| /* |
| * Kernel Probes (KProbes) |
| * arch/x86_64/kernel/kprobes.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| * |
| * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| * Probes initial implementation ( includes contributions from |
| * Rusty Russell). |
| * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| * interface to access function arguments. |
| * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi |
| * <prasanna@in.ibm.com> adapted for x86_64 |
| * 2005-Mar Roland McGrath <roland@redhat.com> |
| * Fixed to handle %rip-relative addressing mode correctly. |
| * 2005-May Rusty Lynch <rusty.lynch@intel.com> |
| * Added function return probes functionality |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/preempt.h> |
| #include <linux/moduleloader.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/kdebug.h> |
| |
| static DECLARE_MUTEX(kprobe_mutex); |
| |
| /* kprobe_status settings */ |
| #define KPROBE_HIT_ACTIVE 0x00000001 |
| #define KPROBE_HIT_SS 0x00000002 |
| |
| static struct kprobe *current_kprobe; |
| static unsigned long kprobe_status, kprobe_old_rflags, kprobe_saved_rflags; |
| static struct pt_regs jprobe_saved_regs; |
| static long *jprobe_saved_rsp; |
| static kprobe_opcode_t *get_insn_slot(void); |
| static void free_insn_slot(kprobe_opcode_t *slot); |
| void jprobe_return_end(void); |
| |
| /* copy of the kernel stack at the probe fire time */ |
| static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE]; |
| |
| /* |
| * returns non-zero if opcode modifies the interrupt flag. |
| */ |
| static inline int is_IF_modifier(kprobe_opcode_t *insn) |
| { |
| switch (*insn) { |
| case 0xfa: /* cli */ |
| case 0xfb: /* sti */ |
| case 0xcf: /* iret/iretd */ |
| case 0x9d: /* popf/popfd */ |
| return 1; |
| } |
| |
| if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf) |
| return 1; |
| return 0; |
| } |
| |
| int arch_prepare_kprobe(struct kprobe *p) |
| { |
| /* insn: must be on special executable page on x86_64. */ |
| up(&kprobe_mutex); |
| p->ainsn.insn = get_insn_slot(); |
| down(&kprobe_mutex); |
| if (!p->ainsn.insn) { |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| /* |
| * Determine if the instruction uses the %rip-relative addressing mode. |
| * If it does, return the address of the 32-bit displacement word. |
| * If not, return null. |
| */ |
| static inline s32 *is_riprel(u8 *insn) |
| { |
| #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \ |
| (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ |
| (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ |
| (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ |
| (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ |
| << (row % 64)) |
| static const u64 onebyte_has_modrm[256 / 64] = { |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| /* ------------------------------- */ |
| W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */ |
| W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */ |
| W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */ |
| W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */ |
| W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */ |
| W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */ |
| W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */ |
| W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */ |
| W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */ |
| W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */ |
| W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */ |
| W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */ |
| W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */ |
| W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */ |
| W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */ |
| W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */ |
| /* ------------------------------- */ |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| }; |
| static const u64 twobyte_has_modrm[256 / 64] = { |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| /* ------------------------------- */ |
| W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */ |
| W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */ |
| W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */ |
| W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */ |
