| /* |
| * JFFS2 -- Journalling Flash File System, Version 2. |
| * |
| * Copyright (C) 2001-2003 Red Hat, Inc. |
| * |
| * Created by David Woodhouse <dwmw2@infradead.org> |
| * |
| * For licensing information, see the file 'LICENCE' in this directory. |
| * |
| * $Id: nodelist.c,v 1.99 2005/07/15 10:13:54 dedekind Exp $ |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/rbtree.h> |
| #include <linux/crc32.h> |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include "nodelist.h" |
| |
| void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list) |
| { |
| struct jffs2_full_dirent **prev = list; |
| D1(printk(KERN_DEBUG "jffs2_add_fd_to_list( %p, %p (->%p))\n", new, list, *list)); |
| |
| while ((*prev) && (*prev)->nhash <= new->nhash) { |
| if ((*prev)->nhash == new->nhash && !strcmp((*prev)->name, new->name)) { |
| /* Duplicate. Free one */ |
| if (new->version < (*prev)->version) { |
| D1(printk(KERN_DEBUG "Eep! Marking new dirent node obsolete\n")); |
| D1(printk(KERN_DEBUG "New dirent is \"%s\"->ino #%u. Old is \"%s\"->ino #%u\n", new->name, new->ino, (*prev)->name, (*prev)->ino)); |
| jffs2_mark_node_obsolete(c, new->raw); |
| jffs2_free_full_dirent(new); |
| } else { |
| D1(printk(KERN_DEBUG "Marking old dirent node (ino #%u) obsolete\n", (*prev)->ino)); |
| new->next = (*prev)->next; |
| jffs2_mark_node_obsolete(c, ((*prev)->raw)); |
| jffs2_free_full_dirent(*prev); |
| *prev = new; |
| } |
| goto out; |
| } |
| prev = &((*prev)->next); |
| } |
| new->next = *prev; |
| *prev = new; |
| |
| out: |
| D2(while(*list) { |
| printk(KERN_DEBUG "Dirent \"%s\" (hash 0x%08x, ino #%u\n", (*list)->name, (*list)->nhash, (*list)->ino); |
| list = &(*list)->next; |
| }); |
| } |
| |
| /* |
| * Put a new tmp_dnode_info into the temporaty RB-tree, keeping the list in |
| * order of increasing version. |
| */ |
| static void jffs2_add_tn_to_tree(struct jffs2_tmp_dnode_info *tn, struct rb_root *list) |
| { |
| struct rb_node **p = &list->rb_node; |
| struct rb_node * parent = NULL; |
| struct jffs2_tmp_dnode_info *this; |
| |
| while (*p) { |
| parent = *p; |
| this = rb_entry(parent, struct jffs2_tmp_dnode_info, rb); |
| |
| /* There may actually be a collision here, but it doesn't |
| actually matter. As long as the two nodes with the same |
| version are together, it's all fine. */ |
| if (tn->version < this->version) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| } |
| |
| rb_link_node(&tn->rb, parent, p); |
| rb_insert_color(&tn->rb, list); |
| } |
| |
| static void jffs2_free_tmp_dnode_info_list(struct rb_root *list) |
| { |
| struct rb_node *this; |
| struct jffs2_tmp_dnode_info *tn; |
| |
| this = list->rb_node; |
| |
| /* Now at bottom of tree */ |
| while (this) { |
| if (this->rb_left) |
| this = this->rb_left; |
| else if (this->rb_right) |
| this = this->rb_right; |
| else { |
| tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb); |
| jffs2_free_full_dnode(tn->fn); |
| jffs2_free_tmp_dnode_info(tn); |
| |
| this = this->rb_parent; |
| if (!this) |
| break; |
| |
| if (this->rb_left == &tn->rb) |
| this->rb_left = NULL; |
| else if (this->rb_right == &tn->rb) |
| this->rb_right = NULL; |
| else BUG(); |
| } |
| } |
| list->rb_node = NULL; |
| } |
| |
| static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd) |
| { |
| struct jffs2_full_dirent *next; |
| |
| while (fd) { |
| next = fd->next; |
| jffs2_free_full_dirent(fd); |
| fd = next; |
| } |
| } |
| |
| /* Returns first valid node after 'ref'. May return 'ref' */ |
