blob: 63f679a04b25a2a87997e1ea5e35e1adc0fed64a [file] [log] [blame]
/*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Rafał Miłecki <zajec5@gmail.com>
* Alex Deucher <alexdeucher@gmail.com>
*/
#include "drmP.h"
#include "radeon.h"
#include "avivod.h"
#ifdef CONFIG_ACPI
#include <linux/acpi.h>
#endif
#include <linux/power_supply.h>
#define RADEON_IDLE_LOOP_MS 100
#define RADEON_RECLOCK_DELAY_MS 200
#define RADEON_WAIT_VBLANK_TIMEOUT 200
#define RADEON_WAIT_IDLE_TIMEOUT 200
static const char *radeon_pm_state_type_name[5] = {
"Default",
"Powersave",
"Battery",
"Balanced",
"Performance",
};
static void radeon_dynpm_idle_work_handler(struct work_struct *work);
static int radeon_debugfs_pm_init(struct radeon_device *rdev);
static bool radeon_pm_in_vbl(struct radeon_device *rdev);
static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish);
static void radeon_pm_update_profile(struct radeon_device *rdev);
static void radeon_pm_set_clocks(struct radeon_device *rdev);
#define ACPI_AC_CLASS "ac_adapter"
#ifdef CONFIG_ACPI
static int radeon_acpi_event(struct notifier_block *nb,
unsigned long val,
void *data)
{
struct radeon_device *rdev = container_of(nb, struct radeon_device, acpi_nb);
struct acpi_bus_event *entry = (struct acpi_bus_event *)data;
if (strcmp(entry->device_class, ACPI_AC_CLASS) == 0) {
if (power_supply_is_system_supplied() > 0)
DRM_DEBUG("pm: AC\n");
else
DRM_DEBUG("pm: DC\n");
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
if (rdev->pm.profile == PM_PROFILE_AUTO) {
mutex_lock(&rdev->pm.mutex);
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
mutex_unlock(&rdev->pm.mutex);
}
}
}
return NOTIFY_OK;
}
#endif
static void radeon_pm_update_profile(struct radeon_device *rdev)
{
switch (rdev->pm.profile) {
case PM_PROFILE_DEFAULT:
rdev->pm.profile_index = PM_PROFILE_DEFAULT_IDX;
break;
case PM_PROFILE_AUTO:
if (power_supply_is_system_supplied() > 0) {
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_HIGH_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_HIGH_SH_IDX;
} else {
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_MID_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_MID_SH_IDX;
}
break;
case PM_PROFILE_LOW:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_LOW_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_LOW_SH_IDX;
break;
case PM_PROFILE_MID:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_MID_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_MID_SH_IDX;
break;
case PM_PROFILE_HIGH:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_HIGH_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_HIGH_SH_IDX;
break;
}
if (rdev->pm.active_crtc_count == 0) {
rdev->pm.requested_power_state_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_off_ps_idx;
rdev->pm.requested_clock_mode_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_off_cm_idx;
} else {
rdev->pm.requested_power_state_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_on_ps_idx;
rdev->pm.requested_clock_mode_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_on_cm_idx;
}
}
static void radeon_unmap_vram_bos(struct radeon_device *rdev)
{
struct radeon_bo *bo, *n;
if (list_empty(&rdev->gem.objects))
return;
list_for_each_entry_safe(bo, n, &rdev->gem.objects, list) {
if (bo->tbo.mem.mem_type == TTM_PL_VRAM)
ttm_bo_unmap_virtual(&bo->tbo);
}
}
