]) { |
| case 's': |
| case 'f': |
| if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| |
| i = 0; |
| remcom_out_buffer[0] = 'm'; |
| ptr = remcom_out_buffer + 1; |
| if (remcom_in_buffer[1] == 'f') { |
| /* Each cpu is a shadow thread */ |
| for_each_online_cpu(cpu) { |
| ks->thr_query = 0; |
| int_to_threadref(thref, -cpu - 2); |
| pack_threadid(ptr, thref); |
| ptr += BUF_THREAD_ID_SIZE; |
| *(ptr++) = ','; |
| i++; |
| } |
| } |
| |
| do_each_thread(g, p) { |
| if (i >= ks->thr_query && !finished) { |
| int_to_threadref(thref, p->pid); |
| pack_threadid(ptr, thref); |
| ptr += BUF_THREAD_ID_SIZE; |
| *(ptr++) = ','; |
| ks->thr_query++; |
| if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0) |
| finished = 1; |
| } |
| i++; |
| } while_each_thread(g, p); |
| |
| *(--ptr) = '\0'; |
| break; |
| |
| case 'C': |
| /* Current thread id */ |
| strcpy(remcom_out_buffer, "QC"); |
| ks->threadid = shadow_pid(current->pid); |
| int_to_threadref(thref, ks->threadid); |
| pack_threadid(remcom_out_buffer + 2, thref); |
| break; |
| case 'T': |
| if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| ks->threadid = 0; |
| ptr = remcom_in_buffer + 17; |
| kgdb_hex2long(&ptr, &ks->threadid); |
| if (!getthread(ks->linux_regs, ks->threadid)) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| if ((int)ks->threadid > 0) { |
| kgdb_mem2hex(getthread(ks->linux_regs, |
| ks->threadid)->comm, |
| remcom_out_buffer, 16); |
| } else { |
| static char tmpstr[23 + BUF_THREAD_ID_SIZE]; |
| |
| sprintf(tmpstr, "shadowCPU%d", |
| (int)(-ks->threadid - 2)); |
| kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr)); |
| } |
| break; |
| #ifdef CONFIG_KGDB_KDB |
| case 'R': |
| if (strncmp(remcom_in_buffer, "qRcmd,", 6) == 0) { |
| int len = strlen(remcom_in_buffer + 6); |
| |
| if ((len % 2) != 0) { |
| strcpy(remcom_out_buffer, "E01"); |
| break; |
| } |
| kgdb_hex2mem(remcom_in_buffer + 6, |
| remcom_out_buffer, len); |
| len = len / 2; |
| remcom_out_buffer[len++] = 0; |
| |
| kdb_parse(remcom_out_buffer); |
| strcpy(remcom_out_buffer, "OK"); |
| } |
| break; |
| #endif |
| } |
| } |
| |
| /* Handle the 'H' task query packets */ |
| static void gdb_cmd_task(struct kgdb_state *ks) |
| { |
| struct task_struct *thread; |
| char *ptr; |
| |
| switch (remcom_in_buffer[1]) { |
| case 'g': |
| ptr = &remcom_in_buffer[2]; |
| kgdb_hex2long(&ptr, &ks->threadid); |
| thread = getthread(ks->linux_regs, ks->threadid); |
| if (!thread && ks->threadid > 0) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| kgdb_usethread = thread; |
| ks->kgdb_usethreadid = ks->threadid; |
| strcpy(remcom_out_buffer, "OK"); |
| break; |
| case 'c': |
| ptr = &remcom_in_buffer[2]; |
| kgdb_hex2long(&ptr, &ks->threadid); |
| if (!ks->threadid) { |
| kgdb_contthread = NULL; |
| } else { |
| thread = getthread(ks->linux_regs, ks->threadid); |
| if (!thread && ks->threadid > 0) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| kgdb_contthread = thread; |
| } |
| strcpy(remcom_out_buffer, "OK"); |
| break; |
| } |
| } |
| |
| /* Handle the 'T' thread query packets */ |
| static void gdb_cmd_thread(struct kgdb_state *ks) |
| { |
| char *ptr = &remcom_in_buffer[1]; |
| struct task_struct *thread; |
| |
| kgdb_hex2long(&ptr, &ks->threadid); |
| thread = getthread(ks->linux_regs, ks->threadid); |
| if (thread) |