| static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref) |
| { |
| while (ref && ref->next_in_ino) { |
| if (!ref_obsolete(ref)) |
| return ref; |
| D1(printk(KERN_DEBUG "node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref))); |
| ref = ref->next_in_ino; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Helper function for jffs2_get_inode_nodes(). |
| * It is called every time an directory entry node is found. |
| * |
| * Returns: 0 on succes; |
| * 1 if the node should be marked obsolete; |
| * negative error code on failure. |
| */ |
| static inline int |
| read_direntry(struct jffs2_sb_info *c, |
| struct jffs2_raw_node_ref *ref, |
| struct jffs2_raw_dirent *rd, |
| uint32_t read, |
| struct jffs2_full_dirent **fdp, |
| int32_t *latest_mctime, |
| uint32_t *mctime_ver) |
| { |
| struct jffs2_full_dirent *fd; |
| |
| /* The direntry nodes are checked during the flash scanning */ |
| BUG_ON(ref_flags(ref) == REF_UNCHECKED); |
| /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ |
| BUG_ON(ref_obsolete(ref)); |
| |
| /* Sanity check */ |
| if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) { |
| printk(KERN_ERR "Error! Illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n", |
| ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen)); |
| return 1; |
| } |
| |
| fd = jffs2_alloc_full_dirent(rd->nsize + 1); |
| if (unlikely(!fd)) |
| return -ENOMEM; |
| |
| fd->raw = ref; |
| fd->version = je32_to_cpu(rd->version); |
| fd->ino = je32_to_cpu(rd->ino); |
| fd->type = rd->type; |
| |
| /* Pick out the mctime of the latest dirent */ |
| if(fd->version > *mctime_ver) { |
| *mctime_ver = fd->version; |
| *latest_mctime = je32_to_cpu(rd->mctime); |
| } |
| |
| /* |
| * Copy as much of the name as possible from the raw |
| * dirent we've already read from the flash. |
| */ |
| if (read > sizeof(*rd)) |
| memcpy(&fd->name[0], &rd->name[0], |
| min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) )); |
| |
| /* Do we need to copy any more of the name directly from the flash? */ |
| if (rd->nsize + sizeof(*rd) > read) { |
| /* FIXME: point() */ |
| int err; |
| int already = read - sizeof(*rd); |
| |
| err = jffs2_flash_read(c, (ref_offset(ref)) + read, |
| rd->nsize - already, &read, &fd->name[already]); |
| if (unlikely(read != rd->nsize - already) && likely(!err)) |
| return -EIO; |
| |
| if (unlikely(err)) { |
| printk(KERN_WARNING "Read remainder of name in jffs2_get_inode_nodes(): error %d\n", err); |
| jffs2_free_full_dirent(fd); |
| return -EIO; |
| } |
| } |
| |
| fd->nhash = full_name_hash(fd->name, rd->nsize); |
| fd->next = NULL; |
| fd->name[rd->nsize] = '\0'; |
| |
| /* |
| * Wheee. We now have a complete jffs2_full_dirent structure, with |
| * the name in it and everything. Link it into the list |
| */ |
| D1(printk(KERN_DEBUG "Adding fd \"%s\", ino #%u\n", fd->name, fd->ino)); |
| |
| jffs2_add_fd_to_list(c, fd, fdp); |
| |
| return 0; |
| } |
| |
| /* |
| * Helper function for jffs2_get_inode_nodes(). |
| * It is called every time an inode node is found. |
| * |
| * Returns: 0 on succes; |
| * 1 if the node should be marked obsolete; |
| * negative error code on failure. |
| */ |
| static inline int |
| read_dnode(struct jffs2_sb_info *c, |
| struct jffs2_raw_node_ref *ref, |
| struct jffs2_raw_inode *rd, |
| uint32_t read, |
| struct rb_root *tnp, |
| int32_t *latest_mctime, |
| uint32_t *mctime_ver) |
| { |
| struct jffs2_eraseblock *jeb; |
| struct jffs2_tmp_dnode_info *tn; |
