| /* |
| * Handle the memory map. |
| * The functions here do the job until bootmem takes over. |
| * |
| * Getting sanitize_e820_map() in sync with i386 version by applying change: |
| * - Provisions for empty E820 memory regions (reported by certain BIOSes). |
| * Alex Achenbach <xela@slit.de>, December 2002. |
| * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/ioport.h> |
| #include <linux/string.h> |
| #include <linux/kexec.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/pfn.h> |
| #include <linux/suspend.h> |
| #include <linux/firmware-map.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/page.h> |
| #include <asm/e820.h> |
| #include <asm/proto.h> |
| #include <asm/setup.h> |
| #include <asm/trampoline.h> |
| |
| /* |
| * The e820 map is the map that gets modified e.g. with command line parameters |
| * and that is also registered with modifications in the kernel resource tree |
| * with the iomem_resource as parent. |
| * |
| * The e820_saved is directly saved after the BIOS-provided memory map is |
| * copied. It doesn't get modified afterwards. It's registered for the |
| * /sys/firmware/memmap interface. |
| * |
| * That memory map is not modified and is used as base for kexec. The kexec'd |
| * kernel should get the same memory map as the firmware provides. Then the |
| * user can e.g. boot the original kernel with mem=1G while still booting the |
| * next kernel with full memory. |
| */ |
| struct e820map e820; |
| struct e820map e820_saved; |
| |
| /* For PCI or other memory-mapped resources */ |
| unsigned long pci_mem_start = 0xaeedbabe; |
| #ifdef CONFIG_PCI |
| EXPORT_SYMBOL(pci_mem_start); |
| #endif |
| |
| /* |
| * This function checks if any part of the range <start,end> is mapped |
| * with type. |
| */ |
| int |
| e820_any_mapped(u64 start, u64 end, unsigned type) |
| { |
| int i; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| |
| if (type && ei->type != type) |
| continue; |
| if (ei->addr >= end || ei->addr + ei->size <= start) |
| continue; |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(e820_any_mapped); |
| |
| /* |
| * This function checks if the entire range <start,end> is mapped with type. |
| * |
| * Note: this function only works correct if the e820 table is sorted and |
| * not-overlapping, which is the case |
| */ |
| int __init e820_all_mapped(u64 start, u64 end, unsigned type) |
| { |
| int i; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| |
| if (type && ei->type != type) |
| continue; |
| /* is the region (part) in overlap with the current region ?*/ |
| if (ei->addr >= end || ei->addr + ei->size <= start) |
| continue; |
| |
| /* if the region is at the beginning of <start,end> we move |
| * start to the end of the region since it's ok until there |
| */ |
| if (ei->addr <= start) |
| start = ei->addr + ei->size; |
| /* |
| * if start is now at or beyond end, we're done, full |
| * coverage |
| */ |
| if (start >= end) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Add a memory region to the kernel e820 map. |
| */ |
| void __init e820_add_region(u64 start, u64 size, int type) |
| { |
| int x = e820.nr_map; |
| |
| if (x == ARRAY_SIZE(e820.map)) { |
| printk(KERN_ERR "Ooops! Too many entries in the memory map!\n"); |
| return; |
| } |
| |
| e820.map[x].addr = start; |
| e820.map[x].size = size; |
| e820.map[x].type = type; |
| e820.nr_map++; |
| } |
| |
| void __init e820_print_map(char *who) |
| { |
| int i; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| printk(KERN_INFO " %s: %016Lx - %016Lx ", who, |
| (unsigned long long) e820.map[i].addr, |
| (unsigned long long) |
| (e820.map[i].addr + e820.map[i].size)); |
| switch (e820.map[i].type) { |
| case E820_RAM: |
| case E820_RESERVED_KERN: |
| printk(KERN_CONT "(usable)\n"); |
| break; |
| case E820_RESERVED: |
| printk(KERN_CONT "(reserved)\n"); |
| break; |
| case E820_ACPI: |
| printk(KERN_CONT "(ACPI data)\n"); |
| break; |
| case E820_NVS: |
| printk(KERN_CONT "(ACPI NVS)\n"); |
| break; |
| default: |
| printk(KERN_CONT "type %u\n", e820.map[i].type); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Sanitize the BIOS e820 map. |
| * |
| * Some e820 responses include overlapping entries. The following |
| * replaces the original e820 map with a new one, removing overlaps, |
| * and resolving conflicting memory types in favor of highest |
| * numbered type. |
| * |
| * The input parameter biosmap points to an array of 'struct |
| * e820entry' which on entry has elements in the range [0, *pnr_map) |
| * valid, and which has space for up to max_nr_map entries. |
| * On return, the resulting sanitized e820 map entries will be in |
| * overwritten in the same location, starting at biosmap. |
| * |
| * The integer pointed to by pnr_map must be valid on entry (the |
| * current number of valid entries located at biosmap) and will |
