| /* |
| * linux/kernel/hrtimer.c |
| * |
| * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> |
| * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar |
| * |
| * High-resolution kernel timers |
| * |
| * In contrast to the low-resolution timeout API implemented in |
| * kernel/timer.c, hrtimers provide finer resolution and accuracy |
| * depending on system configuration and capabilities. |
| * |
| * These timers are currently used for: |
| * - itimers |
| * - POSIX timers |
| * - nanosleep |
| * - precise in-kernel timing |
| * |
| * Started by: Thomas Gleixner and Ingo Molnar |
| * |
| * Credits: |
| * based on kernel/timer.c |
| * |
| * Help, testing, suggestions, bugfixes, improvements were |
| * provided by: |
| * |
| * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel |
| * et. al. |
| * |
| * For licencing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/module.h> |
| #include <linux/percpu.h> |
| #include <linux/hrtimer.h> |
| #include <linux/notifier.h> |
| #include <linux/syscalls.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/uaccess.h> |
| |
| /** |
| * ktime_get - get the monotonic time in ktime_t format |
| * |
| * returns the time in ktime_t format |
| */ |
| static ktime_t ktime_get(void) |
| { |
| struct timespec now; |
| |
| ktime_get_ts(&now); |
| |
| return timespec_to_ktime(now); |
| } |
| |
| /** |
| * ktime_get_real - get the real (wall-) time in ktime_t format |
| * |
| * returns the time in ktime_t format |
| */ |
| static ktime_t ktime_get_real(void) |
| { |
| struct timespec now; |
| |
| getnstimeofday(&now); |
| |
| return timespec_to_ktime(now); |
| } |
| |
| EXPORT_SYMBOL_GPL(ktime_get_real); |
| |
| /* |
| * The timer bases: |
| * |
| * Note: If we want to add new timer bases, we have to skip the two |
| * clock ids captured by the cpu-timers. We do this by holding empty |
| * entries rather than doing math adjustment of the clock ids. |
| * This ensures that we capture erroneous accesses to these clock ids |
| * rather than moving them into the range of valid clock id's. |
| */ |
| |
| #define MAX_HRTIMER_BASES 2 |
| |
| static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) = |
| { |
| { |
| .index = CLOCK_REALTIME, |
| .get_time = &ktime_get_real, |
| .resolution = KTIME_REALTIME_RES, |
| }, |
| { |
| .index = CLOCK_MONOTONIC, |
| .get_time = &ktime_get, |
| .resolution = KTIME_MONOTONIC_RES, |
| }, |
| }; |
| |
| /** |
| * ktime_get_ts - get the monotonic clock in timespec format |
| * |
| * @ts: pointer to timespec variable |
| * |
| * The function calculates the monotonic clock from the realtime |
| * clock and the wall_to_monotonic offset and stores the result |
| * in normalized timespec format in the variable pointed to by ts. |
| */ |
| void ktime_get_ts(struct timespec *ts) |
| { |
| struct timespec tomono; |
| unsigned long seq; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| getnstimeofday(ts); |
| tomono = wall_to_monotonic; |
| |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, |
| ts->tv_nsec + tomono.tv_nsec); |
| } |
| EXPORT_SYMBOL_GPL(ktime_get_ts); |
| |
| /* |
| * Get the coarse grained time at the softirq based on xtime and |
| * wall_to_monotonic. |
| */ |
| static void hrtimer_get_softirq_time(struct hrtimer_base *base) |
| { |
| ktime_t xtim, tomono; |
| unsigned long seq; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| xtim = timespec_to_ktime(xtime); |
| tomono = timespec_to_ktime(wall_to_monotonic); |
| |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| base[CLOCK_REALTIME].softirq_time = xtim; |
| base[CLOCK_MONOTONIC].softirq_time = ktime_add(xtim, tomono); |
| } |
| |
| /* |