| |
| /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ |
| BUG_ON(ref_obsolete(ref)); |
| |
| /* If we've never checked the CRCs on this node, check them now */ |
| if (ref_flags(ref) == REF_UNCHECKED) { |
| uint32_t crc, len; |
| |
| crc = crc32(0, rd, sizeof(*rd) - 8); |
| if (unlikely(crc != je32_to_cpu(rd->node_crc))) { |
| printk(KERN_WARNING "Header CRC failed on node at %#08x: read %#08x, calculated %#08x\n", |
| ref_offset(ref), je32_to_cpu(rd->node_crc), crc); |
| return 1; |
| } |
| |
| /* Sanity checks */ |
| if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) || |
| unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) { |
| printk(KERN_WARNING "Inode corrupted at %#08x, totlen %d, #ino %d, version %d, " |
| "isize %d, csize %d, dsize %d \n", |
| ref_offset(ref), je32_to_cpu(rd->totlen), je32_to_cpu(rd->ino), |
| je32_to_cpu(rd->version), je32_to_cpu(rd->isize), |
| je32_to_cpu(rd->csize), je32_to_cpu(rd->dsize)); |
| return 1; |
| } |
| |
| if (rd->compr != JFFS2_COMPR_ZERO && je32_to_cpu(rd->csize)) { |
| unsigned char *buf = NULL; |
| uint32_t pointed = 0; |
| int err; |
| #ifndef __ECOS |
| if (c->mtd->point) { |
| err = c->mtd->point (c->mtd, ref_offset(ref) + sizeof(*rd), je32_to_cpu(rd->csize), |
| &read, &buf); |
| if (unlikely(read < je32_to_cpu(rd->csize)) && likely(!err)) { |
| D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", read)); |
| c->mtd->unpoint(c->mtd, buf, ref_offset(ref) + sizeof(*rd), |
| je32_to_cpu(rd->csize)); |
| } else if (unlikely(err)){ |
| D1(printk(KERN_DEBUG "MTD point failed %d\n", err)); |
| } else |
| pointed = 1; /* succefully pointed to device */ |
| } |
| #endif |
| if(!pointed){ |
| buf = kmalloc(je32_to_cpu(rd->csize), GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| err = jffs2_flash_read(c, ref_offset(ref) + sizeof(*rd), je32_to_cpu(rd->csize), |
| &read, buf); |
| if (unlikely(read != je32_to_cpu(rd->csize)) && likely(!err)) |
| err = -EIO; |
| if (err) { |
| kfree(buf); |
| return err; |
| } |
| } |
| crc = crc32(0, buf, je32_to_cpu(rd->csize)); |
| if(!pointed) |
| kfree(buf); |
| #ifndef __ECOS |
| else |
| c->mtd->unpoint(c->mtd, buf, ref_offset(ref) + sizeof(*rd), je32_to_cpu(rd->csize)); |
| #endif |
| |
| if (crc != je32_to_cpu(rd->data_crc)) { |
| printk(KERN_NOTICE "Data CRC failed on node at %#08x: read %#08x, calculated %#08x\n", |
| ref_offset(ref), je32_to_cpu(rd->data_crc), crc); |
| return 1; |
| } |
| |
| } |
| |
| /* Mark the node as having been checked and fix the accounting accordingly */ |
| jeb = &c->blocks[ref->flash_offset / c->sector_size]; |
| len = ref_totlen(c, jeb, ref); |
| |
| spin_lock(&c->erase_completion_lock); |
| jeb->used_size += len; |
| jeb->unchecked_size -= len; |
| c->used_size += len; |
| c->unchecked_size -= len; |
| |
| /* If node covers at least a whole page, or if it starts at the |
| beginning of a page and runs to the end of the file, or if |
| it's a hole node, mark it REF_PRISTINE, else REF_NORMAL. |
| |
| If it's actually overlapped, it'll get made NORMAL (or OBSOLETE) |
| when the overlapping node(s) get added to the tree anyway. |
| */ |
| if ((je32_to_cpu(rd->dsize) >= PAGE_CACHE_SIZE) || |
| ( ((je32_to_cpu(rd->offset) & (PAGE_CACHE_SIZE-1))==0) && |
| (je32_to_cpu(rd->dsize) + je32_to_cpu(rd->offset) == je32_to_cpu(rd->isize)))) { |
| D1(printk(KERN_DEBUG "Marking node at %#08x REF_PRISTINE\n", ref_offset(ref))); |
| ref->flash_offset = ref_offset(ref) | REF_PRISTINE; |