| * be updated on return, with the new number of valid entries |
| * (something no more than max_nr_map.) |
| * |
| * The return value from sanitize_e820_map() is zero if it |
| * successfully 'sanitized' the map entries passed in, and is -1 |
| * if it did nothing, which can happen if either of (1) it was |
| * only passed one map entry, or (2) any of the input map entries |
| * were invalid (start + size < start, meaning that the size was |
| * so big the described memory range wrapped around through zero.) |
| * |
| * Visually we're performing the following |
| * (1,2,3,4 = memory types)... |
| * |
| * Sample memory map (w/overlaps): |
| * ____22__________________ |
| * ______________________4_ |
| * ____1111________________ |
| * _44_____________________ |
| * 11111111________________ |
| * ____________________33__ |
| * ___________44___________ |
| * __________33333_________ |
| * ______________22________ |
| * ___________________2222_ |
| * _________111111111______ |
| * _____________________11_ |
| * _________________4______ |
| * |
| * Sanitized equivalent (no overlap): |
| * 1_______________________ |
| * _44_____________________ |
| * ___1____________________ |
| * ____22__________________ |
| * ______11________________ |
| * _________1______________ |
| * __________3_____________ |
| * ___________44___________ |
| * _____________33_________ |
| * _______________2________ |
| * ________________1_______ |
| * _________________4______ |
| * ___________________2____ |
| * ____________________33__ |
| * ______________________4_ |
| */ |
| |
| int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map, |
| int *pnr_map) |
| { |
| struct change_member { |
| struct e820entry *pbios; /* pointer to original bios entry */ |
| unsigned long long addr; /* address for this change point */ |
| }; |
| static struct change_member change_point_list[2*E820_X_MAX] __initdata; |
| static struct change_member *change_point[2*E820_X_MAX] __initdata; |
| static struct e820entry *overlap_list[E820_X_MAX] __initdata; |
| static struct e820entry new_bios[E820_X_MAX] __initdata; |
| struct change_member *change_tmp; |
| unsigned long current_type, last_type; |
| unsigned long long last_addr; |
| int chgidx, still_changing; |
| int overlap_entries; |
| int new_bios_entry; |
| int old_nr, new_nr, chg_nr; |
| int i; |
| |
| /* if there's only one memory region, don't bother */ |
| if (*pnr_map < 2) |
| return -1; |
| |
| old_nr = *pnr_map; |
| BUG_ON(old_nr > max_nr_map); |
| |
| /* bail out if we find any unreasonable addresses in bios map */ |
| for (i = 0; i < old_nr; i++) |
| if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr) |
| return -1; |
| |
| /* create pointers for initial change-point information (for sorting) */ |
| for (i = 0; i < 2 * old_nr; i++) |
| change_point[i] = &change_point_list[i]; |
| |
| /* record all known change-points (starting and ending addresses), |
| omitting those that are for empty memory regions */ |
| chgidx = 0; |
| for (i = 0; i < old_nr; i++) { |
| if (biosmap[i].size != 0) { |
| change_point[chgidx]->addr = biosmap[i].addr; |
| change_point[chgidx++]->pbios = &biosmap[i]; |
| change_point[chgidx]->addr = biosmap[i].addr + |
| biosmap[i].size; |
| change_point[chgidx++]->pbios = &biosmap[i]; |
| } |
| } |
| chg_nr = chgidx; |
| |
| /* sort change-point list by memory addresses (low -> high) */ |
| still_changing = 1; |
| while (still_changing) { |
| still_changing = 0; |
| for (i = 1; i < chg_nr; i++) { |
| unsigned long long curaddr, lastaddr; |
| unsigned long long curpbaddr, lastpbaddr; |
| |
| curaddr = change_point[i]->addr; |
| lastaddr = change_point[i - 1]->addr; |
| curpbaddr = change_point[i]->pbios->addr; |
| lastpbaddr = change_point[i - 1]->pbios->addr; |
| |
| /* |
| * swap entries, when: |
| * |
| * curaddr > lastaddr or |
| * curaddr == lastaddr and curaddr == curpbaddr and |
| * lastaddr != lastpbaddr |
| */ |
| if (curaddr < lastaddr || |
| (curaddr == lastaddr && curaddr == curpbaddr && |
| lastaddr != lastpbaddr)) { |
| change_tmp = change_point[i]; |
| change_point[i] = change_point[i-1]; |
| change_point[i-1] = change_tmp; |
| still_changing = 1; |
| } |
| } |
| } |
| |
| /* create a new bios memory map, removing overlaps */ |
| overlap_entries = 0; /* number of entries in the overlap table */ |
| new_bios_entry = 0; /* index for creating new bios map entries */ |
| last_type = 0; /* start with undefined memory type */ |
| last_addr = 0; /* start with 0 as last starting address */ |
| |
| /* loop through change-points, determining affect on the new bios map */ |
| for (chgidx = 0; chgidx < chg_nr; chgidx++) { |
| /* keep track of all overlapping bios entries */ |
| if (change_point[chgidx]->addr == |
| change_point[chgidx]->pbios->addr) { |
| /* |
| * add map entry to overlap list (> 1 entry |
| * implies an overlap) |
| */ |
| overlap_list[overlap_entries++] = |