| strcpy(remcom_out_buffer, "OK"); |
| else |
| error_packet(remcom_out_buffer, -EINVAL); |
| } |
| |
| /* Handle the 'z' or 'Z' breakpoint remove or set packets */ |
| static void gdb_cmd_break(struct kgdb_state *ks) |
| { |
| /* |
| * Since GDB-5.3, it's been drafted that '0' is a software |
| * breakpoint, '1' is a hardware breakpoint, so let's do that. |
| */ |
| char *bpt_type = &remcom_in_buffer[1]; |
| char *ptr = &remcom_in_buffer[2]; |
| unsigned long addr; |
| unsigned long length; |
| int error = 0; |
| |
| if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') { |
| /* Unsupported */ |
| if (*bpt_type > '4') |
| return; |
| } else { |
| if (*bpt_type != '0' && *bpt_type != '1') |
| /* Unsupported. */ |
| return; |
| } |
| |
| /* |
| * Test if this is a hardware breakpoint, and |
| * if we support it: |
| */ |
| if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT)) |
| /* Unsupported. */ |
| return; |
| |
| if (*(ptr++) != ',') { |
| error_packet(remcom_out_buffer, -EINVAL); |
| return; |
| } |
| if (!kgdb_hex2long(&ptr, &addr)) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| return; |
| } |
| if (*(ptr++) != ',' || |
| !kgdb_hex2long(&ptr, &length)) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| return; |
| } |
| |
| if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0') |
| error = dbg_set_sw_break(addr); |
| else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0') |
| error = dbg_remove_sw_break(addr); |
| else if (remcom_in_buffer[0] == 'Z') |
| error = arch_kgdb_ops.set_hw_breakpoint(addr, |
| (int)length, *bpt_type - '0'); |
| else if (remcom_in_buffer[0] == 'z') |
| error = arch_kgdb_ops.remove_hw_breakpoint(addr, |
| (int) length, *bpt_type - '0'); |
| |
| if (error == 0) |
| strcpy(remcom_out_buffer, "OK"); |
| else |
| error_packet(remcom_out_buffer, error); |
| } |
| |
| /* Handle the 'C' signal / exception passing packets */ |
| static int gdb_cmd_exception_pass(struct kgdb_state *ks) |
| { |
| /* C09 == pass exception |
| * C15 == detach kgdb, pass exception |
| */ |
| if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') { |
| |
| ks->pass_exception = 1; |
| remcom_in_buffer[0] = 'c'; |
| |
| } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') { |
| |
| ks->pass_exception = 1; |
| remcom_in_buffer[0] = 'D'; |
| dbg_remove_all_break(); |
| kgdb_connected = 0; |
| return 1; |
| |
| } else { |
| gdbstub_msg_write("KGDB only knows signal 9 (pass)" |
| " and 15 (pass and disconnect)\n" |
| "Executing a continue without signal passing\n", 0); |
| remcom_in_buffer[0] = 'c'; |
| } |
| |
| /* Indicate fall through */ |
| return -1; |
| } |
| |
| /* |
| * This function performs all gdbserial command procesing |
| */ |
| int gdb_serial_stub(struct kgdb_state *ks) |
| { |
| int error = 0; |
| int tmp; |
| |
| /* Clear the out buffer. */ |
| memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); |
| |
| if (kgdb_connected) { |
| unsigned char thref[8]; |
| char *ptr; |
| |
| /* Reply to host that an exception has occurred */ |
| ptr = remcom_out_buffer; |
| *ptr++ = 'T'; |
| ptr = pack_hex_byte(ptr, ks->signo); |
| ptr += strlen(strcpy(ptr, "thread:")); |
| int_to_threadref(thref, shadow_pid(current->pid)); |
| ptr = pack_threadid(ptr, thref); |
| *ptr++ = ';'; |
| put_packet(remcom_out_buffer); |
| } |
| |