| * Functions and macros which are different for UP/SMP systems are kept in a |
| * single place |
| */ |
| #ifdef CONFIG_SMP |
| |
| #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0) |
| |
| /* |
| * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock |
| * means that all timers which are tied to this base via timer->base are |
| * locked, and the base itself is locked too. |
| * |
| * So __run_timers/migrate_timers can safely modify all timers which could |
| * be found on the lists/queues. |
| * |
| * When the timer's base is locked, and the timer removed from list, it is |
| * possible to set timer->base = NULL and drop the lock: the timer remains |
| * locked. |
| */ |
| static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer, |
| unsigned long *flags) |
| { |
| struct hrtimer_base *base; |
| |
| for (;;) { |
| base = timer->base; |
| if (likely(base != NULL)) { |
| spin_lock_irqsave(&base->lock, *flags); |
| if (likely(base == timer->base)) |
| return base; |
| /* The timer has migrated to another CPU: */ |
| spin_unlock_irqrestore(&base->lock, *flags); |
| } |
| cpu_relax(); |
| } |
| } |
| |
| /* |
| * Switch the timer base to the current CPU when possible. |
| */ |
| static inline struct hrtimer_base * |
| switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base) |
| { |
| struct hrtimer_base *new_base; |
| |
| new_base = &__get_cpu_var(hrtimer_bases[base->index]); |
| |
| if (base != new_base) { |
| /* |
| * We are trying to schedule the timer on the local CPU. |
| * However we can't change timer's base while it is running, |
| * so we keep it on the same CPU. No hassle vs. reprogramming |
| * the event source in the high resolution case. The softirq |
| * code will take care of this when the timer function has |
| * completed. There is no conflict as we hold the lock until |
| * the timer is enqueued. |
| */ |
| if (unlikely(base->curr_timer == timer)) |
| return base; |
| |
| /* See the comment in lock_timer_base() */ |
| timer->base = NULL; |
| spin_unlock(&base->lock); |
| spin_lock(&new_base->lock); |
| timer->base = new_base; |
| } |
| return new_base; |
| } |
| |
| #else /* CONFIG_SMP */ |
| |
| #define set_curr_timer(b, t) do { } while (0) |
| |
| static inline struct hrtimer_base * |
| lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| { |
| struct hrtimer_base *base = timer->base; |
| |
| spin_lock_irqsave(&base->lock, *flags); |
| |
| return base; |
| } |
| |
| #define switch_hrtimer_base(t, b) (b) |
| |
| #endif /* !CONFIG_SMP */ |
| |
| /* |
| * Functions for the union type storage format of ktime_t which are |
| * too large for inlining: |
| */ |
| #if BITS_PER_LONG < 64 |
| # ifndef CONFIG_KTIME_SCALAR |
| /** |
| * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable |
| * |
| * @kt: addend |
| * @nsec: the scalar nsec value to add |
| * |
| * Returns the sum of kt and nsec in ktime_t format |
| */ |
| ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) |
| { |
| ktime_t tmp; |
| |
| if (likely(nsec < NSEC_PER_SEC)) { |
| tmp.tv64 = nsec; |
| } else { |
| unsigned long rem = do_div(nsec, NSEC_PER_SEC); |
| |
| tmp = ktime_set((long)nsec, rem); |
| } |
| |
| return ktime_add(kt, tmp); |
| } |
| |
| #else /* CONFIG_KTIME_SCALAR */ |
| |
| # endif /* !CONFIG_KTIME_SCALAR */ |
| |
| /* |
| * Divide a ktime value by a nanosecond value |
| */ |
| static unsigned long ktime_divns(const ktime_t kt, s64 div) |
| { |
| u64 dclc, inc, dns; |
| int sft = 0; |
| |
| dclc = dns = ktime_to_ns(kt); |
| inc = div; |
| /* Make sure the divisor is less than 2^32: */ |
| while (div >> 32) { |
| sft++; |
| div >>= 1; |
| } |
| dclc >>= sft; |
| do_div(dclc, (unsigned long) div); |
| |
| return (unsigned long) dclc; |