| change_point[chgidx]->pbios; |
| } else { |
| /* |
| * remove entry from list (order independent, |
| * so swap with last) |
| */ |
| for (i = 0; i < overlap_entries; i++) { |
| if (overlap_list[i] == |
| change_point[chgidx]->pbios) |
| overlap_list[i] = |
| overlap_list[overlap_entries-1]; |
| } |
| overlap_entries--; |
| } |
| /* |
| * if there are overlapping entries, decide which |
| * "type" to use (larger value takes precedence -- |
| * 1=usable, 2,3,4,4+=unusable) |
| */ |
| current_type = 0; |
| for (i = 0; i < overlap_entries; i++) |
| if (overlap_list[i]->type > current_type) |
| current_type = overlap_list[i]->type; |
| /* |
| * continue building up new bios map based on this |
| * information |
| */ |
| if (current_type != last_type) { |
| if (last_type != 0) { |
| new_bios[new_bios_entry].size = |
| change_point[chgidx]->addr - last_addr; |
| /* |
| * move forward only if the new size |
| * was non-zero |
| */ |
| if (new_bios[new_bios_entry].size != 0) |
| /* |
| * no more space left for new |
| * bios entries ? |
| */ |
| if (++new_bios_entry >= max_nr_map) |
| break; |
| } |
| if (current_type != 0) { |
| new_bios[new_bios_entry].addr = |
| change_point[chgidx]->addr; |
| new_bios[new_bios_entry].type = current_type; |
| last_addr = change_point[chgidx]->addr; |
| } |
| last_type = current_type; |
| } |
| } |
| /* retain count for new bios entries */ |
| new_nr = new_bios_entry; |
| |
| /* copy new bios mapping into original location */ |
| memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry)); |
| *pnr_map = new_nr; |
| |
| return 0; |
| } |
| |
| static int __init __append_e820_map(struct e820entry *biosmap, int nr_map) |
| { |
| while (nr_map) { |
| u64 start = biosmap->addr; |
| u64 size = biosmap->size; |
| u64 end = start + size; |
| u32 type = biosmap->type; |
| |
| /* Overflow in 64 bits? Ignore the memory map. */ |
| if (start > end) |
| return -1; |
| |
| e820_add_region(start, size, type); |
| |
| biosmap++; |
| nr_map--; |
| } |
| return 0; |
| } |
| |
| /* |
| * Copy the BIOS e820 map into a safe place. |
| * |
| * Sanity-check it while we're at it.. |
| * |
| * If we're lucky and live on a modern system, the setup code |
| * will have given us a memory map that we can use to properly |
| * set up memory. If we aren't, we'll fake a memory map. |
| */ |
| static int __init append_e820_map(struct e820entry *biosmap, int nr_map) |
| { |
| /* Only one memory region (or negative)? Ignore it */ |
| if (nr_map < 2) |
| return -1; |
| |
| return __append_e820_map(biosmap, nr_map); |
| } |
| |
| static u64 __init e820_update_range_map(struct e820map *e820x, u64 start, |
| u64 size, unsigned old_type, |
| unsigned new_type) |
| { |
| int i; |
| u64 real_updated_size = 0; |
| |
| BUG_ON(old_type == new_type); |
| |
| if (size > (ULLONG_MAX - start)) |
| size = ULLONG_MAX - start; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820x->map[i]; |
| u64 final_start, final_end; |
| if (ei->type != old_type) |
| continue; |
| /* totally covered? */ |
| if (ei->addr >= start && |
| (ei->addr + ei->size) <= (start + size)) { |
| ei->type = new_type; |
| real_updated_size += ei->size; |
| continue; |
| } |
| /* partially covered */ |
| final_start = max(start, ei->addr); |
| final_end = min(start + size, ei->addr + ei->size); |
| if (final_start >= final_end) |
| continue; |
| e820_add_region(final_start, final_end - final_start, |
| new_type); |
| real_updated_size += final_end - final_start; |
| |
| ei->size -= final_end - final_start; |
| if (ei->addr < final_start) |
| continue; |
| ei->addr = final_end; |
| } |
| return real_updated_size; |
| } |
| |
| u64 __init e820_update_range(u64 start, u64 size, unsigned old_type, |
| unsigned new_type) |
| { |
| return e820_update_range_map(&e820, start, size, old_type, new_type); |
| } |
| |
| static u64 __init e820_update_range_saved(u64 start, u64 size, |
| unsigned old_type, unsigned new_type) |
| { |
| return e820_update_range_map(&e820_saved, start, size, old_type, |
| new_type); |
| } |
| |
| /* make e820 not cover the range */ |
| u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type, |
| int checktype) |
| { |
| int i; |
| u64 real_removed_size = 0; |
| |
| if (size > (ULLONG_MAX - start)) |
| size = ULLONG_MAX - start; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| u64 final_start, final_end; |
| |
| if (checktype && ei->type != old_type) |
| continue; |
| /* totally covered? */ |
| if (ei->addr >= start && |
| (ei->addr + ei->size) <= (start + size)) { |
| real_removed_size += ei->size; |
| memset(ei, 0, sizeof(struct e820entry)); |
| continue; |
| } |
| /* partially covered */ |
| final_start = max(start, ei->addr); |
| final_end = min(start + size, ei->addr + ei->size); |
| if (final_start >= final_end) |
| continue; |
| real_removed_size += final_end - final_start; |
| |