static void radeon_sync_with_vblank(struct radeon_device *rdev)
{
if (rdev->pm.active_crtcs) {
rdev->pm.vblank_sync = false;
wait_event_timeout(
rdev->irq.vblank_queue, rdev->pm.vblank_sync,
msecs_to_jiffies(RADEON_WAIT_VBLANK_TIMEOUT));
}
}
static void radeon_set_power_state(struct radeon_device *rdev)
{
u32 sclk, mclk;
bool misc_after = false;
if ((rdev->pm.requested_clock_mode_index == rdev->pm.current_clock_mode_index) &&
(rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index))
return;
if (radeon_gui_idle(rdev)) {
sclk = rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].sclk;
if (sclk > rdev->clock.default_sclk)
sclk = rdev->clock.default_sclk;
mclk = rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].mclk;
if (mclk > rdev->clock.default_mclk)
mclk = rdev->clock.default_mclk;
/* upvolt before raising clocks, downvolt after lowering clocks */
if (sclk < rdev->pm.current_sclk)
misc_after = true;
radeon_sync_with_vblank(rdev);
if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
if (!radeon_pm_in_vbl(rdev))
return;
}
radeon_pm_prepare(rdev);
if (!misc_after)
/* voltage, pcie lanes, etc.*/
radeon_pm_misc(rdev);
/* set engine clock */
if (sclk != rdev->pm.current_sclk) {
radeon_pm_debug_check_in_vbl(rdev, false);
radeon_set_engine_clock(rdev, sclk);
radeon_pm_debug_check_in_vbl(rdev, true);
rdev->pm.current_sclk = sclk;
DRM_DEBUG("Setting: e: %d\n", sclk);
}
/* set memory clock */
if (rdev->asic->set_memory_clock && (mclk != rdev->pm.current_mclk)) {
radeon_pm_debug_check_in_vbl(rdev, false);
radeon_set_memory_clock(rdev, mclk);
radeon_pm_debug_check_in_vbl(rdev, true);
rdev->pm.current_mclk = mclk;
DRM_DEBUG("Setting: m: %d\n", mclk);
}
if (misc_after)
/* voltage, pcie lanes, etc.*/
radeon_pm_misc(rdev);
radeon_pm_finish(rdev);
rdev->pm.current_power_state_index = rdev->pm.requested_power_state_index;
rdev->pm.current_clock_mode_index = rdev->pm.requested_clock_mode_index;
} else
DRM_DEBUG("pm: GUI not idle!!!\n");
}
static void radeon_pm_set_clocks(struct radeon_device *rdev)
{
int i;
mutex_lock(&rdev->ddev->struct_mutex);
mutex_lock(&rdev->vram_mutex);
mutex_lock(&rdev->cp.mutex);
/* gui idle int has issues on older chips it seems */
if (rdev->family >= CHIP_R600) {
if (rdev->irq.installed) {
/* wait for GPU idle */
rdev->pm.gui_idle = false;
rdev->irq.gui_idle = true;
radeon_irq_set(rdev);
wait_event_interruptible_timeout(
rdev->irq.idle_queue, rdev->pm.gui_idle,
msecs_to_jiffies(RADEON_WAIT_IDLE_TIMEOUT));
rdev->irq.gui_idle = false;
radeon_irq_set(rdev);
}
} else {
if (rdev->cp.ready) {
struct radeon_fence *fence;
radeon_ring_alloc(rdev, 64);
radeon_fence_create(rdev, &fence);
radeon_fence_emit(rdev, fence);
radeon_ring_commit(rdev);
radeon_fence_wait(fence, false);
radeon_fence_unref(&fence);
}
}
radeon_unmap_vram_bos(rdev);
if (rdev->irq.installed) {
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->pm.active_crtcs & (1 << i)) {
rdev->pm.req_vblank |= (1 << i);
drm_vblank_get(rdev->ddev, i);
}
}
}
radeon_set_power_state(rdev);
if (rdev->irq.installed) {
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->pm.req_vblank & (1 << i)) {
rdev->pm.req_vblank &= ~(1 << i);
drm_vblank_put(rdev->ddev, i);
}
}
}
/* update display watermarks based on new power state */
radeon_update_bandwidth_info(rdev);
if (rdev->pm.active_crtc_count)
radeon_bandwidth_update(rdev);