| } else { |
| D1(printk(KERN_DEBUG "Marking node at %#08x REF_NORMAL\n", ref_offset(ref))); |
| ref->flash_offset = ref_offset(ref) | REF_NORMAL; |
| } |
| spin_unlock(&c->erase_completion_lock); |
| } |
| |
| tn = jffs2_alloc_tmp_dnode_info(); |
| if (!tn) { |
| D1(printk(KERN_DEBUG "alloc tn failed\n")); |
| return -ENOMEM; |
| } |
| |
| tn->fn = jffs2_alloc_full_dnode(); |
| if (!tn->fn) { |
| D1(printk(KERN_DEBUG "alloc fn failed\n")); |
| jffs2_free_tmp_dnode_info(tn); |
| return -ENOMEM; |
| } |
| |
| tn->version = je32_to_cpu(rd->version); |
| tn->fn->ofs = je32_to_cpu(rd->offset); |
| tn->fn->raw = ref; |
| |
| /* There was a bug where we wrote hole nodes out with |
| csize/dsize swapped. Deal with it */ |
| if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && je32_to_cpu(rd->csize)) |
| tn->fn->size = je32_to_cpu(rd->csize); |
| else // normal case... |
| tn->fn->size = je32_to_cpu(rd->dsize); |
| |
| D1(printk(KERN_DEBUG "dnode @%08x: ver %u, offset %#04x, dsize %#04x\n", |
| ref_offset(ref), je32_to_cpu(rd->version), |
| je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize))); |
| |
| jffs2_add_tn_to_tree(tn, tnp); |
| |
| return 0; |
| } |
| |
| /* |
| * Helper function for jffs2_get_inode_nodes(). |
| * It is called every time an unknown node is found. |
| * |
| * Returns: 0 on succes; |
| * 1 if the node should be marked obsolete; |
| * negative error code on failure. |
| */ |
| static inline int |
| read_unknown(struct jffs2_sb_info *c, |
| struct jffs2_raw_node_ref *ref, |
| struct jffs2_unknown_node *un, |
| uint32_t read) |
| { |
| /* We don't mark unknown nodes as REF_UNCHECKED */ |
| BUG_ON(ref_flags(ref) == REF_UNCHECKED); |
| |
| un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype)); |
| |
| if (crc32(0, un, sizeof(struct jffs2_unknown_node) - 4) != je32_to_cpu(un->hdr_crc)) { |
| |
| /* Hmmm. This should have been caught at scan time. */ |
| printk(KERN_WARNING "Warning! Node header CRC failed at %#08x. " |
| "But it must have been OK earlier.\n", ref_offset(ref)); |
| D1(printk(KERN_DEBUG "Node was: { %#04x, %#04x, %#08x, %#08x }\n", |
| je16_to_cpu(un->magic), je16_to_cpu(un->nodetype), |
| je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc))); |
| return 1; |
| } else { |
| switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) { |
| |
| case JFFS2_FEATURE_INCOMPAT: |
| printk(KERN_NOTICE "Unknown INCOMPAT nodetype %#04X at %#08x\n", |
| je16_to_cpu(un->nodetype), ref_offset(ref)); |
| /* EEP */ |
| BUG(); |
| break; |
| |
| case JFFS2_FEATURE_ROCOMPAT: |
| printk(KERN_NOTICE "Unknown ROCOMPAT nodetype %#04X at %#08x\n", |
| je16_to_cpu(un->nodetype), ref_offset(ref)); |
| BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO)); |
| break; |
| |
| case JFFS2_FEATURE_RWCOMPAT_COPY: |
| printk(KERN_NOTICE "Unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n", |
| je16_to_cpu(un->nodetype), ref_offset(ref)); |
| break; |
| |
| case JFFS2_FEATURE_RWCOMPAT_DELETE: |
| printk(KERN_NOTICE "Unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n", |
| je16_to_cpu(un->nodetype), ref_offset(ref)); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated |
| with this ino, returning the former in order of version */ |
| |
| int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f, |
| struct rb_root *tnp, struct jffs2_full_dirent **fdp, |
| uint32_t *highest_version, uint32_t *latest_mctime, |
| uint32_t *mctime_ver) |
| { |
| struct jffs2_raw_node_ref *ref, *valid_ref; |