| ei->size -= final_end - final_start; |
| if (ei->addr < final_start) |
| continue; |
| ei->addr = final_end; |
| } |
| return real_removed_size; |
| } |
| |
| void __init update_e820(void) |
| { |
| int nr_map; |
| |
| nr_map = e820.nr_map; |
| if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map)) |
| return; |
| e820.nr_map = nr_map; |
| printk(KERN_INFO "modified physical RAM map:\n"); |
| e820_print_map("modified"); |
| } |
| static void __init update_e820_saved(void) |
| { |
| int nr_map; |
| |
| nr_map = e820_saved.nr_map; |
| if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map)) |
| return; |
| e820_saved.nr_map = nr_map; |
| } |
| #define MAX_GAP_END 0x100000000ull |
| /* |
| * Search for a gap in the e820 memory space from start_addr to end_addr. |
| */ |
| __init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize, |
| unsigned long start_addr, unsigned long long end_addr) |
| { |
| unsigned long long last; |
| int i = e820.nr_map; |
| int found = 0; |
| |
| last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END; |
| |
| while (--i >= 0) { |
| unsigned long long start = e820.map[i].addr; |
| unsigned long long end = start + e820.map[i].size; |
| |
| if (end < start_addr) |
| continue; |
| |
| /* |
| * Since "last" is at most 4GB, we know we'll |
| * fit in 32 bits if this condition is true |
| */ |
| if (last > end) { |
| unsigned long gap = last - end; |
| |
| if (gap >= *gapsize) { |
| *gapsize = gap; |
| *gapstart = end; |
| found = 1; |
| } |
| } |
| if (start < last) |
| last = start; |
| } |
| return found; |
| } |
| |
| /* |
| * Search for the biggest gap in the low 32 bits of the e820 |
| * memory space. We pass this space to PCI to assign MMIO resources |
| * for hotplug or unconfigured devices in. |
| * Hopefully the BIOS let enough space left. |
| */ |
| __init void e820_setup_gap(void) |
| { |
| unsigned long gapstart, gapsize, round; |
| int found; |
| |
| gapstart = 0x10000000; |
| gapsize = 0x400000; |
| found = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END); |
| |
| #ifdef CONFIG_X86_64 |
| if (!found) { |
| gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; |
| printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit " |
| "address range\n" |
| KERN_ERR "PCI: Unassigned devices with 32bit resource " |
| "registers may break!\n"); |
| } |
| #endif |
| |
| /* |
| * See how much we want to round up: start off with |
| * rounding to the next 1MB area. |
| */ |
| round = 0x100000; |
| while ((gapsize >> 4) > round) |
| round += round; |
| /* Fun with two's complement */ |
| pci_mem_start = (gapstart + round) & -round; |
| |
| printk(KERN_INFO |
| "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n", |
| pci_mem_start, gapstart, gapsize); |
| } |
| |
| /** |
| * Because of the size limitation of struct boot_params, only first |
| * 128 E820 memory entries are passed to kernel via |
| * boot_params.e820_map, others are passed via SETUP_E820_EXT node of |
| * linked list of struct setup_data, which is parsed here. |
| */ |
| void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data) |
| { |
| u32 map_len; |
| int entries; |
| struct e820entry *extmap; |
| |
| entries = sdata->len / sizeof(struct e820entry); |
| map_len = sdata->len + sizeof(struct setup_data); |
| if (map_len > PAGE_SIZE) |
| sdata = early_ioremap(pa_data, map_len); |
| extmap = (struct e820entry *)(sdata->data); |
| __append_e820_map(extmap, entries); |
| sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); |
| if (map_len > PAGE_SIZE) |
| early_iounmap(sdata, map_len); |
| printk(KERN_INFO "extended physical RAM map:\n"); |
| e820_print_map("extended"); |
| } |
| |
| #if defined(CONFIG_X86_64) || \ |
| (defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION)) |
| /** |
| * Find the ranges of physical addresses that do not correspond to |
| * e820 RAM areas and mark the corresponding pages as nosave for |
| * hibernation (32 bit) or software suspend and suspend to RAM (64 bit). |
| * |
| * This function requires the e820 map to be sorted and without any |
| * overlapping entries and assumes the first e820 area to be RAM. |
| */ |
| void __init e820_mark_nosave_regions(unsigned long limit_pfn) |
| { |
| int i; |
| unsigned long pfn; |
| |
| pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size); |
| for (i = 1; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| |
| if (pfn < PFN_UP(ei->addr)) |
| register_nosave_region(pfn, PFN_UP(ei->addr)); |
| |
| pfn = PFN_DOWN(ei->addr + ei->size); |
| if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN) |
| register_nosave_region(PFN_UP(ei->addr), pfn); |
| |
| if (pfn >= limit_pfn) |
| break; |
| } |
| } |
| #endif |
| |
| /* |
| * Early reserved memory areas. |
| */ |
| #define MAX_EARLY_RES 20 |
| |
| struct early_res { |
| u64 start, end; |
| char name[16]; |
| char overlap_ok; |
| }; |
