| /* MN10300 Low level time management |
| * |
| * Copyright (C) 2007-2008 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * - Derived from arch/i386/kernel/time.c |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/profile.h> |
| #include <linux/cnt32_to_63.h> |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <asm/irq.h> |
| #include <asm/div64.h> |
| #include <asm/processor.h> |
| #include <asm/intctl-regs.h> |
| #include <asm/rtc.h> |
| #include "internal.h" |
| |
| static unsigned long mn10300_last_tsc; /* time-stamp counter at last time |
| * interrupt occurred */ |
| |
| static unsigned long sched_clock_multiplier; |
| |
| /* |
| * scheduler clock - returns current time in nanosec units. |
| */ |
| unsigned long long sched_clock(void) |
| { |
| union { |
| unsigned long long ll; |
| unsigned l[2]; |
| } tsc64, result; |
| unsigned long tmp; |
| unsigned product[3]; /* 96-bit intermediate value */ |
| |
| /* cnt32_to_63() is not safe with preemption */ |
| preempt_disable(); |
| |
| /* expand the tsc to 64-bits. |
| * - sched_clock() must be called once a minute or better or the |
| * following will go horribly wrong - see cnt32_to_63() |
| */ |
| tsc64.ll = cnt32_to_63(get_cycles()) & 0x7fffffffffffffffULL; |
| |
| preempt_enable(); |
| |
| /* scale the 64-bit TSC value to a nanosecond value via a 96-bit |
| * intermediate |
| */ |
| asm("mulu %2,%0,%3,%0 \n" /* LSW * mult -> 0:%3:%0 */ |
| "mulu %2,%1,%2,%1 \n" /* MSW * mult -> %2:%1:0 */ |
| "add %3,%1 \n" |
| "addc 0,%2 \n" /* result in %2:%1:%0 */ |
| : "=r"(product[0]), "=r"(product[1]), "=r"(product[2]), "=r"(tmp) |
| : "0"(tsc64.l[0]), "1"(tsc64.l[1]), "2"(sched_clock_multiplier) |
| : "cc"); |
| |
| result.l[0] = product[1] << 16 | product[0] >> 16; |
| result.l[1] = product[2] << 16 | product[1] >> 16; |
| |
| return result.ll; |
| } |
| |
| /* |
| * initialise the scheduler clock |
| */ |
| static void __init mn10300_sched_clock_init(void) |
| { |
| sched_clock_multiplier = |
| __muldiv64u(NSEC_PER_SEC, 1 << 16, MN10300_TSCCLK); |
| } |
| |
| /** |
| * local_timer_interrupt - Local timer interrupt handler |
| * |
| * Handle local timer interrupts for this CPU. They may have been propagated |
| * to this CPU from the CPU that actually gets them by way of an IPI. |
| */ |
| irqreturn_t local_timer_interrupt(void) |
| { |
| profile_tick(CPU_PROFILING); |
| update_process_times(user_mode(get_irq_regs())); |
| return IRQ_HANDLED; |
| } |
| |
| #ifndef CONFIG_GENERIC_TIME |
| /* |
| * advance the kernel's time keeping clocks (xtime and jiffies) |
| * - we use Timer 0 & 1 cascaded as a clock to nudge us the next time |
| * there's a need to update |
| */ |
| static irqreturn_t timer_interrupt(int irq, void *dev_id) |
| { |
| unsigned tsc, elapse; |
| irqreturn_t ret; |
| |
| while (tsc = get_cycles(), |
| elapse = tsc - mn10300_last_tsc, /* time elapsed since last |
| * tick */ |
| elapse > MN10300_TSC_PER_HZ |
| ) { |
| mn10300_last_tsc += MN10300_TSC_PER_HZ; |
| |
| /* advance the kernel's time tracking system */ |
| xtime_update(1); |
| } |
| |
| ret = local_timer_interrupt(); |
| #ifdef CONFIG_SMP |
| send_IPI_allbutself(LOCAL_TIMER_IPI); |
| #endif |
| return ret; |
| } |
| |
| static struct irqaction timer_irq = { |
| .handler = timer_interrupt, |
| .flags = IRQF_DISABLED | IRQF_SHARED | IRQF_TIMER, |
| .name = "timer", |
| }; |
| #endif /* CONFIG_GENERIC_TIME */ |
| |
| #ifdef CONFIG_CSRC_MN10300 |
| void __init clocksource_set_clock(struct clocksource *cs, unsigned int clock) |
| { |
| u64 temp; |
| u32 shift; |
| |
| /* Find a shift value */ |
| for (shift = 32; shift > 0; shift--) { |
| temp = (u64) NSEC_PER_SEC << shift; |
| do_div(temp, clock); |
| if ((temp >> 32) == 0) |
| break; |
| } |
| cs->shift = shift; |
| cs->mult = (u32) temp; |
| } |
| #endif |
| |
| #if CONFIG_CEVT_MN10300 |
| void __cpuinit clockevent_set_clock(struct clock_event_device *cd, |
| unsigned int clock) |
| { |
| u64 temp; |
| u32 shift; |
| |
| /* Find a shift value */ |
| for (shift = 32; shift > 0; shift--) { |
| temp = (u64) clock << shift; |
| do_div(temp, NSEC_PER_SEC); |
| if ((temp >> 32) == 0) |
| break; |
| } |
| cd->shift = shift; |
| cd->mult = (u32) temp; |
| } |
| #endif |
| |
| /* |
| * initialise the various timers used by the main part of the kernel |
| */ |
| void __init time_init(void) |
| { |
| /* we need the prescalar running to be able to use IOCLK/8 |
| * - IOCLK runs at 1/4 (ST5 open) or 1/8 (ST5 closed) internal CPU clock |
| * - IOCLK runs at Fosc rate (crystal speed) |
| */ |
| TMPSCNT |= TMPSCNT_ENABLE; |
| |
| #ifdef CONFIG_GENERIC_TIME |
| init_clocksource(); |
| #else |
| startup_timestamp_counter(); |
| #endif |
| |
| printk(KERN_INFO |
| "timestamp counter I/O clock running at %lu.%02lu" |
| " (calibrated against RTC)\n", |
| MN10300_TSCCLK / 1000000, (MN10300_TSCCLK / 10000) % 100); |
| |
| mn10300_last_tsc = read_timestamp_counter(); |
| |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS |
| init_clockevents(); |
| #else |
| reload_jiffies_counter(MN10300_JC_PER_HZ - 1); |
| setup_jiffies_interrupt(TMJCIRQ, &timer_irq, CONFIG_TIMER_IRQ_LEVEL); |
| #endif |
| |
| #ifdef CONFIG_MN10300_WD_TIMER |
| /* start the watchdog timer */ |
| watchdog_go(); |
| #endif |
| |
| mn10300_sched_clock_init(); |
| } |