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
mutex_unlock(&rdev->cp.mutex);
mutex_unlock(&rdev->vram_mutex);
mutex_unlock(&rdev->ddev->struct_mutex);
}
static void radeon_pm_print_states(struct radeon_device *rdev)
{
int i, j;
struct radeon_power_state *power_state;
struct radeon_pm_clock_info *clock_info;
DRM_DEBUG("%d Power State(s)\n", rdev->pm.num_power_states);
for (i = 0; i < rdev->pm.num_power_states; i++) {
power_state = &rdev->pm.power_state[i];
DRM_DEBUG("State %d: %s\n", i,
radeon_pm_state_type_name[power_state->type]);
if (i == rdev->pm.default_power_state_index)
DRM_DEBUG("\tDefault");
if ((rdev->flags & RADEON_IS_PCIE) && !(rdev->flags & RADEON_IS_IGP))
DRM_DEBUG("\t%d PCIE Lanes\n", power_state->pcie_lanes);
if (power_state->flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY)
DRM_DEBUG("\tSingle display only\n");
DRM_DEBUG("\t%d Clock Mode(s)\n", power_state->num_clock_modes);
for (j = 0; j < power_state->num_clock_modes; j++) {
clock_info = &(power_state->clock_info[j]);
if (rdev->flags & RADEON_IS_IGP)
DRM_DEBUG("\t\t%d e: %d%s\n",
j,
clock_info->sclk * 10,
clock_info->flags & RADEON_PM_MODE_NO_DISPLAY ? "\tNo display only" : "");
else
DRM_DEBUG("\t\t%d e: %d\tm: %d\tv: %d%s\n",
j,
clock_info->sclk * 10,
clock_info->mclk * 10,
clock_info->voltage.voltage,
clock_info->flags & RADEON_PM_MODE_NO_DISPLAY ? "\tNo display only" : "");
}
}
}
static ssize_t radeon_get_pm_profile(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
int cp = rdev->pm.profile;
return snprintf(buf, PAGE_SIZE, "%s\n",
(cp == PM_PROFILE_AUTO) ? "auto" :
(cp == PM_PROFILE_LOW) ? "low" :
(cp == PM_PROFILE_HIGH) ? "high" : "default");
}
static ssize_t radeon_set_pm_profile(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
if (strncmp("default", buf, strlen("default")) == 0)
rdev->pm.profile = PM_PROFILE_DEFAULT;
else if (strncmp("auto", buf, strlen("auto")) == 0)
rdev->pm.profile = PM_PROFILE_AUTO;
else if (strncmp("low", buf, strlen("low")) == 0)
rdev->pm.profile = PM_PROFILE_LOW;
else if (strncmp("mid", buf, strlen("mid")) == 0)
rdev->pm.profile = PM_PROFILE_MID;
else if (strncmp("high", buf, strlen("high")) == 0)
rdev->pm.profile = PM_PROFILE_HIGH;
else {
DRM_ERROR("invalid power profile!\n");
goto fail;
}
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
}
fail:
mutex_unlock(&rdev->pm.mutex);
return count;
}
static ssize_t radeon_get_pm_method(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
int pm = rdev->pm.pm_method;
return snprintf(buf, PAGE_SIZE, "%s\n",
(pm == PM_METHOD_DYNPM) ? "dynpm" : "profile");
}
static ssize_t radeon_set_pm_method(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
if (strncmp("dynpm", buf, strlen("dynpm")) == 0) {
mutex_lock(&rdev->pm.mutex);
rdev->pm.pm_method = PM_METHOD_DYNPM;
rdev->pm.dynpm_state = DYNPM_STATE_PAUSED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
mutex_unlock(&rdev->pm.mutex);
} else if (strncmp("profile", buf, strlen("profile")) == 0) {
mutex_lock(&rdev->pm.mutex);
rdev->pm.pm_method = PM_METHOD_PROFILE;
/* disable dynpm */
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
cancel_delayed_work(&rdev->pm.dynpm_idle_work);
mutex_unlock(&rdev->pm.mutex);
} else {
DRM_ERROR("invalid power method!\n");
goto fail;
}
radeon_pm_compute_clocks(rdev);
fail:
return count;
}
static DEVICE_ATTR(power_profile, S_IRUGO | S_IWUSR, radeon_get_pm_profile, radeon_set_pm_profile);
