| /* |
| * JFFS2 -- Journalling Flash File System, Version 2. |
| * |
| * Copyright (C) 2001-2003 Red Hat, Inc. |
| * |
| * Created by David Woodhouse <dwmw2@infradead.org> |
| * |
| * For licensing information, see the file 'LICENCE' in this directory. |
| * |
| * $Id: nodemgmt.c,v 1.123 2005/07/17 06:56:21 dedekind Exp $ |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/compiler.h> |
| #include <linux/sched.h> /* For cond_resched() */ |
| #include "nodelist.h" |
| |
| /** |
| * jffs2_reserve_space - request physical space to write nodes to flash |
| * @c: superblock info |
| * @minsize: Minimum acceptable size of allocation |
| * @ofs: Returned value of node offset |
| * @len: Returned value of allocation length |
| * @prio: Allocation type - ALLOC_{NORMAL,DELETION} |
| * |
| * Requests a block of physical space on the flash. Returns zero for success |
| * and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC |
| * or other error if appropriate. |
| * |
| * If it returns zero, jffs2_reserve_space() also downs the per-filesystem |
| * allocation semaphore, to prevent more than one allocation from being |
| * active at any time. The semaphore is later released by jffs2_commit_allocation() |
| * |
| * jffs2_reserve_space() may trigger garbage collection in order to make room |
| * for the requested allocation. |
| */ |
| |
| static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len); |
| |
| int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio) |
| { |
| int ret = -EAGAIN; |
| int blocksneeded = c->resv_blocks_write; |
| /* align it */ |
| minsize = PAD(minsize); |
| |
| D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize)); |
| down(&c->alloc_sem); |
| |
| D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n")); |
| |
| spin_lock(&c->erase_completion_lock); |
| |
| /* this needs a little more thought (true <tglx> :)) */ |
| while(ret == -EAGAIN) { |
| while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) { |
| int ret; |
| uint32_t dirty, avail; |
| |
| /* calculate real dirty size |
| * dirty_size contains blocks on erase_pending_list |
| * those blocks are counted in c->nr_erasing_blocks. |
| * If one block is actually erased, it is not longer counted as dirty_space |
| * but it is counted in c->nr_erasing_blocks, so we add it and subtract it |
| * with c->nr_erasing_blocks * c->sector_size again. |
| * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks |
| * This helps us to force gc and pick eventually a clean block to spread the load. |
| * We add unchecked_size here, as we hopefully will find some space to use. |
| * This will affect the sum only once, as gc first finishes checking |
| * of nodes. |
| */ |
| dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size; |
| if (dirty < c->nospc_dirty_size) { |
| if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { |
| D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n")); |
| break; |
| } |
| D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n", |
| dirty, c->unchecked_size, c->sector_size)); |
| |
| spin_unlock(&c->erase_completion_lock); |
| up(&c->alloc_sem); |
| return -ENOSPC; |
| } |
| |
| /* Calc possibly available space. Possibly available means that we |
| * don't know, if unchecked size contains obsoleted nodes, which could give us some |
| * more usable space. This will affect the sum only once, as gc first finishes checking |
| * of nodes. |
| + Return -ENOSPC, if the maximum possibly available space is less or equal than |
| * blocksneeded * sector_size. |
| * This blocks endless gc looping on a filesystem, which is nearly full, even if |
| * the check above passes. |
| */ |
| avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size; |
| if ( (avail / c->sector_size) <= blocksneeded) { |
| if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { |
| D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n")); |
| break; |
| } |
| |
| D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n", |
| avail, blocksneeded * c->sector_size)); |
| spin_unlock(&c->erase_completion_lock); |
| up(&c->alloc_sem); |
| return -ENOSPC; |
| } |
| |
| up(&c->alloc_sem); |
| |
| D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n", |
| c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size, |
| c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size)); |
| spin_unlock(&c->erase_completion_lock); |
| |
| ret = jffs2_garbage_collect_pass(c); |
| if (ret) |
| return ret; |
| |
| cond_resched(); |
| |
| if (signal_pending(current)) |
| return -EINTR; |
| |
| down(&c->alloc_sem); |
| spin_lock(&c->erase_completion_lock); |
| } |
| |