| kgdb_usethread = kgdb_info[ks->cpu].task; |
| ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid); |
| ks->pass_exception = 0; |
| |
| while (1) { |
| error = 0; |
| |
| /* Clear the out buffer. */ |
| memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); |
| |
| get_packet(remcom_in_buffer); |
| |
| switch (remcom_in_buffer[0]) { |
| case '?': /* gdbserial status */ |
| gdb_cmd_status(ks); |
| break; |
| case 'g': /* return the value of the CPU registers */ |
| gdb_cmd_getregs(ks); |
| break; |
| case 'G': /* set the value of the CPU registers - return OK */ |
| gdb_cmd_setregs(ks); |
| break; |
| case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ |
| gdb_cmd_memread(ks); |
| break; |
| case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */ |
| gdb_cmd_memwrite(ks); |
| break; |
| case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */ |
| gdb_cmd_binwrite(ks); |
| break; |
| /* kill or detach. KGDB should treat this like a |
| * continue. |
| */ |
| case 'D': /* Debugger detach */ |
| case 'k': /* Debugger detach via kill */ |
| gdb_cmd_detachkill(ks); |
| goto default_handle; |
| case 'R': /* Reboot */ |
| if (gdb_cmd_reboot(ks)) |
| goto default_handle; |
| break; |
| case 'q': /* query command */ |
| gdb_cmd_query(ks); |
| break; |
| case 'H': /* task related */ |
| gdb_cmd_task(ks); |
| break; |
| case 'T': /* Query thread status */ |
| gdb_cmd_thread(ks); |
| break; |
| case 'z': /* Break point remove */ |
| case 'Z': /* Break point set */ |
| gdb_cmd_break(ks); |
| break; |
| #ifdef CONFIG_KGDB_KDB |
| case '3': /* Escape into back into kdb */ |
| if (remcom_in_buffer[1] == '\0') { |
| gdb_cmd_detachkill(ks); |
| return DBG_PASS_EVENT; |
| } |
| #endif |
| case 'C': /* Exception passing */ |
| tmp = gdb_cmd_exception_pass(ks); |
| if (tmp > 0) |
| goto default_handle; |
| if (tmp == 0) |
| break; |
| /* Fall through on tmp < 0 */ |
| case 'c': /* Continue packet */ |
| case 's': /* Single step packet */ |
| if (kgdb_contthread && kgdb_contthread != current) { |
| /* Can't switch threads in kgdb */ |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| dbg_activate_sw_breakpoints(); |
| /* Fall through to default processing */ |
| default: |
| default_handle: |
| error = kgdb_arch_handle_exception(ks->ex_vector, |
| ks->signo, |
| ks->err_code, |
| remcom_in_buffer, |
| remcom_out_buffer, |
| ks->linux_regs); |
| /* |
| * Leave cmd processing on error, detach, |
| * kill, continue, or single step. |
| */ |
| if (error >= 0 || remcom_in_buffer[0] == 'D' || |
| remcom_in_buffer[0] == 'k') { |
| error = 0; |
| goto kgdb_exit; |
| } |
| |
| } |
| |
| /* reply to the request */ |
| put_packet(remcom_out_buffer); |
| } |
| |
| kgdb_exit: |
| if (ks->pass_exception) |
| error = 1; |
| return error; |
| } |
| |
| int gdbstub_state(struct kgdb_state *ks, char *cmd) |
| { |
| int error; |
| |
| switch (cmd[0]) { |
| case 'e': |
| error = kgdb_arch_handle_exception(ks->ex_vector, |
| ks->signo, |
| ks->err_code, |
| remcom_in_buffer, |
| remcom_out_buffer, |
| ks->linux_regs); |
| return error; |
| case 's': |
| case 'c': |
| strcpy(remcom_in_buffer, cmd); |
| return 0; |
| case '?': |
| gdb_cmd_status(ks); |
| break; |
| case '\0': |
| strcpy(remcom_out_buffer, ""); |
| break; |
| } |
| dbg_io_ops->write_char('+'); |
| put_packet(remcom_out_buffer); |
| return 0; |
| } |