static DEVICE_ATTR(power_method, S_IRUGO | S_IWUSR, radeon_get_pm_method, radeon_set_pm_method);
void radeon_pm_suspend(struct radeon_device *rdev)
{
mutex_lock(&rdev->pm.mutex);
cancel_delayed_work(&rdev->pm.dynpm_idle_work);
mutex_unlock(&rdev->pm.mutex);
}
void radeon_pm_resume(struct radeon_device *rdev)
{
/* asic init will reset the default power state */
mutex_lock(&rdev->pm.mutex);
rdev->pm.current_power_state_index = rdev->pm.default_power_state_index;
rdev->pm.current_clock_mode_index = 0;
rdev->pm.current_sclk = rdev->clock.default_sclk;
rdev->pm.current_mclk = rdev->clock.default_mclk;
rdev->pm.current_vddc = rdev->pm.power_state[rdev->pm.default_power_state_index].clock_info[0].voltage.voltage;
mutex_unlock(&rdev->pm.mutex);
radeon_pm_compute_clocks(rdev);
}
int radeon_pm_init(struct radeon_device *rdev)
{
int ret;
/* default to profile method */
rdev->pm.pm_method = PM_METHOD_PROFILE;
rdev->pm.profile = PM_PROFILE_DEFAULT;
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
rdev->pm.dynpm_can_upclock = true;
rdev->pm.dynpm_can_downclock = true;
rdev->pm.current_sclk = rdev->clock.default_sclk;
rdev->pm.current_mclk = rdev->clock.default_mclk;
if (rdev->bios) {
if (rdev->is_atom_bios)
radeon_atombios_get_power_modes(rdev);
else
radeon_combios_get_power_modes(rdev);
radeon_pm_print_states(rdev);
radeon_pm_init_profile(rdev);
}
if (rdev->pm.num_power_states > 1) {
/* where's the best place to put these? */
ret = device_create_file(rdev->dev, &dev_attr_power_profile);
if (ret)
DRM_ERROR("failed to create device file for power profile\n");
ret = device_create_file(rdev->dev, &dev_attr_power_method);
if (ret)
DRM_ERROR("failed to create device file for power method\n");
#ifdef CONFIG_ACPI
rdev->acpi_nb.notifier_call = radeon_acpi_event;
register_acpi_notifier(&rdev->acpi_nb);
#endif
INIT_DELAYED_WORK(&rdev->pm.dynpm_idle_work, radeon_dynpm_idle_work_handler);
if (radeon_debugfs_pm_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for PM!\n");
}
DRM_INFO("radeon: power management initialized\n");
}
return 0;
}
void radeon_pm_fini(struct radeon_device *rdev)
{
if (rdev->pm.num_power_states > 1) {
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
rdev->pm.profile = PM_PROFILE_DEFAULT;
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
} else if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
/* cancel work */
cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work);
/* reset default clocks */
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
radeon_pm_set_clocks(rdev);
}
mutex_unlock(&rdev->pm.mutex);
device_remove_file(rdev->dev, &dev_attr_power_profile);
device_remove_file(rdev->dev, &dev_attr_power_method);
#ifdef CONFIG_ACPI
unregister_acpi_notifier(&rdev->acpi_nb);
#endif
}
if (rdev->pm.i2c_bus)
radeon_i2c_destroy(rdev->pm.i2c_bus);
}
void radeon_pm_compute_clocks(struct radeon_device *rdev)
{
struct drm_device *ddev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
if (rdev->pm.num_power_states < 2)
return;
mutex_lock(&rdev->pm.mutex);
rdev->pm.active_crtcs = 0;
rdev->pm.active_crtc_count = 0;
list_for_each_entry(crtc,
&ddev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (radeon_crtc->enabled) {
rdev->pm.active_crtcs |= (1 << radeon_crtc->crtc_id);
rdev->pm.active_crtc_count++;
}
}
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