| ret = jffs2_do_reserve_space(c, minsize, ofs, len); |
| if (ret) { |
| D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret)); |
| } |
| } |
| spin_unlock(&c->erase_completion_lock); |
| if (ret) |
| up(&c->alloc_sem); |
| return ret; |
| } |
| |
| int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len) |
| { |
| int ret = -EAGAIN; |
| minsize = PAD(minsize); |
| |
| D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize)); |
| |
| spin_lock(&c->erase_completion_lock); |
| while(ret == -EAGAIN) { |
| ret = jffs2_do_reserve_space(c, minsize, ofs, len); |
| if (ret) { |
| D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret)); |
| } |
| } |
| spin_unlock(&c->erase_completion_lock); |
| return ret; |
| } |
| |
| /* Called with alloc sem _and_ erase_completion_lock */ |
| static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len) |
| { |
| struct jffs2_eraseblock *jeb = c->nextblock; |
| |
| restart: |
| if (jeb && minsize > jeb->free_size) { |
| /* Skip the end of this block and file it as having some dirty space */ |
| /* If there's a pending write to it, flush now */ |
| if (jffs2_wbuf_dirty(c)) { |
| spin_unlock(&c->erase_completion_lock); |
| D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); |
| jffs2_flush_wbuf_pad(c); |
| spin_lock(&c->erase_completion_lock); |
| jeb = c->nextblock; |
| goto restart; |
| } |
| c->wasted_size += jeb->free_size; |
| c->free_size -= jeb->free_size; |
| jeb->wasted_size += jeb->free_size; |
| jeb->free_size = 0; |
| |
| /* Check, if we have a dirty block now, or if it was dirty already */ |
| if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) { |
| c->dirty_size += jeb->wasted_size; |
| c->wasted_size -= jeb->wasted_size; |
| jeb->dirty_size += jeb->wasted_size; |
| jeb->wasted_size = 0; |
| if (VERYDIRTY(c, jeb->dirty_size)) { |
| D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", |
| jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
| list_add_tail(&jeb->list, &c->very_dirty_list); |
| } else { |
| D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", |
| jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
| list_add_tail(&jeb->list, &c->dirty_list); |
| } |
| } else { |
| D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", |
| jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
| list_add_tail(&jeb->list, &c->clean_list); |
| } |
| c->nextblock = jeb = NULL; |
| } |
| |
| if (!jeb) { |
| struct list_head *next; |
| /* Take the next block off the 'free' list */ |
| |
| if (list_empty(&c->free_list)) { |
| |
| if (!c->nr_erasing_blocks && |
| !list_empty(&c->erasable_list)) { |
| struct jffs2_eraseblock *ejeb; |
| |
| ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list); |
| list_del(&ejeb->list); |
| list_add_tail(&ejeb->list, &c->erase_pending_list); |
| c->nr_erasing_blocks++; |
| jffs2_erase_pending_trigger(c); |
| D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n", |
| ejeb->offset)); |
| } |
| |
| if (!c->nr_erasing_blocks && |
| !list_empty(&c->erasable_pending_wbuf_list)) { |
| D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); |
| /* c->nextblock is NULL, no update to c->nextblock allowed */ |
| spin_unlock(&c->erase_completion_lock); |
| jffs2_flush_wbuf_pad(c); |
| spin_lock(&c->erase_completion_lock); |
| /* Have another go. It'll be on the erasable_list now */ |
| return -EAGAIN; |
| } |
| |
| if (!c->nr_erasing_blocks) { |
| /* Ouch. We're in GC, or we wouldn't have got here. |
| And there's no space left. At all. */ |
| printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", |
| c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no", |
| list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no"); |
| return -ENOSPC; |
| } |
| |
| spin_unlock(&c->erase_completion_lock); |
| /* Don't wait for it; just erase one right now */ |
| jffs2_erase_pending_blocks(c, 1); |
| spin_lock(&c->erase_completion_lock); |
| |
| /* An erase may have failed, decreasing the |
| amount of free space available. So we must |
| restart from the beginning */ |
| return -EAGAIN; |
| } |
| |
| next = c->free_list.next; |
| list_del(next); |
| c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list); |
| c->nr_free_blocks--; |
| |
| if (jeb->free_size != c->sector_size - c->cleanmarker_size) { |
| printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size); |
| goto restart; |
| } |
| } |
| /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has |
| enough space */ |
| *ofs = jeb->offset + (c->sector_size - jeb->free_size); |
| *len = jeb->free_size; |
| |
| if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size && |
| !jeb->first_node->next_in_ino) { |