| static struct early_res early_res[MAX_EARLY_RES] __initdata = { |
| { 0, PAGE_SIZE, "BIOS data page" }, /* BIOS data page */ |
| #if defined(CONFIG_X86_64) && defined(CONFIG_X86_TRAMPOLINE) |
| { TRAMPOLINE_BASE, TRAMPOLINE_BASE + 2 * PAGE_SIZE, "TRAMPOLINE" }, |
| #endif |
| #if defined(CONFIG_X86_32) && defined(CONFIG_SMP) |
| /* |
| * But first pinch a few for the stack/trampoline stuff |
| * FIXME: Don't need the extra page at 4K, but need to fix |
| * trampoline before removing it. (see the GDT stuff) |
| */ |
| { PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE" }, |
| /* |
| * Has to be in very low memory so we can execute |
| * real-mode AP code. |
| */ |
| { TRAMPOLINE_BASE, TRAMPOLINE_BASE + PAGE_SIZE, "TRAMPOLINE" }, |
| #endif |
| {} |
| }; |
| |
| static int __init find_overlapped_early(u64 start, u64 end) |
| { |
| int i; |
| struct early_res *r; |
| |
| for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) { |
| r = &early_res[i]; |
| if (end > r->start && start < r->end) |
| break; |
| } |
| |
| return i; |
| } |
| |
| /* |
| * Drop the i-th range from the early reservation map, |
| * by copying any higher ranges down one over it, and |
| * clearing what had been the last slot. |
| */ |
| static void __init drop_range(int i) |
| { |
| int j; |
| |
| for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++) |
| ; |
| |
| memmove(&early_res[i], &early_res[i + 1], |
| (j - 1 - i) * sizeof(struct early_res)); |
| |
| early_res[j - 1].end = 0; |
| } |
| |
| /* |
| * Split any existing ranges that: |
| * 1) are marked 'overlap_ok', and |
| * 2) overlap with the stated range [start, end) |
| * into whatever portion (if any) of the existing range is entirely |
| * below or entirely above the stated range. Drop the portion |
| * of the existing range that overlaps with the stated range, |
| * which will allow the caller of this routine to then add that |
| * stated range without conflicting with any existing range. |
| */ |
| static void __init drop_overlaps_that_are_ok(u64 start, u64 end) |
| { |
| int i; |
| struct early_res *r; |
| u64 lower_start, lower_end; |
| u64 upper_start, upper_end; |
| char name[16]; |
| |
| for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) { |
| r = &early_res[i]; |
| |
| /* Continue past non-overlapping ranges */ |
| if (end <= r->start || start >= r->end) |
| continue; |
| |
| /* |
| * Leave non-ok overlaps as is; let caller |
| * panic "Overlapping early reservations" |
| * when it hits this overlap. |
| */ |
| if (!r->overlap_ok) |
| return; |
| |
| /* |
| * We have an ok overlap. We will drop it from the early |
| * reservation map, and add back in any non-overlapping |
| * portions (lower or upper) as separate, overlap_ok, |
| * non-overlapping ranges. |
| */ |
| |
| /* 1. Note any non-overlapping (lower or upper) ranges. */ |
| strncpy(name, r->name, sizeof(name) - 1); |
| |
| lower_start = lower_end = 0; |
| upper_start = upper_end = 0; |
| if (r->start < start) { |
| lower_start = r->start; |
| lower_end = start; |
| } |
| if (r->end > end) { |
| upper_start = end; |
| upper_end = r->end; |
| } |
| |
| /* 2. Drop the original ok overlapping range */ |
| drop_range(i); |
| |
| i--; /* resume for-loop on copied down entry */ |
| |
| /* 3. Add back in any non-overlapping ranges. */ |
| if (lower_end) |
| reserve_early_overlap_ok(lower_start, lower_end, name); |
| if (upper_end) |
| reserve_early_overlap_ok(upper_start, upper_end, name); |
| } |
| } |
| |
| static void __init __reserve_early(u64 start, u64 end, char *name, |
| int overlap_ok) |
| { |
| int i; |
| struct early_res *r; |
| |
| i = find_overlapped_early(start, end); |
| if (i >= MAX_EARLY_RES) |
| panic("Too many early reservations"); |
| r = &early_res[i]; |
| if (r->end) |
| panic("Overlapping early reservations " |
| "%llx-%llx %s to %llx-%llx %s\n", |
| start, end - 1, name?name:"", r->start, |
| r->end - 1, r->name); |
| r->start = start; |
| r->end = end; |
| r->overlap_ok = overlap_ok; |
| if (name) |
| strncpy(r->name, name, sizeof(r->name) - 1); |
| } |
| |
| /* |
| * A few early reservtations come here. |
| * |
| * The 'overlap_ok' in the name of this routine does -not- mean it |
| * is ok for these reservations to overlap an earlier reservation. |
| * Rather it means that it is ok for subsequent reservations to |
| * overlap this one. |
| * |
| * Use this entry point to reserve early ranges when you are doing |
| * so out of "Paranoia", reserving perhaps more memory than you need, |
| * just in case, and don't mind a subsequent overlapping reservation |
| * that is known to be needed. |
| * |
| * The drop_overlaps_that_are_ok() call here isn't really needed. |
| * It would be needed if we had two colliding 'overlap_ok' |
| * reservations, so that the second such would not panic on the |
| * overlap with the first. We don't have any such as of this |