| W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */ |
| W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */ |
| W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */ |
| W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */ |
| W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */ |
| W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */ |
| W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */ |
| W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */ |
| W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */ |
| W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */ |
| W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */ |
| W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */ |
| /* ------------------------------- */ |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| }; |
| #undef W |
| int need_modrm; |
| |
| /* Skip legacy instruction prefixes. */ |
| while (1) { |
| switch (*insn) { |
| case 0x66: |
| case 0x67: |
| case 0x2e: |
| case 0x3e: |
| case 0x26: |
| case 0x64: |
| case 0x65: |
| case 0x36: |
| case 0xf0: |
| case 0xf3: |
| case 0xf2: |
| ++insn; |
| continue; |
| } |
| break; |
| } |
| |
| /* Skip REX instruction prefix. */ |
| if ((*insn & 0xf0) == 0x40) |
| ++insn; |
| |
| if (*insn == 0x0f) { /* Two-byte opcode. */ |
| ++insn; |
| need_modrm = test_bit(*insn, twobyte_has_modrm); |
| } else { /* One-byte opcode. */ |
| need_modrm = test_bit(*insn, onebyte_has_modrm); |
| } |
| |
| if (need_modrm) { |
| u8 modrm = *++insn; |
| if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */ |
| /* Displacement follows ModRM byte. */ |
| return (s32 *) ++insn; |
| } |
| } |
| |
| /* No %rip-relative addressing mode here. */ |
| return NULL; |
| } |
| |
| void arch_copy_kprobe(struct kprobe *p) |
| { |
| s32 *ripdisp; |
| memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE); |
| ripdisp = is_riprel(p->ainsn.insn); |
| if (ripdisp) { |
| /* |
| * The copied instruction uses the %rip-relative |
| * addressing mode. Adjust the displacement for the |
| * difference between the original location of this |
| * instruction and the location of the copy that will |
| * actually be run. The tricky bit here is making sure |
| * that the sign extension happens correctly in this |
| * calculation, since we need a signed 32-bit result to |
| * be sign-extended to 64 bits when it's added to the |
| * %rip value and yield the same 64-bit result that the |
| * sign-extension of the original signed 32-bit |
| * displacement would have given. |
| */ |
| s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn; |
| BUG_ON((s64) (s32) disp != disp); /* Sanity check. */ |
| *ripdisp = disp; |
| } |
| } |
| |
| void arch_remove_kprobe(struct kprobe *p) |
| { |
| up(&kprobe_mutex); |
| free_insn_slot(p->ainsn.insn); |
| down(&kprobe_mutex); |
| } |
| |
| static inline void disarm_kprobe(struct kprobe *p, struct pt_regs *regs) |
| { |
| *p->addr = p->opcode; |
| regs->rip = (unsigned long)p->addr; |
| } |
| |
| static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| { |
| regs->eflags |= TF_MASK; |
| regs->eflags &= ~IF_MASK; |
| /*single step inline if the instruction is an int3*/ |
| if (p->opcode == BREAKPOINT_INSTRUCTION) |
| regs->rip = (unsigned long)p->addr; |
| else |
| regs->rip = (unsigned long)p->ainsn.insn; |
| } |
| |
| struct task_struct *arch_get_kprobe_task(void *ptr) |
| { |
| return ((struct thread_info *) (((unsigned long) ptr) & |
| (~(THREAD_SIZE -1))))->task; |
| } |
| |
| void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs) |
| { |
| unsigned long *sara = (unsigned long *)regs->rsp; |
| struct kretprobe_instance *ri; |
| static void *orig_ret_addr; |
| |
| /* |
| * Save the return address when the return probe hits |
| * the first time, and use it to populate the (krprobe |
| * instance)->ret_addr for subsequent return probes at |
| * the same addrress since stack address would have |
| * the kretprobe_trampoline by then. |
| */ |
| if (((void*) *sara) != kretprobe_trampoline) |
| orig_ret_addr = (void*) *sara; |
| |
| if ((ri = get_free_rp_inst(rp)) != NULL) { |
| ri->rp = rp; |
| ri->stack_addr = sara; |
| ri->ret_addr = orig_ret_addr; |
| add_rp_inst(ri); |
| /* Replace the return addr with trampoline addr */ |
| *sara = (unsigned long) &kretprobe_trampoline; |
| } else { |
| rp->nmissed++; |
| } |