} else if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
if (rdev->pm.dynpm_state != DYNPM_STATE_DISABLED) {
if (rdev->pm.active_crtc_count > 1) {
if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE) {
cancel_delayed_work(&rdev->pm.dynpm_idle_work);
rdev->pm.dynpm_state = DYNPM_STATE_PAUSED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
DRM_DEBUG("radeon: dynamic power management deactivated\n");
}
} else if (rdev->pm.active_crtc_count == 1) {
/* TODO: Increase clocks if needed for current mode */
if (rdev->pm.dynpm_state == DYNPM_STATE_MINIMUM) {
rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_UPCLOCK;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
queue_delayed_work(rdev->wq, &rdev->pm.dynpm_idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
} else if (rdev->pm.dynpm_state == DYNPM_STATE_PAUSED) {
rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE;
queue_delayed_work(rdev->wq, &rdev->pm.dynpm_idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
DRM_DEBUG("radeon: dynamic power management activated\n");
}
} else { /* count == 0 */
if (rdev->pm.dynpm_state != DYNPM_STATE_MINIMUM) {
cancel_delayed_work(&rdev->pm.dynpm_idle_work);
rdev->pm.dynpm_state = DYNPM_STATE_MINIMUM;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_MINIMUM;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
}
}
}
}
mutex_unlock(&rdev->pm.mutex);
}
static bool radeon_pm_in_vbl(struct radeon_device *rdev)
{
u32 stat_crtc = 0, vbl = 0, position = 0;
bool in_vbl = true;
if (ASIC_IS_DCE4(rdev)) {
if (rdev->pm.active_crtcs & (1 << 0)) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC0_REGISTER_OFFSET) & 0xfff;
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC0_REGISTER_OFFSET) & 0xfff;
}
if (rdev->pm.active_crtcs & (1 << 1)) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC1_REGISTER_OFFSET) & 0xfff;
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC1_REGISTER_OFFSET) & 0xfff;
}
if (rdev->pm.active_crtcs & (1 << 2)) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC2_REGISTER_OFFSET) & 0xfff;
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC2_REGISTER_OFFSET) & 0xfff;
}
if (rdev->pm.active_crtcs & (1 << 3)) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC3_REGISTER_OFFSET) & 0xfff;
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC3_REGISTER_OFFSET) & 0xfff;
}
if (rdev->pm.active_crtcs & (1 << 4)) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC4_REGISTER_OFFSET) & 0xfff;
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC4_REGISTER_OFFSET) & 0xfff;
}
if (rdev->pm.active_crtcs & (1 << 5)) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC5_REGISTER_OFFSET) & 0xfff;
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC5_REGISTER_OFFSET) & 0xfff;
}
} else if (ASIC_IS_AVIVO(rdev)) {
if (rdev->pm.active_crtcs & (1 << 0)) {
vbl = RREG32(AVIVO_D1CRTC_V_BLANK_START_END) & 0xfff;
position = RREG32(AVIVO_D1CRTC_STATUS_POSITION) & 0xfff;
}
if (rdev->pm.active_crtcs & (1 << 1)) {
vbl = RREG32(AVIVO_D2CRTC_V_BLANK_START_END) & 0xfff;
position = RREG32(AVIVO_D2CRTC_STATUS_POSITION) & 0xfff;
}
if (position < vbl && position > 1)
in_vbl = false;
} else {
if (rdev->pm.active_crtcs & (1 << 0)) {
stat_crtc = RREG32(RADEON_CRTC_STATUS);
if (!(stat_crtc & 1))
in_vbl = false;
}
if (rdev->pm.active_crtcs & (1 << 1)) {
stat_crtc = RREG32(RADEON_CRTC2_STATUS);
