blob: cdcfd42843d46053deda8fe3863a67004079877a [file] [log] [blame]
/*
* omap_udc.c -- for OMAP full speed udc; most chips support OTG.
*
* Copyright (C) 2004 Texas Instruments, Inc.
* Copyright (C) 2004-2005 David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#undef DEBUG
#undef VERBOSE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/mm.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/usb_ch9.h>
#include <linux/usb_gadget.h>
#include <linux/usb/otg.h>
#include <linux/dma-mapping.h>
#include <linux/clk.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/system.h>
#include <asm/unaligned.h>
#include <asm/mach-types.h>
#include <asm/arch/dma.h>
#include <asm/arch/usb.h>
#include "omap_udc.h"
#undef USB_TRACE
/* bulk DMA seems to be behaving for both IN and OUT */
#define USE_DMA
/* FIXME: OMAP2 currently has some problem in DMA mode */
#ifdef CONFIG_ARCH_OMAP2
#undef USE_DMA
#endif
/* ISO too */
#define USE_ISO
#define DRIVER_DESC "OMAP UDC driver"
#define DRIVER_VERSION "4 October 2004"
#define DMA_ADDR_INVALID (~(dma_addr_t)0)
/*
* The OMAP UDC needs _very_ early endpoint setup: before enabling the
* D+ pullup to allow enumeration. That's too early for the gadget
* framework to use from usb_endpoint_enable(), which happens after
* enumeration as part of activating an interface. (But if we add an
* optional new "UDC not yet running" state to the gadget driver model,
* even just during driver binding, the endpoint autoconfig logic is the
* natural spot to manufacture new endpoints.)
*
* So instead of using endpoint enable calls to control the hardware setup,
* this driver defines a "fifo mode" parameter. It's used during driver
* initialization to choose among a set of pre-defined endpoint configs.
* See omap_udc_setup() for available modes, or to add others. That code
* lives in an init section, so use this driver as a module if you need
* to change the fifo mode after the kernel boots.
*
* Gadget drivers normally ignore endpoints they don't care about, and
* won't include them in configuration descriptors. That means only
* misbehaving hosts would even notice they exist.
*/
#ifdef USE_ISO
static unsigned fifo_mode = 3;
#else
static unsigned fifo_mode = 0;
#endif
/* "modprobe omap_udc fifo_mode=42", or else as a kernel
* boot parameter "omap_udc:fifo_mode=42"
*/
module_param (fifo_mode, uint, 0);
MODULE_PARM_DESC (fifo_mode, "endpoint configuration");
#ifdef USE_DMA
static unsigned use_dma = 1;
/* "modprobe omap_udc use_dma=y", or else as a kernel
* boot parameter "omap_udc:use_dma=y"
*/
module_param (use_dma, bool, 0);
MODULE_PARM_DESC (use_dma, "enable/disable DMA");
#else /* !USE_DMA */
/* save a bit of code */
#define use_dma 0
#endif /* !USE_DMA */
static const char driver_name [] = "omap_udc";
static const char driver_desc [] = DRIVER_DESC;
/*-------------------------------------------------------------------------*/
/* there's a notion of "current endpoint" for modifying endpoint
* state, and PIO access to its FIFO.
*/
static void use_ep(struct omap_ep *ep, u16 select)
{
u16 num = ep->bEndpointAddress & 0x0f;
if (ep->bEndpointAddress & USB_DIR_IN)
num |= UDC_EP_DIR;
UDC_EP_NUM_REG = num | select;
/* when select, MUST deselect later !! */
}
static inline void deselect_ep(void)
{
UDC_EP_NUM_REG &= ~UDC_EP_SEL;
/* 6 wait states before TX will happen */
}
static void dma_channel_claim(struct omap_ep *ep, unsigned preferred);
/*-------------------------------------------------------------------------*/
static int omap_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct omap_ep *ep = container_of(_ep, struct omap_ep, ep);
struct omap_udc *udc;
unsigned long flags;
u16 maxp;
/* catch various bogus parameters */
if (!_ep || !desc || ep->desc
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| ep->bEndpointAddress != desc->bEndpointAddress
|| ep->maxpacket < le16_to_cpu
(desc->wMaxPacketSize)) {
DBG("%s, bad ep or descriptor\n", __FUNCTION__);
return -EINVAL;
}
maxp = le16_to_cpu (desc->wMaxPacketSize);
if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
&& maxp != ep->maxpacket)
|| le16_to_cpu(desc->wMaxPacketSize) > ep->maxpacket
|| !desc->wMaxPacketSize) {
DBG("%s, bad %s maxpacket\n", __FUNCTION__, _ep->name);
return -ERANGE;
}
#ifdef USE_ISO
if ((desc->bmAttributes == USB_ENDPOINT_XFER_ISOC
&& desc->bInterval != 1)) {
/* hardware wants period = 1; USB allows 2^(Interval-1) */
DBG("%s, unsupported ISO period %dms\n", _ep->name,
1 << (desc->bInterval - 1));
return -EDOM;
}
#else
if (desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
DBG("%s, ISO nyet\n", _ep->name);
return -EDOM;
}
#endif
/* xfer types must match, except that interrupt ~= bulk */
if (ep->bmAttributes != desc->bmAttributes
&& ep->bmAttributes != USB_ENDPOINT_XFER_BULK
&& desc->bmAttributes != USB_ENDPOINT_XFER_INT) {
DBG("%s, %s type mismatch\n", __FUNCTION__, _ep->name);
return -EINVAL;
}
udc = ep->udc;
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
DBG("%s, bogus device state\n", __FUNCTION__);
return -ESHUTDOWN;
}
spin_lock_irqsave(&udc->lock, flags);
ep->desc = desc;
ep->irqs = 0;
ep->stopped = 0;
ep->ep.maxpacket = maxp;
/* set endpoint to initial state */
ep->dma_channel = 0;
ep->has_dma = 0;
ep->lch = -1;
use_ep(ep, UDC_EP_SEL);