| } |
| |
| void arch_kprobe_flush_task(struct task_struct *tk) |
| { |
| struct kretprobe_instance *ri; |
| while ((ri = get_rp_inst_tsk(tk)) != NULL) { |
| *((unsigned long *)(ri->stack_addr)) = |
| (unsigned long) ri->ret_addr; |
| recycle_rp_inst(ri); |
| } |
| } |
| |
| /* |
| * Interrupts are disabled on entry as trap3 is an interrupt gate and they |
| * remain disabled thorough out this function. |
| */ |
| int kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| int ret = 0; |
| kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t)); |
| |
| /* We're in an interrupt, but this is clear and BUG()-safe. */ |
| preempt_disable(); |
| |
| /* Check we're not actually recursing */ |
| if (kprobe_running()) { |
| /* We *are* holding lock here, so this is safe. |
| Disarm the probe we just hit, and ignore it. */ |
| p = get_kprobe(addr); |
| if (p) { |
| if (kprobe_status == KPROBE_HIT_SS) { |
| regs->eflags &= ~TF_MASK; |
| regs->eflags |= kprobe_saved_rflags; |
| unlock_kprobes(); |
| goto no_kprobe; |
| } |
| disarm_kprobe(p, regs); |
| ret = 1; |
| } else { |
| p = current_kprobe; |
| if (p->break_handler && p->break_handler(p, regs)) { |
| goto ss_probe; |
| } |
| } |
| /* If it's not ours, can't be delete race, (we hold lock). */ |
| goto no_kprobe; |
| } |
| |
| lock_kprobes(); |
| p = get_kprobe(addr); |
| if (!p) { |
| unlock_kprobes(); |
| if (*addr != BREAKPOINT_INSTRUCTION) { |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| */ |
| ret = 1; |
| } |
| /* Not one of ours: let kernel handle it */ |
| goto no_kprobe; |
| } |
| |
| kprobe_status = KPROBE_HIT_ACTIVE; |
| current_kprobe = p; |
| kprobe_saved_rflags = kprobe_old_rflags |
| = (regs->eflags & (TF_MASK | IF_MASK)); |
| if (is_IF_modifier(p->ainsn.insn)) |
| kprobe_saved_rflags &= ~IF_MASK; |
| |
| if (p->pre_handler && p->pre_handler(p, regs)) |
| /* handler has already set things up, so skip ss setup */ |
| return 1; |
| |
| ss_probe: |
| prepare_singlestep(p, regs); |
| kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| } |
| |
| /* |
| * For function-return probes, init_kprobes() establishes a probepoint |
| * here. When a retprobed function returns, this probe is hit and |
| * trampoline_probe_handler() runs, calling the kretprobe's handler. |
| */ |
| void kretprobe_trampoline_holder(void) |
| { |
| asm volatile ( ".global kretprobe_trampoline\n" |
| "kretprobe_trampoline: \n" |
| "nop\n"); |
| } |
| |
| /* |
| * Called when we hit the probe point at kretprobe_trampoline |
| */ |
| int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct task_struct *tsk; |
| struct kretprobe_instance *ri; |
| struct hlist_head *head; |
| struct hlist_node *node; |
| unsigned long *sara = (unsigned long *)regs->rsp - 1; |
| |
| tsk = arch_get_kprobe_task(sara); |
| head = kretprobe_inst_table_head(tsk); |
| |
| hlist_for_each_entry(ri, node, head, hlist) { |
| if (ri->stack_addr == sara && ri->rp) { |
| if (ri->rp->handler) |
| ri->rp->handler(ri, regs); |
| } |
| } |
| return 0; |
| } |
| |
| void trampoline_post_handler(struct kprobe *p, struct pt_regs *regs, |
| unsigned long flags) |
| { |
| struct kretprobe_instance *ri; |
| /* RA already popped */ |
| unsigned long *sara = ((unsigned long *)regs->rsp) - 1; |
| |
| while ((ri = get_rp_inst(sara))) { |
| regs->rip = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri); |
| } |
| regs->eflags &= ~TF_MASK; |
| } |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the "int 3" |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. |
| * |
| * This function prepares to return from the post-single-step |
| * interrupt. We have to fix up the stack as follows: |
| * |
| * 0) Except in the case of absolute or indirect jump or call instructions, |
| * the new rip is relative to the copied instruction. We need to make |
| * it relative to the original instruction. |
| * |
| * 1) If the single-stepped instruction was pushfl, then the TF and IF |
| * flags are set in the just-pushed eflags, and may need to be cleared. |
| * |
| * 2) If the single-stepped instruction was a call, the return address |
| * that is atop the stack is the address following the copied instruction. |
| * We need to make it the address following the original instruction. |
| */ |
| static void resume_execution(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long *tos = (unsigned long *)regs->rsp; |