| /* Only node in it beforehand was a CLEANMARKER node (we think). |
| So mark it obsolete now that there's going to be another node |
| in the block. This will reduce used_size to zero but We've |
| already set c->nextblock so that jffs2_mark_node_obsolete() |
| won't try to refile it to the dirty_list. |
| */ |
| spin_unlock(&c->erase_completion_lock); |
| jffs2_mark_node_obsolete(c, jeb->first_node); |
| spin_lock(&c->erase_completion_lock); |
| } |
| |
| D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs)); |
| return 0; |
| } |
| |
| /** |
| * jffs2_add_physical_node_ref - add a physical node reference to the list |
| * @c: superblock info |
| * @new: new node reference to add |
| * @len: length of this physical node |
| * @dirty: dirty flag for new node |
| * |
| * Should only be used to report nodes for which space has been allocated |
| * by jffs2_reserve_space. |
| * |
| * Must be called with the alloc_sem held. |
| */ |
| |
| int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new) |
| { |
| struct jffs2_eraseblock *jeb; |
| uint32_t len; |
| |
| jeb = &c->blocks[new->flash_offset / c->sector_size]; |
| len = ref_totlen(c, jeb, new); |
| |
| D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len)); |
| #if 1 |
| /* we could get some obsolete nodes after nextblock was refiled |
| in wbuf.c */ |
| if ((c->nextblock || !ref_obsolete(new)) |
| &&(jeb != c->nextblock || ref_offset(new) != jeb->offset + (c->sector_size - jeb->free_size))) { |
| printk(KERN_WARNING "argh. node added in wrong place\n"); |
| jffs2_free_raw_node_ref(new); |
| return -EINVAL; |
| } |
| #endif |
| spin_lock(&c->erase_completion_lock); |
| |
| if (!jeb->first_node) |
| jeb->first_node = new; |
| if (jeb->last_node) |
| jeb->last_node->next_phys = new; |
| jeb->last_node = new; |
| |
| jeb->free_size -= len; |
| c->free_size -= len; |
| if (ref_obsolete(new)) { |
| jeb->dirty_size += len; |
| c->dirty_size += len; |
| } else { |
| jeb->used_size += len; |
| c->used_size += len; |
| } |
| |
| if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) { |
| /* If it lives on the dirty_list, jffs2_reserve_space will put it there */ |
| D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", |
| jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
| if (jffs2_wbuf_dirty(c)) { |
| /* Flush the last write in the block if it's outstanding */ |
| spin_unlock(&c->erase_completion_lock); |
| jffs2_flush_wbuf_pad(c); |
| spin_lock(&c->erase_completion_lock); |
| } |
| |
| list_add_tail(&jeb->list, &c->clean_list); |
| c->nextblock = NULL; |
| } |
| jffs2_dbg_acct_sanity_check(c,jeb); |
| jffs2_dbg_acct_paranoia_check(c, jeb); |
| |
| spin_unlock(&c->erase_completion_lock); |
| |
| return 0; |
| } |
| |
| |
| void jffs2_complete_reservation(struct jffs2_sb_info *c) |
| { |
| D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n")); |
| jffs2_garbage_collect_trigger(c); |
| up(&c->alloc_sem); |
| } |
| |
| static inline int on_list(struct list_head *obj, struct list_head *head) |
| { |
| struct list_head *this; |
| |
| list_for_each(this, head) { |
| if (this == obj) { |
| D1(printk("%p is on list at %p\n", obj, head)); |
| return 1; |
| |
| } |
| } |
| return 0; |
| } |
| |
| void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref) |
| { |
| struct jffs2_eraseblock *jeb; |
| int blocknr; |
| struct jffs2_unknown_node n; |
| int ret, addedsize; |
| size_t retlen; |
| |
| if(!ref) { |
| printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n"); |
| return; |
| } |
| if (ref_obsolete(ref)) { |
| D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref))); |
| return; |
| } |
| blocknr = ref->flash_offset / c->sector_size; |
| if (blocknr >= c->nr_blocks) { |
| printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset); |
| BUG(); |
| } |
| jeb = &c->blocks[blocknr]; |
| |
| if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) && |
| !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) { |
| /* Hm. This may confuse static lock analysis. If any of the above |
| three conditions is false, we're going to return from this |
| function without actually obliterating any nodes or freeing |
| any jffs2_raw_node_refs. So we don't need to stop erases from |
| happening, or protect against people holding an obsolete |
| jffs2_raw_node_ref without the erase_completion_lock. */ |
| down(&c->erase_free_sem); |
| } |
| |
| spin_lock(&c->erase_completion_lock); |
| |
| if (ref_flags(ref) == REF_UNCHECKED) { |
| D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) { |
| printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n", |
| ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); |