UDC_CTRL_REG = udc->clr_halt;
ep->ackwait = 0;
deselect_ep();
if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC)
list_add(&ep->iso, &udc->iso);
/* maybe assign a DMA channel to this endpoint */
if (use_dma && desc->bmAttributes == USB_ENDPOINT_XFER_BULK)
/* FIXME ISO can dma, but prefers first channel */
dma_channel_claim(ep, 0);
/* PIO OUT may RX packets */
if (desc->bmAttributes != USB_ENDPOINT_XFER_ISOC
&& !ep->has_dma
&& !(ep->bEndpointAddress & USB_DIR_IN)) {
UDC_CTRL_REG = UDC_SET_FIFO_EN;
ep->ackwait = 1 + ep->double_buf;
}
spin_unlock_irqrestore(&udc->lock, flags);
VDBG("%s enabled\n", _ep->name);
return 0;
}
static void nuke(struct omap_ep *, int status);
static int omap_ep_disable(struct usb_ep *_ep)
{
struct omap_ep *ep = container_of(_ep, struct omap_ep, ep);
unsigned long flags;
if (!_ep || !ep->desc) {
DBG("%s, %s not enabled\n", __FUNCTION__,
_ep ? ep->ep.name : NULL);
return -EINVAL;
}
spin_lock_irqsave(&ep->udc->lock, flags);
ep->desc = NULL;
nuke (ep, -ESHUTDOWN);
ep->ep.maxpacket = ep->maxpacket;
ep->has_dma = 0;
UDC_CTRL_REG = UDC_SET_HALT;
list_del_init(&ep->iso);
del_timer(&ep->timer);
spin_unlock_irqrestore(&ep->udc->lock, flags);
VDBG("%s disabled\n", _ep->name);
return 0;
}
/*-------------------------------------------------------------------------*/
static struct usb_request *
omap_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
{
struct omap_req *req;
req = kzalloc(sizeof(*req), gfp_flags);
if (req) {
req->req.dma = DMA_ADDR_INVALID;
INIT_LIST_HEAD (&req->queue);
}
return &req->req;
}
static void
omap_free_request(struct usb_ep *ep, struct usb_request *_req)
{
struct omap_req *req = container_of(_req, struct omap_req, req);
if (_req)
kfree (req);
}
/*-------------------------------------------------------------------------*/
static void *
omap_alloc_buffer(
struct usb_ep *_ep,
unsigned bytes,
dma_addr_t *dma,
gfp_t gfp_flags
)
{
void *retval;
struct omap_ep *ep;
ep = container_of(_ep, struct omap_ep, ep);
if (use_dma && ep->has_dma) {
static int warned;
if (!warned && bytes < PAGE_SIZE) {
dev_warn(ep->udc->gadget.dev.parent,
"using dma_alloc_coherent for "
"small allocations wastes memory\n");
warned++;
}
return dma_alloc_coherent(ep->udc->gadget.dev.parent,
bytes, dma, gfp_flags);
}
retval = kmalloc(bytes, gfp_flags);
if (retval)
*dma = virt_to_phys(retval);
return retval;
}
static void omap_free_buffer(
struct usb_ep *_ep,
void *buf,
dma_addr_t dma,
unsigned bytes
)
{
struct omap_ep *ep;
ep = container_of(_ep, struct omap_ep, ep);
if (use_dma && _ep && ep->has_dma)
dma_free_coherent(ep->udc->gadget.dev.parent, bytes, buf, dma);
else
kfree (buf);
}
/*-------------------------------------------------------------------------*/
static void
done(struct omap_ep *ep, struct omap_req *req, int status)
{
unsigned stopped = ep->stopped;
list_del_init(&req->queue);
if (req->req.status == -EINPROGRESS)
req->req.status = status;
else
status = req->req.status;
if (use_dma && ep->has_dma) {
if (req->mapped) {
dma_unmap_single(ep->udc->gadget.dev.parent,
req->req.dma, req->req.length,
(ep->bEndpointAddress & USB_DIR_IN)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
req->req.dma = DMA_ADDR_INVALID;
req->mapped = 0;
} else
dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
req->req.dma, req->req.length,
(ep->bEndpointAddress & USB_DIR_IN)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
}
#ifndef USB_TRACE
if (status && status != -ESHUTDOWN)
#endif
VDBG("complete %s req %p stat %d len %u/%u\n",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
/* don't modify queue heads during completion callback */
ep->stopped = 1;
spin_unlock(&ep->udc->lock);
req->req.complete(&ep->ep, &req->req);
spin_lock(&ep->udc->lock);
ep->stopped = stopped;
}
/*-------------------------------------------------------------------------*/
#define UDC_FIFO_FULL (UDC_NON_ISO_FIFO_FULL | UDC_ISO_FIFO_FULL)
#define UDC_FIFO_UNWRITABLE (UDC_EP_HALTED | UDC_FIFO_FULL)
#define FIFO_EMPTY (UDC_NON_ISO_FIFO_EMPTY | UDC_ISO_FIFO_EMPTY)
#define FIFO_UNREADABLE (UDC_EP_HALTED | FIFO_EMPTY)
static inline int
write_packet(u8 *buf, struct omap_req *req, unsigned max)
{
unsigned len;
u16 *wp;
len = min(req->req.length - req->req.actual, max);
req->req.actual += len;
max = len;
if (likely((((int)buf) & 1) == 0)) {
wp = (u16 *)buf;
while (max >= 2) {
UDC_DATA_REG = *wp++;
max -= 2;
}
buf = (u8 *)wp;
}
while (max--)
*(volatile u8 *)&UDC_DATA_REG = *buf++;
return len;
}
// FIXME change r/w fifo calling convention
// return: 0 = still running, 1 = completed, negative = errno
static int write_fifo(struct omap_ep *ep, struct omap_req *req)
{
u8 *buf;
unsigned count;
int is_last;
u16 ep_stat;
buf = req->req.buf + req->req.actual;
prefetch(buf);
/* PIO-IN isn't double buffered except for iso */
ep_stat = UDC_STAT_FLG_REG;
if (ep_stat & UDC_FIFO_UNWRITABLE)
return 0;
count = ep->ep.maxpacket;
count = write_packet(buf, req, count);
UDC_CTRL_REG = UDC_SET_FIFO_EN;
ep->ackwait = 1;
/* last packet is often short (sometimes a zlp) */
if (count != ep->ep.maxpacket)
is_last = 1;
else if (req->req.length == req->req.actual
&& !req->req.zero)
is_last = 1;
else
is_last = 0;
/* NOTE: requests complete when all IN data is in a
* FIFO (or sometimes later, if a zlp was needed).