| unsigned long next_rip = 0; |
| unsigned long copy_rip = (unsigned long)p->ainsn.insn; |
| unsigned long orig_rip = (unsigned long)p->addr; |
| kprobe_opcode_t *insn = p->ainsn.insn; |
| |
| /*skip the REX prefix*/ |
| if (*insn >= 0x40 && *insn <= 0x4f) |
| insn++; |
| |
| switch (*insn) { |
| case 0x9c: /* pushfl */ |
| *tos &= ~(TF_MASK | IF_MASK); |
| *tos |= kprobe_old_rflags; |
| break; |
| case 0xc3: /* ret/lret */ |
| case 0xcb: |
| case 0xc2: |
| case 0xca: |
| regs->eflags &= ~TF_MASK; |
| /* rip is already adjusted, no more changes required*/ |
| return; |
| case 0xe8: /* call relative - Fix return addr */ |
| *tos = orig_rip + (*tos - copy_rip); |
| break; |
| case 0xff: |
| if ((*insn & 0x30) == 0x10) { |
| /* call absolute, indirect */ |
| /* Fix return addr; rip is correct. */ |
| next_rip = regs->rip; |
| *tos = orig_rip + (*tos - copy_rip); |
| } else if (((*insn & 0x31) == 0x20) || /* jmp near, absolute indirect */ |
| ((*insn & 0x31) == 0x21)) { /* jmp far, absolute indirect */ |
| /* rip is correct. */ |
| next_rip = regs->rip; |
| } |
| break; |
| case 0xea: /* jmp absolute -- rip is correct */ |
| next_rip = regs->rip; |
| break; |
| default: |
| break; |
| } |
| |
| regs->eflags &= ~TF_MASK; |
| if (next_rip) { |
| regs->rip = next_rip; |
| } else { |
| regs->rip = orig_rip + (regs->rip - copy_rip); |
| } |
| } |
| |
| /* |
| * Interrupts are disabled on entry as trap1 is an interrupt gate and they |
| * remain disabled thoroughout this function. And we hold kprobe lock. |
| */ |
| int post_kprobe_handler(struct pt_regs *regs) |
| { |
| if (!kprobe_running()) |
| return 0; |
| |
| if (current_kprobe->post_handler) |
| current_kprobe->post_handler(current_kprobe, regs, 0); |
| |
| if (current_kprobe->post_handler != trampoline_post_handler) |
| resume_execution(current_kprobe, regs); |
| regs->eflags |= kprobe_saved_rflags; |
| |
| unlock_kprobes(); |
| preempt_enable_no_resched(); |
| |
| /* |
| * if somebody else is singlestepping across a probe point, eflags |
| * will have TF set, in which case, continue the remaining processing |
| * of do_debug, as if this is not a probe hit. |
| */ |
| if (regs->eflags & TF_MASK) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Interrupts disabled, kprobe_lock held. */ |
| int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| if (current_kprobe->fault_handler |
| && current_kprobe->fault_handler(current_kprobe, regs, trapnr)) |
| return 1; |
| |
| if (kprobe_status & KPROBE_HIT_SS) { |
| resume_execution(current_kprobe, regs); |
| regs->eflags |= kprobe_old_rflags; |
| |
| unlock_kprobes(); |
| preempt_enable_no_resched(); |
| } |
| return 0; |
| } |
| |
| /* |
| * Wrapper routine for handling exceptions. |
| */ |
| int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, |
| void *data) |
| { |
| struct die_args *args = (struct die_args *)data; |
| switch (val) { |
| case DIE_INT3: |
| if (kprobe_handler(args->regs)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_DEBUG: |
| if (post_kprobe_handler(args->regs)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_GPF: |
| if (kprobe_running() && |
| kprobe_fault_handler(args->regs, args->trapnr)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_PAGE_FAULT: |
| if (kprobe_running() && |
| kprobe_fault_handler(args->regs, args->trapnr)) |
| return NOTIFY_STOP; |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_DONE; |
| } |
| |
| int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| unsigned long addr; |
| |
| jprobe_saved_regs = *regs; |
| jprobe_saved_rsp = (long *) regs->rsp; |
| addr = (unsigned long)jprobe_saved_rsp; |
| /* |
| * As Linus pointed out, gcc assumes that the callee |
| * owns the argument space and could overwrite it, e.g. |
| * tailcall optimization. So, to be absolutely safe |
| * we also save and restore enough stack bytes to cover |
| * the argument area. |
| */ |
| memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr)); |
| regs->eflags &= ~IF_MASK; |
| regs->rip = (unsigned long)(jp->entry); |
| return 1; |
| } |
| |
| void jprobe_return(void) |
| { |
| preempt_enable_no_resched(); |
| asm volatile (" xchg %%rbx,%%rsp \n" |
| " int3 \n" |
| " .globl jprobe_return_end \n" |
| " jprobe_return_end: \n" |
| " nop \n"::"b" |
| (jprobe_saved_rsp):"memory"); |
| } |
| |