| BUG(); |
| }) |
| D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); |
| jeb->unchecked_size -= ref_totlen(c, jeb, ref); |
| c->unchecked_size -= ref_totlen(c, jeb, ref); |
| } else { |
| D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) { |
| printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n", |
| ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); |
| BUG(); |
| }) |
| D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); |
| jeb->used_size -= ref_totlen(c, jeb, ref); |
| c->used_size -= ref_totlen(c, jeb, ref); |
| } |
| |
| // Take care, that wasted size is taken into concern |
| if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) { |
| D1(printk(KERN_DEBUG "Dirtying\n")); |
| addedsize = ref_totlen(c, jeb, ref); |
| jeb->dirty_size += ref_totlen(c, jeb, ref); |
| c->dirty_size += ref_totlen(c, jeb, ref); |
| |
| /* Convert wasted space to dirty, if not a bad block */ |
| if (jeb->wasted_size) { |
| if (on_list(&jeb->list, &c->bad_used_list)) { |
| D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n", |
| jeb->offset)); |
| addedsize = 0; /* To fool the refiling code later */ |
| } else { |
| D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n", |
| jeb->wasted_size, jeb->offset)); |
| addedsize += jeb->wasted_size; |
| jeb->dirty_size += jeb->wasted_size; |
| c->dirty_size += jeb->wasted_size; |
| c->wasted_size -= jeb->wasted_size; |
| jeb->wasted_size = 0; |
| } |
| } |
| } else { |
| D1(printk(KERN_DEBUG "Wasting\n")); |
| addedsize = 0; |
| jeb->wasted_size += ref_totlen(c, jeb, ref); |
| c->wasted_size += ref_totlen(c, jeb, ref); |
| } |
| ref->flash_offset = ref_offset(ref) | REF_OBSOLETE; |
| |
| jffs2_dbg_acct_sanity_check(c, jeb); |
| |
| jffs2_dbg_acct_paranoia_check(c, jeb); |
| |
| if (c->flags & JFFS2_SB_FLAG_SCANNING) { |
| /* Flash scanning is in progress. Don't muck about with the block |
| lists because they're not ready yet, and don't actually |
| obliterate nodes that look obsolete. If they weren't |
| marked obsolete on the flash at the time they _became_ |
| obsolete, there was probably a reason for that. */ |
| spin_unlock(&c->erase_completion_lock); |
| /* We didn't lock the erase_free_sem */ |
| return; |
| } |
| |
| if (jeb == c->nextblock) { |
| D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset)); |
| } else if (!jeb->used_size && !jeb->unchecked_size) { |
| if (jeb == c->gcblock) { |
| D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset)); |
| c->gcblock = NULL; |
| } else { |
| D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset)); |
| list_del(&jeb->list); |
| } |
| if (jffs2_wbuf_dirty(c)) { |
| D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n")); |
| list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list); |
| } else { |
| if (jiffies & 127) { |
| /* Most of the time, we just erase it immediately. Otherwise we |
| spend ages scanning it on mount, etc. */ |
| D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); |
| list_add_tail(&jeb->list, &c->erase_pending_list); |
| c->nr_erasing_blocks++; |
| jffs2_erase_pending_trigger(c); |
| } else { |
| /* Sometimes, however, we leave it elsewhere so it doesn't get |
| immediately reused, and we spread the load a bit. */ |
| D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); |
| list_add_tail(&jeb->list, &c->erasable_list); |
| } |
| } |
| D1(printk(KERN_DEBUG "Done OK\n")); |
| } else if (jeb == c->gcblock) { |
| D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset)); |
| } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) { |
| D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset)); |
| list_del(&jeb->list); |
| D1(printk(KERN_DEBUG "...and adding to dirty_list\n")); |
| list_add_tail(&jeb->list, &c->dirty_list); |
| } else if (VERYDIRTY(c, jeb->dirty_size) && |
| !VERYDIRTY(c, jeb->dirty_size - addedsize)) { |
| D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset)); |
| list_del(&jeb->list); |
| D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n")); |
| list_add_tail(&jeb->list, &c->very_dirty_list); |
| } else { |
| D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n", |
| jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
| } |
| |
| spin_unlock(&c->erase_completion_lock); |
| |
| if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) || |
| (c->flags & JFFS2_SB_FLAG_BUILDING)) { |
| /* We didn't lock the erase_free_sem */ |
| return; |
| } |
| |
| /* The erase_free_sem is locked, and has been since before we marked the node obsolete |
| and potentially put its eraseblock onto the erase_pending_list. Thus, we know that |
| the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet |
| by jffs2_free_all_node_refs() in erase.c. Which is nice. */ |
| |
| D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref))); |
| ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); |
| if (ret) { |
| printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); |
| goto out_erase_sem; |
| } |
| if (retlen != sizeof(n)) { |
| printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); |
| goto out_erase_sem; |
| } |
| if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) { |
| printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref)); |
| goto out_erase_sem; |
| } |
| if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) { |
| D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype))); |
| goto out_erase_sem; |
| } |
| /* XXX FIXME: This is ugly now */ |
| n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE); |
| ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); |
| if (ret) { |
| printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); |
| goto out_erase_sem; |
| } |
| if (retlen != sizeof(n)) { |
| printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); |
| goto out_erase_sem; |
| } |
| |
| /* Nodes which have been marked obsolete no longer need to be |
| associated with any inode. Remove them from the per-inode list. |
| |
| Note we can't do this for NAND at the moment because we need |
| obsolete dirent nodes to stay on the lists, because of the |
| horridness in jffs2_garbage_collect_deletion_dirent(). Also |
| because we delete the inocache, and on NAND we need that to |
| stay around until all the nodes are actually erased, in order |
| to stop us from giving the same inode number to another newly |
| created inode. */ |
| if (ref->next_in_ino) { |
| struct jffs2_inode_cache *ic; |
| struct jffs2_raw_node_ref **p; |
| |
| spin_lock(&c->erase_completion_lock); |
| |
| ic = jffs2_raw_ref_to_ic(ref); |
| for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino)) |
| ; |
| |
| *p = ref->next_in_ino; |
| ref->next_in_ino = NULL; |
| |
| if (ic->nodes == (void *)ic && ic->nlink == 0) |
| jffs2_del_ino_cache(c, ic); |
| |
| spin_unlock(&c->erase_completion_lock); |
| } |
| |
| |
| /* Merge with the next node in the physical list, if there is one |
| and if it's also obsolete and if it doesn't belong to any inode */ |
| if (ref->next_phys && ref_obsolete(ref->next_phys) && |
| !ref->next_phys->next_in_ino) { |
| struct jffs2_raw_node_ref *n = ref->next_phys; |
| |
| spin_lock(&c->erase_completion_lock); |
| |
| ref->__totlen += n->__totlen; |
| ref->next_phys = n->next_phys; |
| if (jeb->last_node == n) jeb->last_node = ref; |
| if (jeb->gc_node == n) { |
| /* gc will be happy continuing gc on this node */ |
| jeb->gc_node=ref; |
| } |
| spin_unlock(&c->erase_completion_lock); |
| |
| jffs2_free_raw_node_ref(n); |
| } |
| |
| /* Also merge with the previous node in the list, if there is one |
| and that one is obsolete */ |
| if (ref != jeb->first_node ) { |
| struct jffs2_raw_node_ref *p = jeb->first_node; |
| |
| spin_lock(&c->erase_completion_lock); |
| |
| while (p->next_phys != ref) |
| p = p->next_phys; |
| |
| if (ref_obsolete(p) && !ref->next_in_ino) { |
| p->__totlen += ref->__totlen; |
| if (jeb->last_node == ref) { |
| jeb->last_node = p; |
| } |
| if (jeb->gc_node == ref) { |
| /* gc will be happy continuing gc on this node */ |
| jeb->gc_node=p; |
| } |
| p->next_phys = ref->next_phys; |
| jffs2_free_raw_node_ref(ref); |
| } |
| spin_unlock(&c->erase_completion_lock); |
| } |
| out_erase_sem: |
| up(&c->erase_free_sem); |
| } |
| |
| int jffs2_thread_should_wake(struct jffs2_sb_info *c) |
| { |
| int ret = 0; |
| uint32_t dirty; |
| |
| if (c->unchecked_size) { |
| D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n", |
| c->unchecked_size, c->checked_ino)); |
| return 1; |
| } |
| |
| /* dirty_size contains blocks on erase_pending_list |
| * those blocks are counted in c->nr_erasing_blocks. |
| * If one block is actually erased, it is not longer counted as dirty_space |
| * but it is counted in c->nr_erasing_blocks, so we add it and subtract it |
| * with c->nr_erasing_blocks * c->sector_size again. |
| * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks |
| * This helps us to force gc and pick eventually a clean block to spread the load. |
| */ |
| dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size; |
| |
| if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger && |
| (dirty > c->nospc_dirty_size)) |
| ret = 1; |
| |
| D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n", |
| c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no")); |
| |
| return ret; |
| } |