* Use usb_ep_fifo_status() where needed.
*/
if (is_last)
done(ep, req, 0);
return is_last;
}
static inline int
read_packet(u8 *buf, struct omap_req *req, unsigned avail)
{
unsigned len;
u16 *wp;
len = min(req->req.length - req->req.actual, avail);
req->req.actual += len;
avail = len;
if (likely((((int)buf) & 1) == 0)) {
wp = (u16 *)buf;
while (avail >= 2) {
*wp++ = UDC_DATA_REG;
avail -= 2;
}
buf = (u8 *)wp;
}
while (avail--)
*buf++ = *(volatile u8 *)&UDC_DATA_REG;
return len;
}
// return: 0 = still running, 1 = queue empty, negative = errno
static int read_fifo(struct omap_ep *ep, struct omap_req *req)
{
u8 *buf;
unsigned count, avail;
int is_last;
buf = req->req.buf + req->req.actual;
prefetchw(buf);
for (;;) {
u16 ep_stat = UDC_STAT_FLG_REG;
is_last = 0;
if (ep_stat & FIFO_EMPTY) {
if (!ep->double_buf)
break;
ep->fnf = 1;
}
if (ep_stat & UDC_EP_HALTED)
break;
if (ep_stat & UDC_FIFO_FULL)
avail = ep->ep.maxpacket;
else {
avail = UDC_RXFSTAT_REG;
ep->fnf = ep->double_buf;
}
count = read_packet(buf, req, avail);
/* partial packet reads may not be errors */
if (count < ep->ep.maxpacket) {
is_last = 1;
/* overflowed this request? flush extra data */
if (count != avail) {
req->req.status = -EOVERFLOW;
avail -= count;
while (avail--)
(void) *(volatile u8 *)&UDC_DATA_REG;
}
} else if (req->req.length == req->req.actual)
is_last = 1;
else
is_last = 0;
if (!ep->bEndpointAddress)
break;
if (is_last)
done(ep, req, 0);
break;
}
return is_last;
}
/*-------------------------------------------------------------------------*/
static inline dma_addr_t dma_csac(unsigned lch)
{
dma_addr_t csac;
/* omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
* read before the DMA controller finished disabling the channel.
*/
csac = OMAP_DMA_CSAC_REG(lch);
if (csac == 0)
csac = OMAP_DMA_CSAC_REG(lch);
return csac;
}
static inline dma_addr_t dma_cdac(unsigned lch)
{
dma_addr_t cdac;
/* omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
* read before the DMA controller finished disabling the channel.
*/
cdac = OMAP_DMA_CDAC_REG(lch);
if (cdac == 0)
cdac = OMAP_DMA_CDAC_REG(lch);
return cdac;
}
static u16 dma_src_len(struct omap_ep *ep, dma_addr_t start)
{
dma_addr_t end;
/* IN-DMA needs this on fault/cancel paths, so 15xx misreports
* the last transfer's bytecount by more than a FIFO's worth.
*/
if (cpu_is_omap15xx())
return 0;
end = dma_csac(ep->lch);
if (end == ep->dma_counter)
return 0;
end |= start & (0xffff << 16);
if (end < start)
end += 0x10000;
return end - start;
}
#define DMA_DEST_LAST(x) (cpu_is_omap15xx() \
? OMAP_DMA_CSAC_REG(x) /* really: CPC */ \
: dma_cdac(x))
static u16 dma_dest_len(struct omap_ep *ep, dma_addr_t start)
{
dma_addr_t end;
end = DMA_DEST_LAST(ep->lch);
if (end == ep->dma_counter)
return 0;
end |= start & (0xffff << 16);
if (cpu_is_omap15xx())
end++;
if (end < start)
end += 0x10000;
return end - start;
}
/* Each USB transfer request using DMA maps to one or more DMA transfers.
* When DMA completion isn't request completion, the UDC continues with
* the next DMA transfer for that USB transfer.
*/
static void next_in_dma(struct omap_ep *ep, struct omap_req *req)
{
u16 txdma_ctrl;
unsigned length = req->req.length - req->req.actual;
const int sync_mode = cpu_is_omap15xx()
? OMAP_DMA_SYNC_FRAME
: OMAP_DMA_SYNC_ELEMENT;
/* measure length in either bytes or packets */
if ((cpu_is_omap16xx() && length <= UDC_TXN_TSC)
|| (cpu_is_omap15xx() && length < ep->maxpacket)) {
txdma_ctrl = UDC_TXN_EOT | length;
omap_set_dma_transfer_params(ep->lch, OMAP_DMA_DATA_TYPE_S8,
length, 1, sync_mode, 0, 0);
} else {
length = min(length / ep->maxpacket,
(unsigned) UDC_TXN_TSC + 1);
txdma_ctrl = length;
omap_set_dma_transfer_params(ep->lch, OMAP_DMA_DATA_TYPE_S16,
ep->ep.maxpacket >> 1, length, sync_mode,
0, 0);
length *= ep->maxpacket;
}
omap_set_dma_src_params(ep->lch, OMAP_DMA_PORT_EMIFF,
OMAP_DMA_AMODE_POST_INC, req->req.dma + req->req.actual,
0, 0);
omap_start_dma(ep->lch);
ep->dma_counter = dma_csac(ep->lch);
UDC_DMA_IRQ_EN_REG |= UDC_TX_DONE_IE(ep->dma_channel);
UDC_TXDMA_REG(ep->dma_channel) = UDC_TXN_START | txdma_ctrl;
req->dma_bytes = length;
}
static void finish_in_dma(struct omap_ep *ep, struct omap_req *req, int status)
{
if (status == 0) {
req->req.actual += req->dma_bytes;
/* return if this request needs to send data or zlp */
if (req->req.actual < req->req.length)
return;
if (req->req.zero
&& req->dma_bytes != 0
&& (req->req.actual % ep->maxpacket) == 0)
return;
} else
req->req.actual += dma_src_len(ep, req->req.dma
+ req->req.actual);
/* tx completion */
omap_stop_dma(ep->lch);
UDC_DMA_IRQ_EN_REG &= ~UDC_TX_DONE_IE(ep->dma_channel);
done(ep, req, status);
}
static void next_out_dma(struct omap_ep *ep, struct omap_req *req)
{
unsigned packets;
/* NOTE: we filtered out "short reads" before, so we know
* the buffer has only whole numbers of packets.