| } |
| |
| #else /* BITS_PER_LONG < 64 */ |
| # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div)) |
| #endif /* BITS_PER_LONG >= 64 */ |
| |
| /* |
| * Counterpart to lock_timer_base above: |
| */ |
| static inline |
| void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| { |
| spin_unlock_irqrestore(&timer->base->lock, *flags); |
| } |
| |
| /** |
| * hrtimer_forward - forward the timer expiry |
| * |
| * @timer: hrtimer to forward |
| * @now: forward past this time |
| * @interval: the interval to forward |
| * |
| * Forward the timer expiry so it will expire in the future. |
| * Returns the number of overruns. |
| */ |
| unsigned long |
| hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
| { |
| unsigned long orun = 1; |
| ktime_t delta; |
| |
| delta = ktime_sub(now, timer->expires); |
| |
| if (delta.tv64 < 0) |
| return 0; |
| |
| if (interval.tv64 < timer->base->resolution.tv64) |
| interval.tv64 = timer->base->resolution.tv64; |
| |
| if (unlikely(delta.tv64 >= interval.tv64)) { |
| s64 incr = ktime_to_ns(interval); |
| |
| orun = ktime_divns(delta, incr); |
| timer->expires = ktime_add_ns(timer->expires, incr * orun); |
| if (timer->expires.tv64 > now.tv64) |
| return orun; |
| /* |
| * This (and the ktime_add() below) is the |
| * correction for exact: |
| */ |
| orun++; |
| } |
| timer->expires = ktime_add(timer->expires, interval); |
| |
| return orun; |
| } |
| |
| /* |
| * enqueue_hrtimer - internal function to (re)start a timer |
| * |
| * The timer is inserted in expiry order. Insertion into the |
| * red black tree is O(log(n)). Must hold the base lock. |
| */ |
| static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) |
| { |
| struct rb_node **link = &base->active.rb_node; |
| struct rb_node *parent = NULL; |
| struct hrtimer *entry; |
| |
| /* |
| * Find the right place in the rbtree: |
| */ |
| while (*link) { |
| parent = *link; |
| entry = rb_entry(parent, struct hrtimer, node); |
| /* |
| * We dont care about collisions. Nodes with |
| * the same expiry time stay together. |
| */ |
| if (timer->expires.tv64 < entry->expires.tv64) |
| link = &(*link)->rb_left; |
| else |
| link = &(*link)->rb_right; |
| } |
| |
| /* |
| * Insert the timer to the rbtree and check whether it |
| * replaces the first pending timer |
| */ |
| rb_link_node(&timer->node, parent, link); |
| rb_insert_color(&timer->node, &base->active); |
| |
| if (!base->first || timer->expires.tv64 < |
| rb_entry(base->first, struct hrtimer, node)->expires.tv64) |
| base->first = &timer->node; |
| } |
| |
| /* |
| * __remove_hrtimer - internal function to remove a timer |
| * |
| * Caller must hold the base lock. |
| */ |
| static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) |
| { |
| /* |
| * Remove the timer from the rbtree and replace the |
| * first entry pointer if necessary. |
| */ |
| if (base->first == &timer->node) |
| base->first = rb_next(&timer->node); |
| rb_erase(&timer->node, &base->active); |
| timer->node.rb_parent = HRTIMER_INACTIVE; |
| } |
| |
| /* |
| * remove hrtimer, called with base lock held |
| */ |
| static inline int |
| remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) |
| { |
| if (hrtimer_active(timer)) { |
| __remove_hrtimer(timer, base); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * hrtimer_start - (re)start an relative timer on the current CPU |
| * |
| * @timer: the timer to be added |
| * @tim: expiry time |
| * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) |
| * |
| * Returns: |
| * 0 on success |
| * 1 when the timer was active |
| */ |
| int |
| hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) |
| { |