if (!(stat_crtc & 1))
in_vbl = false;
}
}
if (position < vbl && position > 1)
in_vbl = false;
return in_vbl;
}
static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish)
{
u32 stat_crtc = 0;
bool in_vbl = radeon_pm_in_vbl(rdev);
if (in_vbl == false)
DRM_DEBUG("not in vbl for pm change %08x at %s\n", stat_crtc,
finish ? "exit" : "entry");
return in_vbl;
}
static void radeon_dynpm_idle_work_handler(struct work_struct *work)
{
struct radeon_device *rdev;
int resched;
rdev = container_of(work, struct radeon_device,
pm.dynpm_idle_work.work);
resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev);
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE) {
unsigned long irq_flags;
int not_processed = 0;
read_lock_irqsave(&rdev->fence_drv.lock, irq_flags);
if (!list_empty(&rdev->fence_drv.emited)) {
struct list_head *ptr;
list_for_each(ptr, &rdev->fence_drv.emited) {
/* count up to 3, that's enought info */
if (++not_processed >= 3)
break;
}
}
read_unlock_irqrestore(&rdev->fence_drv.lock, irq_flags);
if (not_processed >= 3) { /* should upclock */
if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_DOWNCLOCK) {
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
} else if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_NONE &&
rdev->pm.dynpm_can_upclock) {
rdev->pm.dynpm_planned_action =
DYNPM_ACTION_UPCLOCK;
rdev->pm.dynpm_action_timeout = jiffies +
msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS);
}
} else if (not_processed == 0) { /* should downclock */
if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_UPCLOCK) {
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
} else if (rdev->pm.dynpm_planned_action == DYNPM_ACTION_NONE &&
rdev->pm.dynpm_can_downclock) {
rdev->pm.dynpm_planned_action =
DYNPM_ACTION_DOWNCLOCK;
rdev->pm.dynpm_action_timeout = jiffies +
msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS);
}
}
/* Note, radeon_pm_set_clocks is called with static_switch set
* to false since we want to wait for vbl to avoid flicker.
*/
if (rdev->pm.dynpm_planned_action != DYNPM_ACTION_NONE &&
jiffies > rdev->pm.dynpm_action_timeout) {
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
}
}
mutex_unlock(&rdev->pm.mutex);
ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched);
queue_delayed_work(rdev->wq, &rdev->pm.dynpm_idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
}
/*
* Debugfs info
*/
#if defined(CONFIG_DEBUG_FS)
static int radeon_debugfs_pm_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
seq_printf(m, "default engine clock: %u0 kHz\n", rdev->clock.default_sclk);
seq_printf(m, "current engine clock: %u0 kHz\n", radeon_get_engine_clock(rdev));
seq_printf(m, "default memory clock: %u0 kHz\n", rdev->clock.default_mclk);
if (rdev->asic->get_memory_clock)
seq_printf(m, "current memory clock: %u0 kHz\n", radeon_get_memory_clock(rdev));
if (rdev->pm.current_vddc)
seq_printf(m, "voltage: %u mV\n", rdev->pm.current_vddc);
if (rdev->asic->get_pcie_lanes)
seq_printf(m, "PCIE lanes: %d\n", radeon_get_pcie_lanes(rdev));
return 0;
}
static struct drm_info_list radeon_pm_info_list[] = {
{"radeon_pm_info", radeon_debugfs_pm_info, 0, NULL},
};
#endif
static int radeon_debugfs_pm_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
return radeon_debugfs_add_files(rdev, radeon_pm_info_list, ARRAY_SIZE(radeon_pm_info_list));
#else
return 0;
#endif
}