| struct rb_root ret_tn = RB_ROOT; |
| struct jffs2_full_dirent *ret_fd = NULL; |
| union jffs2_node_union node; |
| size_t retlen; |
| int err; |
| |
| *mctime_ver = 0; |
| |
| D1(printk(KERN_DEBUG "jffs2_get_inode_nodes(): ino #%u\n", f->inocache->ino)); |
| |
| spin_lock(&c->erase_completion_lock); |
| |
| valid_ref = jffs2_first_valid_node(f->inocache->nodes); |
| |
| if (!valid_ref && (f->inocache->ino != 1)) |
| printk(KERN_WARNING "Eep. No valid nodes for ino #%u\n", f->inocache->ino); |
| |
| while (valid_ref) { |
| /* We can hold a pointer to a non-obsolete node without the spinlock, |
| but _obsolete_ nodes may disappear at any time, if the block |
| they're in gets erased. So if we mark 'ref' obsolete while we're |
| not holding the lock, it can go away immediately. For that reason, |
| we find the next valid node first, before processing 'ref'. |
| */ |
| ref = valid_ref; |
| valid_ref = jffs2_first_valid_node(ref->next_in_ino); |
| spin_unlock(&c->erase_completion_lock); |
| |
| cond_resched(); |
| |
| /* FIXME: point() */ |
| err = jffs2_flash_read(c, (ref_offset(ref)), |
| min_t(uint32_t, ref_totlen(c, NULL, ref), sizeof(node)), |
| &retlen, (void *)&node); |
| if (err) { |
| printk(KERN_WARNING "error %d reading node at 0x%08x in get_inode_nodes()\n", err, ref_offset(ref)); |
| goto free_out; |
| } |
| |
| switch (je16_to_cpu(node.u.nodetype)) { |
| |
| case JFFS2_NODETYPE_DIRENT: |
| D1(printk(KERN_DEBUG "Node at %08x (%d) is a dirent node\n", ref_offset(ref), ref_flags(ref))); |
| |
| if (retlen < sizeof(node.d)) { |
| printk(KERN_WARNING "Warning! Short read dirent at %#08x\n", ref_offset(ref)); |
| err = -EIO; |
| goto free_out; |
| } |
| |
| err = read_direntry(c, ref, &node.d, retlen, &ret_fd, latest_mctime, mctime_ver); |
| if (err == 1) { |
| jffs2_mark_node_obsolete(c, ref); |
| break; |
| } else if (unlikely(err)) |
| goto free_out; |
| |
| if (je32_to_cpu(node.d.version) > *highest_version) |
| *highest_version = je32_to_cpu(node.d.version); |
| |
| break; |
| |
| case JFFS2_NODETYPE_INODE: |
| D1(printk(KERN_DEBUG "Node at %08x (%d) is a data node\n", ref_offset(ref), ref_flags(ref))); |
| |
| if (retlen < sizeof(node.i)) { |
| printk(KERN_WARNING "Warning! Short read dnode at %#08x\n", ref_offset(ref)); |
| err = -EIO; |
| goto free_out; |
| } |
| |
| err = read_dnode(c, ref, &node.i, retlen, &ret_tn, latest_mctime, mctime_ver); |
| if (err == 1) { |
| jffs2_mark_node_obsolete(c, ref); |
| break; |
| } else if (unlikely(err)) |
| goto free_out; |
| |
| if (je32_to_cpu(node.i.version) > *highest_version) |
| *highest_version = je32_to_cpu(node.i.version); |
| |
| D1(printk(KERN_DEBUG "version %d, highest_version now %d\n", |
| je32_to_cpu(node.i.version), *highest_version)); |
| |
| break; |
| |
| default: |
| /* Check we've managed to read at least the common node header */ |
| if (retlen < sizeof(struct jffs2_unknown_node)) { |
| printk(KERN_WARNING "Warning! Short read unknown node at %#08x\n", |
| ref_offset(ref)); |
| return -EIO; |
| } |
| |
| err = read_unknown(c, ref, &node.u, retlen); |
| if (err == 1) { |
| jffs2_mark_node_obsolete(c, ref); |
| break; |
| } else if (unlikely(err)) |
| goto free_out; |
| |
| } |
| spin_lock(&c->erase_completion_lock); |
| |
| } |
| spin_unlock(&c->erase_completion_lock); |
| *tnp = ret_tn; |
| *fdp = ret_fd; |
| |
| return 0; |
| |
| free_out: |
| jffs2_free_tmp_dnode_info_list(&ret_tn); |
| jffs2_free_full_dirent_list(ret_fd); |
| return err; |
| } |
| |