| struct hrtimer_base *base, *new_base; |
| unsigned long flags; |
| int ret; |
| |
| base = lock_hrtimer_base(timer, &flags); |
| |
| /* Remove an active timer from the queue: */ |
| ret = remove_hrtimer(timer, base); |
| |
| /* Switch the timer base, if necessary: */ |
| new_base = switch_hrtimer_base(timer, base); |
| |
| if (mode == HRTIMER_REL) { |
| tim = ktime_add(tim, new_base->get_time()); |
| /* |
| * CONFIG_TIME_LOW_RES is a temporary way for architectures |
| * to signal that they simply return xtime in |
| * do_gettimeoffset(). In this case we want to round up by |
| * resolution when starting a relative timer, to avoid short |
| * timeouts. This will go away with the GTOD framework. |
| */ |
| #ifdef CONFIG_TIME_LOW_RES |
| tim = ktime_add(tim, base->resolution); |
| #endif |
| } |
| timer->expires = tim; |
| |
| enqueue_hrtimer(timer, new_base); |
| |
| unlock_hrtimer_base(timer, &flags); |
| |
| return ret; |
| } |
| |
| /** |
| * hrtimer_try_to_cancel - try to deactivate a timer |
| * |
| * @timer: hrtimer to stop |
| * |
| * Returns: |
| * 0 when the timer was not active |
| * 1 when the timer was active |
| * -1 when the timer is currently excuting the callback function and |
| * can not be stopped |
| */ |
| int hrtimer_try_to_cancel(struct hrtimer *timer) |
| { |
| struct hrtimer_base *base; |
| unsigned long flags; |
| int ret = -1; |
| |
| base = lock_hrtimer_base(timer, &flags); |
| |
| if (base->curr_timer != timer) |
| ret = remove_hrtimer(timer, base); |
| |
| unlock_hrtimer_base(timer, &flags); |
| |
| return ret; |
| |
| } |
| |
| /** |
| * hrtimer_cancel - cancel a timer and wait for the handler to finish. |
| * |
| * @timer: the timer to be cancelled |
| * |
| * Returns: |
| * 0 when the timer was not active |
| * 1 when the timer was active |
| */ |
| int hrtimer_cancel(struct hrtimer *timer) |
| { |
| for (;;) { |
| int ret = hrtimer_try_to_cancel(timer); |
| |
| if (ret >= 0) |
| return ret; |
| cpu_relax(); |
| } |
| } |
| |
| /** |
| * hrtimer_get_remaining - get remaining time for the timer |
| * |
| * @timer: the timer to read |
| */ |
| ktime_t hrtimer_get_remaining(const struct hrtimer *timer) |
| { |
| struct hrtimer_base *base; |
| unsigned long flags; |
| ktime_t rem; |
| |
| base = lock_hrtimer_base(timer, &flags); |
| rem = ktime_sub(timer->expires, timer->base->get_time()); |
| unlock_hrtimer_base(timer, &flags); |
| |
| return rem; |
| } |
| |
| #ifdef CONFIG_NO_IDLE_HZ |
| /** |
| * hrtimer_get_next_event - get the time until next expiry event |
| * |
| * Returns the delta to the next expiry event or KTIME_MAX if no timer |
| * is pending. |
| */ |
| ktime_t hrtimer_get_next_event(void) |
| { |
| struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); |
| ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; |
| unsigned long flags; |
| int i; |
| |
| for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) { |
| struct hrtimer *timer; |
| |
| spin_lock_irqsave(&base->lock, flags); |
| if (!base->first) { |
| spin_unlock_irqrestore(&base->lock, flags); |
| continue; |
| } |
| timer = rb_entry(base->first, struct hrtimer, node); |
| delta.tv64 = timer->expires.tv64; |
| spin_unlock_irqrestore(&base->lock, flags); |
| delta = ktime_sub(delta, base->get_time()); |
| if (delta.tv64 < mindelta.tv64) |
| mindelta.tv64 = delta.tv64; |
| } |
| if (mindelta.tv64 < 0) |
| mindelta.tv64 = 0; |
| return mindelta; |
| } |
| #endif |
| |
| /** |
| * hrtimer_init - initialize a timer to the given clock |
| * |
| * @timer: the timer to be initialized |
| * @clock_id: the clock to be used |
| * @mode: timer mode abs/rel |
| */ |
| void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| enum hrtimer_mode mode) |