| * writing, but might as well tolerate such if it happens in |
| * the future. |
| */ |
| void __init reserve_early_overlap_ok(u64 start, u64 end, char *name) |
| { |
| drop_overlaps_that_are_ok(start, end); |
| __reserve_early(start, end, name, 1); |
| } |
| |
| /* |
| * Most early reservations come here. |
| * |
| * We first have drop_overlaps_that_are_ok() drop any pre-existing |
| * 'overlap_ok' ranges, so that we can then reserve this memory |
| * range without risk of panic'ing on an overlapping overlap_ok |
| * early reservation. |
| */ |
| void __init reserve_early(u64 start, u64 end, char *name) |
| { |
| drop_overlaps_that_are_ok(start, end); |
| __reserve_early(start, end, name, 0); |
| } |
| |
| void __init free_early(u64 start, u64 end) |
| { |
| struct early_res *r; |
| int i; |
| |
| i = find_overlapped_early(start, end); |
| r = &early_res[i]; |
| if (i >= MAX_EARLY_RES || r->end != end || r->start != start) |
| panic("free_early on not reserved area: %llx-%llx!", |
| start, end - 1); |
| |
| drop_range(i); |
| } |
| |
| void __init early_res_to_bootmem(u64 start, u64 end) |
| { |
| int i, count; |
| u64 final_start, final_end; |
| |
| count = 0; |
| for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) |
| count++; |
| |
| printk(KERN_INFO "(%d early reservations) ==> bootmem\n", count); |
| for (i = 0; i < count; i++) { |
| struct early_res *r = &early_res[i]; |
| printk(KERN_INFO " #%d [%010llx - %010llx] %16s", i, |
| r->start, r->end, r->name); |
| final_start = max(start, r->start); |
| final_end = min(end, r->end); |
| if (final_start >= final_end) { |
| printk(KERN_CONT "\n"); |
| continue; |
| } |
| printk(KERN_CONT " ==> [%010llx - %010llx]\n", |
| final_start, final_end); |
| reserve_bootmem_generic(final_start, final_end - final_start, |
| BOOTMEM_DEFAULT); |
| } |
| } |
| |
| /* Check for already reserved areas */ |
| static inline int __init bad_addr(u64 *addrp, u64 size, u64 align) |
| { |
| int i; |
| u64 addr = *addrp; |
| int changed = 0; |
| struct early_res *r; |
| again: |
| i = find_overlapped_early(addr, addr + size); |
| r = &early_res[i]; |
| if (i < MAX_EARLY_RES && r->end) { |
| *addrp = addr = round_up(r->end, align); |
| changed = 1; |
| goto again; |
| } |
| return changed; |
| } |
| |
| /* Check for already reserved areas */ |
| static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align) |
| { |
| int i; |
| u64 addr = *addrp, last; |
| u64 size = *sizep; |
| int changed = 0; |
| again: |
| last = addr + size; |
| for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) { |
| struct early_res *r = &early_res[i]; |
| if (last > r->start && addr < r->start) { |
| size = r->start - addr; |
| changed = 1; |
| goto again; |
| } |
| if (last > r->end && addr < r->end) { |
| addr = round_up(r->end, align); |
| size = last - addr; |
| changed = 1; |
| goto again; |
| } |
| if (last <= r->end && addr >= r->start) { |
| (*sizep)++; |
| return 0; |
| } |
| } |
| if (changed) { |
| *addrp = addr; |
| *sizep = size; |
| } |
| return changed; |
| } |
| |
| /* |
| * Find a free area with specified alignment in a specific range. |
| */ |
| u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align) |
| { |
| int i; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| u64 addr, last; |
| u64 ei_last; |
| |
| if (ei->type != E820_RAM) |
| continue; |
| addr = round_up(ei->addr, align); |
| ei_last = ei->addr + ei->size; |
| if (addr < start) |
| addr = round_up(start, align); |
| if (addr >= ei_last) |
| continue; |
| while (bad_addr(&addr, size, align) && addr+size <= ei_last) |
| ; |
| last = addr + size; |
| if (last > ei_last) |
| continue; |
| if (last > end) |
| continue; |
| return addr; |
| } |
| return -1ULL; |
| } |
| |
| /* |
| * Find next free range after *start |
| */ |
| u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align) |
| { |
| int i; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| u64 addr, last; |
| u64 ei_last; |
| |
| if (ei->type != E820_RAM) |
| continue; |
| addr = round_up(ei->addr, align); |
| ei_last = ei->addr + ei->size; |
| if (addr < start) |
| addr = round_up(start, align); |
| if (addr >= ei_last) |
| continue; |
| *sizep = ei_last - addr; |
| while (bad_addr_size(&addr, sizep, align) && |
| addr + *sizep <= ei_last) |
| ; |
| last = addr + *sizep; |
| if (last > ei_last) |
| continue; |
| return addr; |
| } |
| return -1UL; |
| |
| } |
| |
| /* |
| * pre allocated 4k and reserved it in e820 |
| */ |
| u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align) |
| { |
| u64 size = 0; |
| u64 addr; |
| u64 start; |
| |
| start = startt; |
| while (size < sizet) |
| start = find_e820_area_size(start, &size, align); |
| |
| if (size < sizet) |
| return 0; |
| |
| addr = round_down(start + size - sizet, align); |
| e820_update_range(addr, sizet, E820_RAM, E820_RESERVED); |