| void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state) |
| { |
| spin_lock(&c->inocache_lock); |
| ic->state = state; |
| wake_up(&c->inocache_wq); |
| spin_unlock(&c->inocache_lock); |
| } |
| |
| /* During mount, this needs no locking. During normal operation, its |
| callers want to do other stuff while still holding the inocache_lock. |
| Rather than introducing special case get_ino_cache functions or |
| callbacks, we just let the caller do the locking itself. */ |
| |
| struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino) |
| { |
| struct jffs2_inode_cache *ret; |
| |
| D2(printk(KERN_DEBUG "jffs2_get_ino_cache(): ino %u\n", ino)); |
| |
| ret = c->inocache_list[ino % INOCACHE_HASHSIZE]; |
| while (ret && ret->ino < ino) { |
| ret = ret->next; |
| } |
| |
| if (ret && ret->ino != ino) |
| ret = NULL; |
| |
| D2(printk(KERN_DEBUG "jffs2_get_ino_cache found %p for ino %u\n", ret, ino)); |
| return ret; |
| } |
| |
| void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new) |
| { |
| struct jffs2_inode_cache **prev; |
| |
| spin_lock(&c->inocache_lock); |
| if (!new->ino) |
| new->ino = ++c->highest_ino; |
| |
| D2(printk(KERN_DEBUG "jffs2_add_ino_cache: Add %p (ino #%u)\n", new, new->ino)); |
| |
| prev = &c->inocache_list[new->ino % INOCACHE_HASHSIZE]; |
| |
| while ((*prev) && (*prev)->ino < new->ino) { |
| prev = &(*prev)->next; |
| } |
| new->next = *prev; |
| *prev = new; |
| |
| spin_unlock(&c->inocache_lock); |
| } |
| |
| void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old) |
| { |
| struct jffs2_inode_cache **prev; |
| D1(printk(KERN_DEBUG "jffs2_del_ino_cache: Del %p (ino #%u)\n", old, old->ino)); |
| spin_lock(&c->inocache_lock); |
| |
| prev = &c->inocache_list[old->ino % INOCACHE_HASHSIZE]; |
| |
| while ((*prev) && (*prev)->ino < old->ino) { |
| prev = &(*prev)->next; |
| } |
| if ((*prev) == old) { |
| *prev = old->next; |
| } |
| |
| /* Free it now unless it's in READING or CLEARING state, which |
| are the transitions upon read_inode() and clear_inode(). The |
| rest of the time we know nobody else is looking at it, and |
| if it's held by read_inode() or clear_inode() they'll free it |
| for themselves. */ |
| if (old->state != INO_STATE_READING && old->state != INO_STATE_CLEARING) |
| jffs2_free_inode_cache(old); |
| |
| spin_unlock(&c->inocache_lock); |
| } |
| |
| void jffs2_free_ino_caches(struct jffs2_sb_info *c) |
| { |
| int i; |
| struct jffs2_inode_cache *this, *next; |
| |
| for (i=0; i<INOCACHE_HASHSIZE; i++) { |
| this = c->inocache_list[i]; |
| while (this) { |
| next = this->next; |
| jffs2_free_inode_cache(this); |
| this = next; |
| } |
| c->inocache_list[i] = NULL; |
| } |
| } |
| |
| void jffs2_free_raw_node_refs(struct jffs2_sb_info *c) |
| { |
| int i; |
| struct jffs2_raw_node_ref *this, *next; |
| |
| for (i=0; i<c->nr_blocks; i++) { |
| this = c->blocks[i].first_node; |
| while(this) { |
| next = this->next_phys; |
| jffs2_free_raw_node_ref(this); |
| this = next; |
| } |
| c->blocks[i].first_node = c->blocks[i].last_node = NULL; |
| } |
| } |
| |
| struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset) |
| { |
| /* The common case in lookup is that there will be a node |
| which precisely matches. So we go looking for that first */ |
| struct rb_node *next; |
| struct jffs2_node_frag *prev = NULL; |
| struct jffs2_node_frag *frag = NULL; |
| |
| D2(printk(KERN_DEBUG "jffs2_lookup_node_frag(%p, %d)\n", fragtree, offset)); |
| |
| next = fragtree->rb_node; |