*/
/* set up this DMA transfer, enable the fifo, start */
packets = (req->req.length - req->req.actual) / ep->ep.maxpacket;
packets = min(packets, (unsigned)UDC_RXN_TC + 1);
req->dma_bytes = packets * ep->ep.maxpacket;
omap_set_dma_transfer_params(ep->lch, OMAP_DMA_DATA_TYPE_S16,
ep->ep.maxpacket >> 1, packets,
OMAP_DMA_SYNC_ELEMENT,
0, 0);
omap_set_dma_dest_params(ep->lch, OMAP_DMA_PORT_EMIFF,
OMAP_DMA_AMODE_POST_INC, req->req.dma + req->req.actual,
0, 0);
ep->dma_counter = DMA_DEST_LAST(ep->lch);
UDC_RXDMA_REG(ep->dma_channel) = UDC_RXN_STOP | (packets - 1);
UDC_DMA_IRQ_EN_REG |= UDC_RX_EOT_IE(ep->dma_channel);
UDC_EP_NUM_REG = (ep->bEndpointAddress & 0xf);
UDC_CTRL_REG = UDC_SET_FIFO_EN;
omap_start_dma(ep->lch);
}
static void
finish_out_dma(struct omap_ep *ep, struct omap_req *req, int status, int one)
{
u16 count;
if (status == 0)
ep->dma_counter = (u16) (req->req.dma + req->req.actual);
count = dma_dest_len(ep, req->req.dma + req->req.actual);
count += req->req.actual;
if (one)
count--;
if (count <= req->req.length)
req->req.actual = count;
if (count != req->dma_bytes || status)
omap_stop_dma(ep->lch);
/* if this wasn't short, request may need another transfer */
else if (req->req.actual < req->req.length)
return;
/* rx completion */
UDC_DMA_IRQ_EN_REG &= ~UDC_RX_EOT_IE(ep->dma_channel);
done(ep, req, status);
}
static void dma_irq(struct omap_udc *udc, u16 irq_src)
{
u16 dman_stat = UDC_DMAN_STAT_REG;
struct omap_ep *ep;
struct omap_req *req;
/* IN dma: tx to host */
if (irq_src & UDC_TXN_DONE) {
ep = &udc->ep[16 + UDC_DMA_TX_SRC(dman_stat)];
ep->irqs++;
/* can see TXN_DONE after dma abort */
if (!list_empty(&ep->queue)) {
req = container_of(ep->queue.next,
struct omap_req, queue);
finish_in_dma(ep, req, 0);
}
UDC_IRQ_SRC_REG = UDC_TXN_DONE;
if (!list_empty (&ep->queue)) {
req = container_of(ep->queue.next,
struct omap_req, queue);
next_in_dma(ep, req);
}
}
/* OUT dma: rx from host */
if (irq_src & UDC_RXN_EOT) {
ep = &udc->ep[UDC_DMA_RX_SRC(dman_stat)];
ep->irqs++;
/* can see RXN_EOT after dma abort */
if (!list_empty(&ep->queue)) {
req = container_of(ep->queue.next,
struct omap_req, queue);
finish_out_dma(ep, req, 0, dman_stat & UDC_DMA_RX_SB);
}
UDC_IRQ_SRC_REG = UDC_RXN_EOT;
if (!list_empty (&ep->queue)) {
req = container_of(ep->queue.next,
struct omap_req, queue);
next_out_dma(ep, req);
}
}
if (irq_src & UDC_RXN_CNT) {
ep = &udc->ep[UDC_DMA_RX_SRC(dman_stat)];
ep->irqs++;
/* omap15xx does this unasked... */
VDBG("%s, RX_CNT irq?\n", ep->ep.name);
UDC_IRQ_SRC_REG = UDC_RXN_CNT;
}
}
static void dma_error(int lch, u16 ch_status, void *data)
{
struct omap_ep *ep = data;
/* if ch_status & OMAP_DMA_DROP_IRQ ... */
/* if ch_status & OMAP1_DMA_TOUT_IRQ ... */
ERR("%s dma error, lch %d status %02x\n", ep->ep.name, lch, ch_status);
/* complete current transfer ... */
}
static void dma_channel_claim(struct omap_ep *ep, unsigned channel)
{
u16 reg;
int status, restart, is_in;
is_in = ep->bEndpointAddress & USB_DIR_IN;
if (is_in)
reg = UDC_TXDMA_CFG_REG;
else
reg = UDC_RXDMA_CFG_REG;
reg |= UDC_DMA_REQ; /* "pulse" activated */
ep->dma_channel = 0;
ep->lch = -1;
if (channel == 0 || channel > 3) {
if ((reg & 0x0f00) == 0)
channel = 3;
else if ((reg & 0x00f0) == 0)
channel = 2;
else if ((reg & 0x000f) == 0) /* preferred for ISO */
channel = 1;
else {
status = -EMLINK;
goto just_restart;
}
}
reg |= (0x0f & ep->bEndpointAddress) << (4 * (channel - 1));
ep->dma_channel = channel;
if (is_in) {
status = omap_request_dma(OMAP_DMA_USB_W2FC_TX0 - 1 + channel,
ep->ep.name, dma_error, ep, &ep->lch);
if (status == 0) {
UDC_TXDMA_CFG_REG = reg;
/* EMIFF */
omap_set_dma_src_burst_mode(ep->lch,
OMAP_DMA_DATA_BURST_4);
omap_set_dma_src_data_pack(ep->lch, 1);