| e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED); |
| printk(KERN_INFO "update e820 for early_reserve_e820\n"); |
| update_e820(); |
| update_e820_saved(); |
| |
| return addr; |
| } |
| |
| #ifdef CONFIG_X86_32 |
| # ifdef CONFIG_X86_PAE |
| # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) |
| # else |
| # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) |
| # endif |
| #else /* CONFIG_X86_32 */ |
| # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT |
| #endif |
| |
| /* |
| * Last pfn which the user wants to use. |
| */ |
| unsigned long __initdata end_user_pfn = MAX_ARCH_PFN; |
| |
| /* |
| * Find the highest page frame number we have available |
| */ |
| static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type) |
| { |
| int i; |
| unsigned long last_pfn = 0; |
| unsigned long max_arch_pfn = MAX_ARCH_PFN; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| unsigned long start_pfn; |
| unsigned long end_pfn; |
| |
| if (ei->type != type) |
| continue; |
| |
| start_pfn = ei->addr >> PAGE_SHIFT; |
| end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT; |
| |
| if (start_pfn >= limit_pfn) |
| continue; |
| if (end_pfn > limit_pfn) { |
| last_pfn = limit_pfn; |
| break; |
| } |
| if (end_pfn > last_pfn) |
| last_pfn = end_pfn; |
| } |
| |
| if (last_pfn > max_arch_pfn) |
| last_pfn = max_arch_pfn; |
| if (last_pfn > end_user_pfn) |
| last_pfn = end_user_pfn; |
| |
| printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n", |
| last_pfn, max_arch_pfn); |
| return last_pfn; |
| } |
| unsigned long __init e820_end_of_ram_pfn(void) |
| { |
| return e820_end_pfn(MAX_ARCH_PFN, E820_RAM); |
| } |
| |
| unsigned long __init e820_end_of_low_ram_pfn(void) |
| { |
| return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM); |
| } |
| /* |
| * Finds an active region in the address range from start_pfn to last_pfn and |
| * returns its range in ei_startpfn and ei_endpfn for the e820 entry. |
| */ |
| int __init e820_find_active_region(const struct e820entry *ei, |
| unsigned long start_pfn, |
| unsigned long last_pfn, |
| unsigned long *ei_startpfn, |
| unsigned long *ei_endpfn) |
| { |
| u64 align = PAGE_SIZE; |
| |
| *ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT; |
| *ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT; |
| |
| /* Skip map entries smaller than a page */ |
| if (*ei_startpfn >= *ei_endpfn) |
| return 0; |
| |
| /* Skip if map is outside the node */ |
| if (ei->type != E820_RAM || *ei_endpfn <= start_pfn || |
| *ei_startpfn >= last_pfn) |
| return 0; |
| |
| /* Check for overlaps */ |
| if (*ei_startpfn < start_pfn) |
| *ei_startpfn = start_pfn; |
| if (*ei_endpfn > last_pfn) |
| *ei_endpfn = last_pfn; |
| |
| /* Obey end_user_pfn to save on memmap */ |
| if (*ei_startpfn >= end_user_pfn) |
| return 0; |
| if (*ei_endpfn > end_user_pfn) |
| *ei_endpfn = end_user_pfn; |
| |
| return 1; |
| } |
| |
| /* Walk the e820 map and register active regions within a node */ |
| void __init e820_register_active_regions(int nid, unsigned long start_pfn, |
| unsigned long last_pfn) |
| { |
| unsigned long ei_startpfn; |
| unsigned long ei_endpfn; |
| int i; |
| |
| for (i = 0; i < e820.nr_map; i++) |
| if (e820_find_active_region(&e820.map[i], |
| start_pfn, last_pfn, |
| &ei_startpfn, &ei_endpfn)) |
| add_active_range(nid, ei_startpfn, ei_endpfn); |
| } |
| |
| /* |
| * Find the hole size (in bytes) in the memory range. |
| * @start: starting address of the memory range to scan |
| * @end: ending address of the memory range to scan |
| */ |
| u64 __init e820_hole_size(u64 start, u64 end) |
| { |
| unsigned long start_pfn = start >> PAGE_SHIFT; |
| unsigned long last_pfn = end >> PAGE_SHIFT; |
| unsigned long ei_startpfn, ei_endpfn, ram = 0; |
| int i; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| if (e820_find_active_region(&e820.map[i], |
| start_pfn, last_pfn, |
| &ei_startpfn, &ei_endpfn)) |
| ram += ei_endpfn - ei_startpfn; |
| } |
| return end - start - ((u64)ram << PAGE_SHIFT); |
| } |
| |
| static void early_panic(char *msg) |
| { |
| early_printk(msg); |
| panic(msg); |
| } |
| |
| static int userdef __initdata; |
| |
| /* "mem=nopentium" disables the 4MB page tables. */ |
| static int __init parse_memopt(char *p) |
| { |
| u64 mem_size; |
| |
| if (!p) |
| return -EINVAL; |
| |
| #ifdef CONFIG_X86_32 |
| if (!strcmp(p, "nopentium")) { |
| setup_clear_cpu_cap(X86_FEATURE_PSE); |
| return 0; |
| } |
| #endif |
| |
| userdef = 1; |
| mem_size = memparse(p, &p); |
| end_user_pfn = mem_size>>PAGE_SHIFT; |
| e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1); |
| |
| return 0; |
| } |
| early_param("mem", parse_memopt); |
| |
| static int __init parse_memmap_opt(char *p) |
| { |
| char *oldp; |
| u64 start_at, mem_size; |
| |
| if (!p) |
| return -EINVAL; |
| |
| if (!strcmp(p, "exactmap")) { |
| #ifdef CONFIG_CRASH_DUMP |
| /* |