| { |
| struct hrtimer_base *bases; |
| |
| memset(timer, 0, sizeof(struct hrtimer)); |
| |
| bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); |
| |
| if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS) |
| clock_id = CLOCK_MONOTONIC; |
| |
| timer->base = &bases[clock_id]; |
| timer->node.rb_parent = HRTIMER_INACTIVE; |
| } |
| |
| /** |
| * hrtimer_get_res - get the timer resolution for a clock |
| * |
| * @which_clock: which clock to query |
| * @tp: pointer to timespec variable to store the resolution |
| * |
| * Store the resolution of the clock selected by which_clock in the |
| * variable pointed to by tp. |
| */ |
| int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) |
| { |
| struct hrtimer_base *bases; |
| |
| bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); |
| *tp = ktime_to_timespec(bases[which_clock].resolution); |
| |
| return 0; |
| } |
| |
| /* |
| * Expire the per base hrtimer-queue: |
| */ |
| static inline void run_hrtimer_queue(struct hrtimer_base *base) |
| { |
| struct rb_node *node; |
| |
| if (!base->first) |
| return; |
| |
| if (base->get_softirq_time) |
| base->softirq_time = base->get_softirq_time(); |
| |
| spin_lock_irq(&base->lock); |
| |
| while ((node = base->first)) { |
| struct hrtimer *timer; |
| int (*fn)(struct hrtimer *); |
| int restart; |
| |
| timer = rb_entry(node, struct hrtimer, node); |
| if (base->softirq_time.tv64 <= timer->expires.tv64) |
| break; |
| |
| fn = timer->function; |
| set_curr_timer(base, timer); |
| __remove_hrtimer(timer, base); |
| spin_unlock_irq(&base->lock); |
| |
| restart = fn(timer); |
| |
| spin_lock_irq(&base->lock); |
| |
| if (restart != HRTIMER_NORESTART) { |
| BUG_ON(hrtimer_active(timer)); |
| enqueue_hrtimer(timer, base); |
| } |
| } |
| set_curr_timer(base, NULL); |
| spin_unlock_irq(&base->lock); |
| } |
| |
| /* |
| * Called from timer softirq every jiffy, expire hrtimers: |
| */ |
| void hrtimer_run_queues(void) |
| { |
| struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); |
| int i; |
| |
| hrtimer_get_softirq_time(base); |
| |
| for (i = 0; i < MAX_HRTIMER_BASES; i++) |
| run_hrtimer_queue(&base[i]); |
| } |
| |
| /* |
| * Sleep related functions: |
| */ |
| static int hrtimer_wakeup(struct hrtimer *timer) |
| { |
| struct hrtimer_sleeper *t = |
| container_of(timer, struct hrtimer_sleeper, timer); |
| struct task_struct *task = t->task; |
| |
| t->task = NULL; |
| if (task) |
| wake_up_process(task); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, task_t *task) |
| { |
| sl->timer.function = hrtimer_wakeup; |
| sl->task = task; |
| } |
| |
| static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
| { |
| hrtimer_init_sleeper(t, current); |
| |
| do { |
| set_current_state(TASK_INTERRUPTIBLE); |
| hrtimer_start(&t->timer, t->timer.expires, mode); |
| |
| schedule(); |
| |
| hrtimer_cancel(&t->timer); |
| mode = HRTIMER_ABS; |
| |
| } while (t->task && !signal_pending(current)); |
| |
| return t->task == NULL; |
| } |
| |
| static long __sched nanosleep_restart(struct restart_block *restart) |
| { |
| struct hrtimer_sleeper t; |
| struct timespec __user *rmtp; |
| struct timespec tu; |
| ktime_t time; |
| |
| restart->fn = do_no_restart_syscall; |
| |
| hrtimer_init(&t.timer, restart->arg3, HRTIMER_ABS); |
| t.timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0; |
| |
| if (do_nanosleep(&t, HRTIMER_ABS)) |
| return 0; |
| |
| rmtp = (struct timespec __user *) restart->arg2; |
| if (rmtp) { |
| time = ktime_sub(t.timer.expires, t.timer.base->get_time()); |
| if (time.tv64 <= 0) |
| return 0; |
| tu = ktime_to_timespec(time); |
| if (copy_to_user(rmtp, &tu, sizeof(tu))) |