| |
| while(next) { |
| frag = rb_entry(next, struct jffs2_node_frag, rb); |
| |
| D2(printk(KERN_DEBUG "Considering frag %d-%d (%p). left %p, right %p\n", |
| frag->ofs, frag->ofs+frag->size, frag, frag->rb.rb_left, frag->rb.rb_right)); |
| if (frag->ofs + frag->size <= offset) { |
| D2(printk(KERN_DEBUG "Going right from frag %d-%d, before the region we care about\n", |
| frag->ofs, frag->ofs+frag->size)); |
| /* Remember the closest smaller match on the way down */ |
| if (!prev || frag->ofs > prev->ofs) |
| prev = frag; |
| next = frag->rb.rb_right; |
| } else if (frag->ofs > offset) { |
| D2(printk(KERN_DEBUG "Going left from frag %d-%d, after the region we care about\n", |
| frag->ofs, frag->ofs+frag->size)); |
| next = frag->rb.rb_left; |
| } else { |
| D2(printk(KERN_DEBUG "Returning frag %d,%d, matched\n", |
| frag->ofs, frag->ofs+frag->size)); |
| return frag; |
| } |
| } |
| |
| /* Exact match not found. Go back up looking at each parent, |
| and return the closest smaller one */ |
| |
| if (prev) |
| D2(printk(KERN_DEBUG "No match. Returning frag %d,%d, closest previous\n", |
| prev->ofs, prev->ofs+prev->size)); |
| else |
| D2(printk(KERN_DEBUG "Returning NULL, empty fragtree\n")); |
| |
| return prev; |
| } |
| |
| /* Pass 'c' argument to indicate that nodes should be marked obsolete as |
| they're killed. */ |
| void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c) |
| { |
| struct jffs2_node_frag *frag; |
| struct jffs2_node_frag *parent; |
| |
| if (!root->rb_node) |
| return; |
| |
| frag = (rb_entry(root->rb_node, struct jffs2_node_frag, rb)); |
| |
| while(frag) { |
| if (frag->rb.rb_left) { |
| D2(printk(KERN_DEBUG "Going left from frag (%p) %d-%d\n", |
| frag, frag->ofs, frag->ofs+frag->size)); |
| frag = frag_left(frag); |
| continue; |
| } |
| if (frag->rb.rb_right) { |
| D2(printk(KERN_DEBUG "Going right from frag (%p) %d-%d\n", |
| frag, frag->ofs, frag->ofs+frag->size)); |
| frag = frag_right(frag); |
| continue; |
| } |
| |
| D2(printk(KERN_DEBUG "jffs2_kill_fragtree: frag at 0x%x-0x%x: node %p, frags %d--\n", |
| frag->ofs, frag->ofs+frag->size, frag->node, |
| frag->node?frag->node->frags:0)); |
| |
| if (frag->node && !(--frag->node->frags)) { |
| /* Not a hole, and it's the final remaining frag |
| of this node. Free the node */ |
| if (c) |
| jffs2_mark_node_obsolete(c, frag->node->raw); |
| |
| jffs2_free_full_dnode(frag->node); |
| } |
| parent = frag_parent(frag); |
| if (parent) { |
| if (frag_left(parent) == frag) |
| parent->rb.rb_left = NULL; |
| else |
| parent->rb.rb_right = NULL; |
| } |
| |
| jffs2_free_node_frag(frag); |
| frag = parent; |
| |
| cond_resched(); |
| } |
| } |
| |
| void jffs2_fragtree_insert(struct jffs2_node_frag *newfrag, struct jffs2_node_frag *base) |
| { |
| struct rb_node *parent = &base->rb; |
| struct rb_node **link = &parent; |
| |
| D2(printk(KERN_DEBUG "jffs2_fragtree_insert(%p; %d-%d, %p)\n", newfrag, |
| newfrag->ofs, newfrag->ofs+newfrag->size, base)); |
| |
| while (*link) { |
| parent = *link; |
| base = rb_entry(parent, struct jffs2_node_frag, rb); |
| |
| D2(printk(KERN_DEBUG "fragtree_insert considering frag at 0x%x\n", base->ofs)); |
| if (newfrag->ofs > base->ofs) |
| link = &base->rb.rb_right; |
| else if (newfrag->ofs < base->ofs) |
| link = &base->rb.rb_left; |
| else { |
| printk(KERN_CRIT "Duplicate frag at %08x (%p,%p)\n", newfrag->ofs, newfrag, base); |
| BUG(); |
| } |
| } |
| |
| rb_link_node(&newfrag->rb, &base->rb, link); |
| } |