/* TIPB */
omap_set_dma_dest_params(ep->lch,
OMAP_DMA_PORT_TIPB,
OMAP_DMA_AMODE_CONSTANT,
(unsigned long) io_v2p((u32)&UDC_DATA_DMA_REG),
0, 0);
}
} else {
status = omap_request_dma(OMAP_DMA_USB_W2FC_RX0 - 1 + channel,
ep->ep.name, dma_error, ep, &ep->lch);
if (status == 0) {
UDC_RXDMA_CFG_REG = reg;
/* TIPB */
omap_set_dma_src_params(ep->lch,
OMAP_DMA_PORT_TIPB,
OMAP_DMA_AMODE_CONSTANT,
(unsigned long) io_v2p((u32)&UDC_DATA_DMA_REG),
0, 0);
/* EMIFF */
omap_set_dma_dest_burst_mode(ep->lch,
OMAP_DMA_DATA_BURST_4);
omap_set_dma_dest_data_pack(ep->lch, 1);
}
}
if (status)
ep->dma_channel = 0;
else {
ep->has_dma = 1;
omap_disable_dma_irq(ep->lch, OMAP_DMA_BLOCK_IRQ);
/* channel type P: hw synch (fifo) */
if (!cpu_is_omap15xx())
OMAP1_DMA_LCH_CTRL_REG(ep->lch) = 2;
}
just_restart:
/* restart any queue, even if the claim failed */
restart = !ep->stopped && !list_empty(&ep->queue);
if (status)
DBG("%s no dma channel: %d%s\n", ep->ep.name, status,
restart ? " (restart)" : "");
else
DBG("%s claimed %cxdma%d lch %d%s\n", ep->ep.name,
is_in ? 't' : 'r',
ep->dma_channel - 1, ep->lch,
restart ? " (restart)" : "");
if (restart) {
struct omap_req *req;
req = container_of(ep->queue.next, struct omap_req, queue);
if (ep->has_dma)
(is_in ? next_in_dma : next_out_dma)(ep, req);
else {
use_ep(ep, UDC_EP_SEL);
(is_in ? write_fifo : read_fifo)(ep, req);
deselect_ep();
if (!is_in) {
UDC_CTRL_REG = UDC_SET_FIFO_EN;
ep->ackwait = 1 + ep->double_buf;
}
/* IN: 6 wait states before it'll tx */
}
}
}
static void dma_channel_release(struct omap_ep *ep)
{
int shift = 4 * (ep->dma_channel - 1);
u16 mask = 0x0f << shift;
struct omap_req *req;
int active;
/* abort any active usb transfer request */
if (!list_empty(&ep->queue))
req = container_of(ep->queue.next, struct omap_req, queue);
else
req = NULL;
active = ((1 << 7) & OMAP_DMA_CCR_REG(ep->lch)) != 0;
DBG("%s release %s %cxdma%d %p\n", ep->ep.name,
active ? "active" : "idle",
(ep->bEndpointAddress & USB_DIR_IN) ? 't' : 'r',
ep->dma_channel - 1, req);
/* NOTE: re-setting RX_REQ/TX_REQ because of a chip bug (before
* OMAP 1710 ES2.0) where reading the DMA_CFG can clear them.
*/
/* wait till current packet DMA finishes, and fifo empties */
if (ep->bEndpointAddress & USB_DIR_IN) {
UDC_TXDMA_CFG_REG = (UDC_TXDMA_CFG_REG & ~mask) | UDC_DMA_REQ;
if (req) {
finish_in_dma(ep, req, -ECONNRESET);
/* clear FIFO; hosts probably won't empty it */
use_ep(ep, UDC_EP_SEL);
UDC_CTRL_REG = UDC_CLR_EP;
deselect_ep();
}
while (UDC_TXDMA_CFG_REG & mask)
udelay(10);
} else {
UDC_RXDMA_CFG_REG = (UDC_RXDMA_CFG_REG & ~mask) | UDC_DMA_REQ;
/* dma empties the fifo */
while (UDC_RXDMA_CFG_REG & mask)
udelay(10);
if (req)
finish_out_dma(ep, req, -ECONNRESET, 0);
}
omap_free_dma(ep->lch);
ep->dma_channel = 0;
ep->lch = -1;
/* has_dma still set, till endpoint is fully quiesced */
}
/*-------------------------------------------------------------------------*/
static int
omap_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct omap_ep *ep = container_of(_ep, struct omap_ep, ep);
struct omap_req *req = container_of(_req, struct omap_req, req);
struct omap_udc *udc;
unsigned long flags;
int is_iso = 0;
/* catch various bogus parameters */
if (!_req || !req->req.complete || !req->req.buf
|| !list_empty(&req->queue)) {
DBG("%s, bad params\n", __FUNCTION__);
return -EINVAL;
}
if (!_ep || (!ep->desc && ep->bEndpointAddress)) {
DBG("%s, bad ep\n", __FUNCTION__);
return -EINVAL;
}
if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
if (req->req.length > ep->ep.maxpacket)
return -EMSGSIZE;
is_iso = 1;
}
/* this isn't bogus, but OMAP DMA isn't the only hardware to
* have a hard time with partial packet reads... reject it.