| return -EFAULT; |
| } |
| |
| restart->fn = nanosleep_restart; |
| |
| /* The other values in restart are already filled in */ |
| return -ERESTART_RESTARTBLOCK; |
| } |
| |
| long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, |
| const enum hrtimer_mode mode, const clockid_t clockid) |
| { |
| struct restart_block *restart; |
| struct hrtimer_sleeper t; |
| struct timespec tu; |
| ktime_t rem; |
| |
| hrtimer_init(&t.timer, clockid, mode); |
| t.timer.expires = timespec_to_ktime(*rqtp); |
| if (do_nanosleep(&t, mode)) |
| return 0; |
| |
| /* Absolute timers do not update the rmtp value and restart: */ |
| if (mode == HRTIMER_ABS) |
| return -ERESTARTNOHAND; |
| |
| if (rmtp) { |
| rem = ktime_sub(t.timer.expires, t.timer.base->get_time()); |
| if (rem.tv64 <= 0) |
| return 0; |
| tu = ktime_to_timespec(rem); |
| if (copy_to_user(rmtp, &tu, sizeof(tu))) |
| return -EFAULT; |
| } |
| |
| restart = ¤t_thread_info()->restart_block; |
| restart->fn = nanosleep_restart; |
| restart->arg0 = t.timer.expires.tv64 & 0xFFFFFFFF; |
| restart->arg1 = t.timer.expires.tv64 >> 32; |
| restart->arg2 = (unsigned long) rmtp; |
| restart->arg3 = (unsigned long) t.timer.base->index; |
| |
| return -ERESTART_RESTARTBLOCK; |
| } |
| |
| asmlinkage long |
| sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) |
| { |
| struct timespec tu; |
| |
| if (copy_from_user(&tu, rqtp, sizeof(tu))) |
| return -EFAULT; |
| |
| if (!timespec_valid(&tu)) |
| return -EINVAL; |
| |
| return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC); |
| } |
| |
| /* |
| * Functions related to boot-time initialization: |
| */ |
| static void __devinit init_hrtimers_cpu(int cpu) |
| { |
| struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu); |
| int i; |
| |
| for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) |
| spin_lock_init(&base->lock); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static void migrate_hrtimer_list(struct hrtimer_base *old_base, |
| struct hrtimer_base *new_base) |
| { |
| struct hrtimer *timer; |
| struct rb_node *node; |
| |
| while ((node = rb_first(&old_base->active))) { |
| timer = rb_entry(node, struct hrtimer, node); |
| __remove_hrtimer(timer, old_base); |
| timer->base = new_base; |
| enqueue_hrtimer(timer, new_base); |
| } |
| } |
| |
| static void migrate_hrtimers(int cpu) |
| { |
| struct hrtimer_base *old_base, *new_base; |
| int i; |
| |
| BUG_ON(cpu_online(cpu)); |
| old_base = per_cpu(hrtimer_bases, cpu); |
| new_base = get_cpu_var(hrtimer_bases); |
| |
| local_irq_disable(); |
| |
| for (i = 0; i < MAX_HRTIMER_BASES; i++) { |
| |
| spin_lock(&new_base->lock); |
| spin_lock(&old_base->lock); |
| |
| BUG_ON(old_base->curr_timer); |
| |
| migrate_hrtimer_list(old_base, new_base); |
| |
| spin_unlock(&old_base->lock); |
| spin_unlock(&new_base->lock); |
| old_base++; |
| new_base++; |
| } |
| |
| local_irq_enable(); |
| put_cpu_var(hrtimer_bases); |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| static int __devinit hrtimer_cpu_notify(struct notifier_block *self, |
| unsigned long action, void *hcpu) |
| { |
| long cpu = (long)hcpu; |
| |
| switch (action) { |
| |
| case CPU_UP_PREPARE: |
| init_hrtimers_cpu(cpu); |
| break; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| case CPU_DEAD: |
| migrate_hrtimers(cpu); |
| break; |
| #endif |
| |
| default: |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block hrtimers_nb = { |
| .notifier_call = hrtimer_cpu_notify, |
| }; |
| |
| void __init hrtimers_init(void) |
| { |
| hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, |
| (void *)(long)smp_processor_id()); |
| register_cpu_notifier(&hrtimers_nb); |
| } |
| |