| int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| u8 *addr = (u8 *) (regs->rip - 1); |
| unsigned long stack_addr = (unsigned long)jprobe_saved_rsp; |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| |
| if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) { |
| if ((long *)regs->rsp != jprobe_saved_rsp) { |
| struct pt_regs *saved_regs = |
| container_of(jprobe_saved_rsp, struct pt_regs, rsp); |
| printk("current rsp %p does not match saved rsp %p\n", |
| (long *)regs->rsp, jprobe_saved_rsp); |
| printk("Saved registers for jprobe %p\n", jp); |
| show_registers(saved_regs); |
| printk("Current registers\n"); |
| show_registers(regs); |
| BUG(); |
| } |
| *regs = jprobe_saved_regs; |
| memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack, |
| MIN_STACK_SIZE(stack_addr)); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * kprobe->ainsn.insn points to the copy of the instruction to be single-stepped. |
| * By default on x86_64, pages we get from kmalloc or vmalloc are not |
| * executable. Single-stepping an instruction on such a page yields an |
| * oops. So instead of storing the instruction copies in their respective |
| * kprobe objects, we allocate a page, map it executable, and store all the |
| * instruction copies there. (We can allocate additional pages if somebody |
| * inserts a huge number of probes.) Each page can hold up to INSNS_PER_PAGE |
| * instruction slots, each of which is MAX_INSN_SIZE*sizeof(kprobe_opcode_t) |
| * bytes. |
| */ |
| #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE*sizeof(kprobe_opcode_t))) |
| struct kprobe_insn_page { |
| struct hlist_node hlist; |
| kprobe_opcode_t *insns; /* page of instruction slots */ |
| char slot_used[INSNS_PER_PAGE]; |
| int nused; |
| }; |
| |
| static struct hlist_head kprobe_insn_pages; |
| |
| /** |
| * get_insn_slot() - Find a slot on an executable page for an instruction. |
| * We allocate an executable page if there's no room on existing ones. |
| */ |
| static kprobe_opcode_t *get_insn_slot(void) |
| { |
| struct kprobe_insn_page *kip; |
| struct hlist_node *pos; |
| |
| hlist_for_each(pos, &kprobe_insn_pages) { |
| kip = hlist_entry(pos, struct kprobe_insn_page, hlist); |
| if (kip->nused < INSNS_PER_PAGE) { |
| int i; |
| for (i = 0; i < INSNS_PER_PAGE; i++) { |
| if (!kip->slot_used[i]) { |
| kip->slot_used[i] = 1; |
| kip->nused++; |
| return kip->insns + (i*MAX_INSN_SIZE); |
| } |
| } |
| /* Surprise! No unused slots. Fix kip->nused. */ |
| kip->nused = INSNS_PER_PAGE; |
| } |
| } |
| |
| /* All out of space. Need to allocate a new page. Use slot 0.*/ |
| kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL); |
| if (!kip) { |
| return NULL; |
| } |
| |
| /* |
| * For the %rip-relative displacement fixups to be doable, we |
| * need our instruction copy to be within +/- 2GB of any data it |
| * might access via %rip. That is, within 2GB of where the |
| * kernel image and loaded module images reside. So we allocate |
| * a page in the module loading area. |
| */ |
| kip->insns = module_alloc(PAGE_SIZE); |
| if (!kip->insns) { |
| kfree(kip); |
| return NULL; |
| } |
| INIT_HLIST_NODE(&kip->hlist); |
| hlist_add_head(&kip->hlist, &kprobe_insn_pages); |
| memset(kip->slot_used, 0, INSNS_PER_PAGE); |
| kip->slot_used[0] = 1; |
| kip->nused = 1; |
| return kip->insns; |
| } |
| |
| /** |
| * free_insn_slot() - Free instruction slot obtained from get_insn_slot(). |
| */ |
| static void free_insn_slot(kprobe_opcode_t *slot) |
| { |
| struct kprobe_insn_page *kip; |
| struct hlist_node *pos; |
| |
| hlist_for_each(pos, &kprobe_insn_pages) { |
| kip = hlist_entry(pos, struct kprobe_insn_page, hlist); |
| if (kip->insns <= slot |
| && slot < kip->insns+(INSNS_PER_PAGE*MAX_INSN_SIZE)) { |
| int i = (slot - kip->insns) / MAX_INSN_SIZE; |
| kip->slot_used[i] = 0; |
| kip->nused--; |
| if (kip->nused == 0) { |
| /* |
| * Page is no longer in use. Free it unless |
| * it's the last one. We keep the last one |
| * so as not to have to set it up again the |
| * next time somebody inserts a probe. |
| */ |
| hlist_del(&kip->hlist); |
| if (hlist_empty(&kprobe_insn_pages)) { |
| INIT_HLIST_NODE(&kip->hlist); |
| hlist_add_head(&kip->hlist, |
| &kprobe_insn_pages); |
| } else { |
| module_free(NULL, kip->insns); |
| kfree(kip); |
| } |
| } |
| return; |
| } |
| } |
| } |