*/
if (use_dma
&& ep->has_dma
&& ep->bEndpointAddress != 0
&& (ep->bEndpointAddress & USB_DIR_IN) == 0
&& (req->req.length % ep->ep.maxpacket) != 0) {
DBG("%s, no partial packet OUT reads\n", __FUNCTION__);
return -EMSGSIZE;
}
udc = ep->udc;
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
if (use_dma && ep->has_dma) {
if (req->req.dma == DMA_ADDR_INVALID) {
req->req.dma = dma_map_single(
ep->udc->gadget.dev.parent,
req->req.buf,
req->req.length,
(ep->bEndpointAddress & USB_DIR_IN)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
req->mapped = 1;
} else {
dma_sync_single_for_device(
ep->udc->gadget.dev.parent,
req->req.dma, req->req.length,
(ep->bEndpointAddress & USB_DIR_IN)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
req->mapped = 0;
}
}
VDBG("%s queue req %p, len %d buf %p\n",
ep->ep.name, _req, _req->length, _req->buf);
spin_lock_irqsave(&udc->lock, flags);
req->req.status = -EINPROGRESS;
req->req.actual = 0;
/* maybe kickstart non-iso i/o queues */
if (is_iso)
UDC_IRQ_EN_REG |= UDC_SOF_IE;
else if (list_empty(&ep->queue) && !ep->stopped && !ep->ackwait) {
int is_in;
if (ep->bEndpointAddress == 0) {
if (!udc->ep0_pending || !list_empty (&ep->queue)) {
spin_unlock_irqrestore(&udc->lock, flags);
return -EL2HLT;
}
/* empty DATA stage? */
is_in = udc->ep0_in;
if (!req->req.length) {
/* chip became CONFIGURED or ADDRESSED
* earlier; drivers may already have queued
* requests to non-control endpoints
*/
if (udc->ep0_set_config) {
u16 irq_en = UDC_IRQ_EN_REG;
irq_en |= UDC_DS_CHG_IE | UDC_EP0_IE;
if (!udc->ep0_reset_config)
irq_en |= UDC_EPN_RX_IE
| UDC_EPN_TX_IE;
UDC_IRQ_EN_REG = irq_en;
}
/* STATUS for zero length DATA stages is
* always an IN ... even for IN transfers,
* a wierd case which seem to stall OMAP.
*/
UDC_EP_NUM_REG = (UDC_EP_SEL|UDC_EP_DIR);
UDC_CTRL_REG = UDC_CLR_EP;
UDC_CTRL_REG = UDC_SET_FIFO_EN;
UDC_EP_NUM_REG = UDC_EP_DIR;
/* cleanup */
udc->ep0_pending = 0;
done(ep, req, 0);
req = NULL;
/* non-empty DATA stage */
} else if (is_in) {
UDC_EP_NUM_REG = UDC_EP_SEL|UDC_EP_DIR;
} else {
if (udc->ep0_setup)
goto irq_wait;
UDC_EP_NUM_REG = UDC_EP_SEL;
}
} else {
is_in = ep->bEndpointAddress & USB_DIR_IN;
if (!ep->has_dma)
use_ep(ep, UDC_EP_SEL);
/* if ISO: SOF IRQs must be enabled/disabled! */
}
if (ep->has_dma)
(is_in ? next_in_dma : next_out_dma)(ep, req);
else if (req) {
if ((is_in ? write_fifo : read_fifo)(ep, req) == 1)
req = NULL;
deselect_ep();
if (!is_in) {
UDC_CTRL_REG = UDC_SET_FIFO_EN;
ep->ackwait = 1 + ep->double_buf;
}
/* IN: 6 wait states before it'll tx */
}
}
irq_wait:
/* irq handler advances the queue */
if (req != NULL)
list_add_tail(&req->queue, &ep->queue);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int omap_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct omap_ep *ep = container_of(_ep, struct omap_ep, ep);
struct omap_req *req;
unsigned long flags;
if (!_ep || !_req)
return -EINVAL;
spin_lock_irqsave(&ep->udc->lock, flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry (req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
spin_unlock_irqrestore(&ep->udc->lock, flags);
return -EINVAL;
}
if (use_dma && ep->dma_channel && ep->queue.next == &req->queue) {
int channel = ep->dma_channel;
/* releasing the channel cancels the request,
* reclaiming the channel restarts the queue
*/
dma_channel_release(ep);
dma_channel_claim(ep, channel);
} else
done(ep, req, -ECONNRESET);
spin_unlock_irqrestore(&ep->udc->lock, flags);
return 0;
}
/*-------------------------------------------------------------------------*/
static int omap_ep_set_halt(struct usb_ep *_ep, int value)
{
struct omap_ep *ep = container_of(_ep, struct omap_ep, ep);
unsigned long flags;
int status = -EOPNOTSUPP;
spin_lock_irqsave(&ep->udc->lock, flags);
/* just use protocol stalls for ep0; real halts are annoying */
if (ep->bEndpointAddress == 0) {
if (!ep->udc->ep0_pending)
status = -EINVAL;
else if (value) {
if (ep->udc->ep0_set_config) {
WARN("error changing config?\n");
UDC_SYSCON2_REG = UDC_CLR_CFG;
}
UDC_SYSCON2_REG = UDC_STALL_CMD;
ep->udc->ep0_pending = 0;
status = 0;
} else /* NOP */
status = 0;
/* otherwise, all active non-ISO endpoints can halt */
} else if (ep->bmAttributes != USB_ENDPOINT_XFER_ISOC && ep->desc) {
/* IN endpoints must already be idle */
if ((ep->bEndpointAddress & USB_DIR_IN)
&& !list_empty(&ep->queue)) {
status = -EAGAIN;
goto done;
}
if (value) {
int channel;
if (use_dma && ep->dma_channel
&& !list_empty(&ep->queue)) {
channel = ep->dma_channel;
dma_channel_release(ep);
} else
channel = 0;
use_ep(ep, UDC_EP_SEL);
if (UDC_STAT_FLG_REG & UDC_NON_ISO_FIFO_EMPTY) {
UDC_CTRL_REG = UDC_SET_HALT;
status = 0;
} else
status = -EAGAIN;
deselect_ep();
if (channel)
dma_channel_claim(ep, channel);
} else {
use_ep(ep, 0);
UDC_CTRL_REG = ep->udc->clr_halt;
ep->ackwait = 0;
if (!(ep->bEndpointAddress & USB_DIR_IN)) {
UDC_CTRL_REG = UDC_SET_FIFO_EN;
ep->ackwait = 1 + ep->double_buf;
}
}
}
done:
VDBG("%s %s halt stat %d\n", ep->ep.name,
value ? "set" : "clear", status);
spin_unlock_irqrestore(&ep->udc->lock, flags);
return status;
}
static struct usb_ep_ops omap_ep_ops = {
.enable = omap_ep_enable,
.disable = omap_ep_disable,
.alloc_request = omap_alloc_request,
.free_request = omap_free_request,
.alloc_buffer = omap_alloc_buffer,
.free_buffer = omap_free_buffer,
.queue = omap_ep_queue,
.dequeue = omap_ep_dequeue,
.set_halt = omap_ep_set_halt,
// fifo_status ... report bytes in fifo
// fifo_flush ... flush fifo
};
/*-------------------------------------------------------------------------*/
static int omap_get_frame(struct usb_gadget *gadget)
{
u16 sof = UDC_SOF_REG;
return (sof & UDC_TS_OK) ? (sof & UDC_TS) : -EL2NSYNC;
}
static int omap_wakeup(struct usb_gadget *gadget)
{
struct omap_udc *udc;
unsigned long flags;
int retval = -EHOSTUNREACH;
udc = container_of(gadget, struct omap_udc, gadget);
spin_lock_irqsave(&udc->lock, flags);
if (udc->devstat & UDC_SUS) {
/* NOTE: OTG spec erratum says that OTG devices may
* issue wakeups without host enable.