| * If we are doing a crash dump, we still need to know |
| * the real mem size before original memory map is |
| * reset. |
| */ |
| saved_max_pfn = e820_end_of_ram_pfn(); |
| #endif |
| e820.nr_map = 0; |
| userdef = 1; |
| return 0; |
| } |
| |
| oldp = p; |
| mem_size = memparse(p, &p); |
| if (p == oldp) |
| return -EINVAL; |
| |
| userdef = 1; |
| if (*p == '@') { |
| start_at = memparse(p+1, &p); |
| e820_add_region(start_at, mem_size, E820_RAM); |
| } else if (*p == '#') { |
| start_at = memparse(p+1, &p); |
| e820_add_region(start_at, mem_size, E820_ACPI); |
| } else if (*p == '$') { |
| start_at = memparse(p+1, &p); |
| e820_add_region(start_at, mem_size, E820_RESERVED); |
| } else { |
| end_user_pfn = (mem_size >> PAGE_SHIFT); |
| e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1); |
| } |
| return *p == '\0' ? 0 : -EINVAL; |
| } |
| early_param("memmap", parse_memmap_opt); |
| |
| void __init finish_e820_parsing(void) |
| { |
| if (userdef) { |
| int nr = e820.nr_map; |
| |
| if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0) |
| early_panic("Invalid user supplied memory map"); |
| e820.nr_map = nr; |
| |
| printk(KERN_INFO "user-defined physical RAM map:\n"); |
| e820_print_map("user"); |
| } |
| } |
| |
| static inline const char *e820_type_to_string(int e820_type) |
| { |
| switch (e820_type) { |
| case E820_RESERVED_KERN: |
| case E820_RAM: return "System RAM"; |
| case E820_ACPI: return "ACPI Tables"; |
| case E820_NVS: return "ACPI Non-volatile Storage"; |
| default: return "reserved"; |
| } |
| } |
| |
| /* |
| * Mark e820 reserved areas as busy for the resource manager. |
| */ |
| void __init e820_reserve_resources(void) |
| { |
| int i; |
| struct resource *res; |
| u64 end; |
| |
| res = alloc_bootmem_low(sizeof(struct resource) * e820.nr_map); |
| for (i = 0; i < e820.nr_map; i++) { |
| end = e820.map[i].addr + e820.map[i].size - 1; |
| #ifndef CONFIG_RESOURCES_64BIT |
| if (end > 0x100000000ULL) { |
| res++; |
| continue; |
| } |
| #endif |
| res->name = e820_type_to_string(e820.map[i].type); |
| res->start = e820.map[i].addr; |
| res->end = end; |
| |
| res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| insert_resource(&iomem_resource, res); |
| res++; |
| } |
| |
| for (i = 0; i < e820_saved.nr_map; i++) { |
| struct e820entry *entry = &e820_saved.map[i]; |
| firmware_map_add_early(entry->addr, |
| entry->addr + entry->size - 1, |
| e820_type_to_string(entry->type)); |
| } |
| } |
| |
| /* |
| * Non-standard memory setup can be specified via this quirk: |
| */ |
| char * (*arch_memory_setup_quirk)(void); |
| |
| char *__init default_machine_specific_memory_setup(void) |
| { |
| char *who = "BIOS-e820"; |
| int new_nr; |
| /* |
| * Try to copy the BIOS-supplied E820-map. |
| * |
| * Otherwise fake a memory map; one section from 0k->640k, |
| * the next section from 1mb->appropriate_mem_k |
| */ |
| new_nr = boot_params.e820_entries; |
| sanitize_e820_map(boot_params.e820_map, |
| ARRAY_SIZE(boot_params.e820_map), |
| &new_nr); |
| boot_params.e820_entries = new_nr; |
| if (append_e820_map(boot_params.e820_map, boot_params.e820_entries) |
| < 0) { |
| u64 mem_size; |
| |
| /* compare results from other methods and take the greater */ |
| if (boot_params.alt_mem_k |
| < boot_params.screen_info.ext_mem_k) { |
| mem_size = boot_params.screen_info.ext_mem_k; |
| who = "BIOS-88"; |
| } else { |
| mem_size = boot_params.alt_mem_k; |
| who = "BIOS-e801"; |
| } |
| |
| e820.nr_map = 0; |
| e820_add_region(0, LOWMEMSIZE(), E820_RAM); |
| e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM); |
| } |
| |
| /* In case someone cares... */ |
| return who; |
| } |
| |
| char *__init __attribute__((weak)) machine_specific_memory_setup(void) |
| { |
| if (arch_memory_setup_quirk) { |
| char *who = arch_memory_setup_quirk(); |
| |
| if (who) |
| return who; |
| } |
| return default_machine_specific_memory_setup(); |
| } |
| |
| /* Overridden in paravirt.c if CONFIG_PARAVIRT */ |
| char * __init __attribute__((weak)) memory_setup(void) |
| { |
| return machine_specific_memory_setup(); |
| } |
| |
| void __init setup_memory_map(void) |
| { |
| char *who; |
| |
| who = memory_setup(); |
| memcpy(&e820_saved, &e820, sizeof(struct e820map)); |
| printk(KERN_INFO "BIOS-provided physical RAM map:\n"); |
| e820_print_map(who); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| int __init arch_get_ram_range(int slot, u64 *addr, u64 *size) |
| { |
| int i; |
| |
| if (slot < 0 || slot >= e820.nr_map) |
| return -1; |
| for (i = slot; i < e820.nr_map; i++) { |
| if (e820.map[i].type != E820_RAM) |
| continue; |
| break; |
| } |
| if (i == e820.nr_map || e820.map[i].addr > (max_pfn << PAGE_SHIFT)) |
| return -1; |
| *addr = e820.map[i].addr; |
| *size = min_t(u64, e820.map[i].size + e820.map[i].addr, |
| max_pfn << PAGE_SHIFT) - *addr; |
| return i + 1; |
| } |
| #endif |