*/
if (udc->devstat & (UDC_B_HNP_ENABLE|UDC_R_WK_OK)) {
DBG("remote wakeup...\n");
UDC_SYSCON2_REG = UDC_RMT_WKP;
retval = 0;
}
/* NOTE: non-OTG systems may use SRP TOO... */
} else if (!(udc->devstat & UDC_ATT)) {
if (udc->transceiver)
retval = otg_start_srp(udc->transceiver);
}
spin_unlock_irqrestore(&udc->lock, flags);
return retval;
}
static int
omap_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered)
{
struct omap_udc *udc;
unsigned long flags;
u16 syscon1;
udc = container_of(gadget, struct omap_udc, gadget);
spin_lock_irqsave(&udc->lock, flags);
syscon1 = UDC_SYSCON1_REG;
if (is_selfpowered)
syscon1 |= UDC_SELF_PWR;
else
syscon1 &= ~UDC_SELF_PWR;
UDC_SYSCON1_REG = syscon1;
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int can_pullup(struct omap_udc *udc)
{
return udc->driver && udc->softconnect && udc->vbus_active;
}
static void pullup_enable(struct omap_udc *udc)
{
udc->gadget.dev.parent->power.power_state = PMSG_ON;
udc->gadget.dev.power.power_state = PMSG_ON;
UDC_SYSCON1_REG |= UDC_PULLUP_EN;
#ifndef CONFIG_USB_OTG
if (!cpu_is_omap15xx())
OTG_CTRL_REG |= OTG_BSESSVLD;
#endif
UDC_IRQ_EN_REG = UDC_DS_CHG_IE;
}
static void pullup_disable(struct omap_udc *udc)
{
#ifndef CONFIG_USB_OTG
if (!cpu_is_omap15xx())
OTG_CTRL_REG &= ~OTG_BSESSVLD;
#endif
UDC_IRQ_EN_REG = UDC_DS_CHG_IE;
UDC_SYSCON1_REG &= ~UDC_PULLUP_EN;
}
static struct omap_udc *udc;
static void omap_udc_enable_clock(int enable)
{
if (udc == NULL || udc->dc_clk == NULL || udc->hhc_clk == NULL)
return;
if (enable) {
clk_enable(udc->dc_clk);
clk_enable(udc->hhc_clk);
udelay(100);
} else {
clk_disable(udc->hhc_clk);
clk_disable(udc->dc_clk);
}
}
/*
* Called by whatever detects VBUS sessions: external transceiver
* driver, or maybe GPIO0 VBUS IRQ. May request 48 MHz clock.
*/
static int omap_vbus_session(struct usb_gadget *gadget, int is_active)
{
struct omap_udc *udc;
unsigned long flags;
udc = container_of(gadget, struct omap_udc, gadget);
spin_lock_irqsave(&udc->lock, flags);
VDBG("VBUS %s\n", is_active ? "on" : "off");
udc->vbus_active = (is_active != 0);
if (cpu_is_omap15xx()) {
/* "software" detect, ignored if !VBUS_MODE_1510 */
if (is_active)
FUNC_MUX_CTRL_0_REG |= VBUS_CTRL_1510;
else
FUNC_MUX_CTRL_0_REG &= ~VBUS_CTRL_1510;
}
if (udc->dc_clk != NULL && is_active) {
if (!udc->clk_requested) {
omap_udc_enable_clock(1);
udc->clk_requested = 1;
}
}
if (can_pullup(udc))
pullup_enable(udc);
else
pullup_disable(udc);
if (udc->dc_clk != NULL && !is_active) {
if (udc->clk_requested) {
omap_udc_enable_clock(0);
udc->clk_requested = 0;
}
}
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int omap_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
struct omap_udc *udc;
udc = container_of(gadget, struct omap_udc, gadget);
if (udc->transceiver)
return otg_set_power(udc->transceiver, mA);
return -EOPNOTSUPP;
}
static int omap_pullup(struct usb_gadget *gadget, int is_on)
{
struct omap_udc *udc;
unsigned long flags;
udc = container_of(gadget, struct omap_udc, gadget);
spin_lock_irqsave(&udc->lock, flags);
udc->softconnect = (is_on != 0);
if (can_pullup(udc))
pullup_enable(udc);
else
pullup_disable(udc);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static struct usb_gadget_ops omap_gadget_ops = {
.get_frame = omap_get_frame,
.wakeup = omap_wakeup,
.set_selfpowered = omap_set_selfpowered,
.vbus_session = omap_vbus_session,
.vbus_draw = omap_vbus_draw,
.pullup = omap_pullup,
};
/*-------------------------------------------------------------------------*/
/* dequeue ALL requests; caller holds udc->lock */
static void nuke(struct omap_ep *ep, int status)
{
struct omap_req *req;
ep->stopped = 1;
if (use_dma && ep->dma_channel)
dma_channel_release(ep);
use_ep(ep, 0);
UDC_CTRL_REG = UDC_CLR_EP;
if (ep->bEndpointAddress && ep->bmAttributes != USB_ENDPOINT_XFER_ISOC)
UDC_CTRL_REG = UDC_SET_HALT;
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct omap_req, queue);
done(ep, req, status);
}
}
/* caller holds udc->lock */
static void udc_quiesce(struct omap_udc *udc)
{
struct omap_ep *ep;
udc->gadget.speed = USB_SPEED_UNKNOWN;
nuke(&udc->ep[0], -ESHUTDOWN);
list_for_each_entry (ep, &udc->gadget.ep_list, ep.ep_list)
nuke(ep, -ESHUTDOWN);
}
/*-------------------------------------------------------------------------*/
static void update_otg(struct omap_udc *udc)
{
u16 devstat;
if (!udc->gadget.is_otg)
return;
if (OTG_CTRL_REG & OTG_ID)
devstat = UDC_DEVSTAT_REG;
else
devstat = 0;
udc->gadget.b_hnp_enable = !!(devstat & UDC_B_HNP_ENABLE);
udc->gadget.a_hnp_support = !!(devstat & UDC_A_HNP_SUPPORT);
udc->gadget.a_alt_hnp_support = !!(devstat & UDC_A_ALT_HNP_SUPPORT);
/* Enable HNP early, avoiding races on suspend irq path.
* ASSUMES OTG state machine B_BUS_REQ input is true.
*/
if (udc->gadget.b_hnp_enable)
OTG_CTRL_REG = (OTG_CTRL_REG | OTG_B_HNPEN | OTG_B_BUSREQ)
& ~OTG_PULLUP;
}
static void ep0_irq(struct omap_udc *udc, u16 irq_src)
{
struct omap_ep *ep0 = &udc->ep[0];
struct omap_req *req = NULL;
ep0->irqs++;
/* Clear any pending requests and then scrub any rx/tx state
* before starting to handle the SETUP request.
*/
if (irq_src & UDC_SETUP) {
u16 ack = irq_src & (UDC_EP0_TX|UDC_EP0_RX);
nuke(ep0, 0);
if (ack) {
UDC_IRQ_SRC_REG = ack;
irq_src = UDC_SETUP;
}
}
/* IN/OUT packets mean we're in the DATA or STATUS stage.
* This driver uses only uses protocol stalls (ep0 never halts),
* and if we got this far the gadget driver already had a
* chance to stall. Tries to be forgiving of host oddities.
*
* NOTE: the last chance gadget drivers have to stall control
* requests is during their request completion callback.
*/
if (!list_empty(&ep0->queue))
req = container_of(ep0->queue.next, struct omap_req, queue);
/* IN == TX to host */
if (irq_src & UDC_EP0_TX) {
int stat;
UDC_IRQ_SRC_REG = UDC_EP0_TX;
UDC_EP_NUM_REG = UDC_EP_SEL|UDC_EP_DIR;
stat = UDC_STAT_FLG_REG;
if (stat & UDC_ACK) {
if (udc->ep0_in) {
/* write next IN packet from response,
* or set up the status stage.
*/
if (req)
stat = write_fifo(ep0, req);
UDC_EP_NUM_REG = UDC_EP_DIR;
if (!req && udc->ep0_pending) {
UDC_EP_NUM_REG = UDC_EP_SEL;
UDC_CTRL_REG = UDC_CLR_EP;
UDC_CTRL_REG = UDC_SET_FIFO_EN;
UDC_EP_NUM_REG = 0;
udc->ep0_pending = 0;
} /* else: 6 wait states before it'll tx */
} else {
/* ack status stage of OUT transfer */
UDC_EP_NUM_REG = UDC_EP_DIR;
if (req)
done(ep0, req, 0);
}
req = NULL;
} else if (stat & UDC_STALL) {
UDC_CTRL_REG = UDC_CLR_HALT;
UDC_EP_NUM_REG = UDC_EP_DIR;
} else {
UDC_EP_NUM_REG = UDC_EP_DIR;
}
}
/* OUT == RX from host */
if (irq_src & UDC_EP0_RX) {
int stat;
UDC_IRQ_SRC_REG = UDC_EP0_RX;
UDC_EP_NUM_REG = UDC_EP_SEL;
stat = UDC_STAT_FLG_REG;
if (stat & UDC_ACK) {
if (!udc->ep0_in) {
stat = 0;
/* read next OUT packet of request, maybe
* reactiviting the fifo; stall on errors.
*/
if (!req || (stat = read_fifo(ep0, req)) < 0) {
UDC_SYSCON2_REG = UDC_STALL_CMD;
udc->ep0_pending = 0;
stat = 0;
} else if (stat == 0)
UDC_CTRL_REG = UDC_SET_FIFO_EN;
UDC_EP_NUM_REG = 0;
/* activate status stage */
if (stat == 1) {
done(ep0, req, 0);
/* that may have STALLed ep0... */
UDC_EP_NUM_REG = UDC_EP_SEL|UDC_EP_DIR;
UDC_CTRL_REG = UDC_CLR_EP;
UDC_CTRL_REG = UDC_SET_FIFO_EN;
UDC_EP_NUM_REG = UDC_EP_DIR;
udc->ep0_pending = 0;
}
} else {
/* ack status stage of IN transfer */
UDC_EP_NUM_REG = 0;
if (req)
done(ep0, req, 0);
}
} else if (stat & UDC_STALL) {
UDC_CTRL_REG = UDC_CLR_HALT;
UDC_EP_NUM_REG = 0;
} else {
UDC_EP_NUM_REG = 0;
}
}
/* SETUP starts all control transfers */
if (irq_src & UDC_SETUP) {
union u {
u16 word[4];
struct usb_ctrlrequest r;
} u;
int status = -EINVAL;
struct omap_ep *ep;
/* read the (latest) SETUP message */
do {
UDC_EP_NUM_REG = UDC_SETUP_SEL;
/* two bytes at a time */
u.word[0] = UDC_DATA_REG;
u.word[1] = UDC_DATA_REG;
u.word[2] = UDC_DATA_REG;
u.word[3] = UDC_DATA_REG;
UDC_EP_NUM_REG = 0;
} while (UDC_IRQ_SRC_REG & UDC_SETUP);
#define w_value le16_to_cpup (&u.r.wValue)
#define w_index le16_to_cpup (&u.r.wIndex)
#define w_length le16_to_cpup (&u.r.wLength)
/* Delegate almost all control requests to the gadget driver,
* except for a handful of ch9 status/feature requests that
* hardware doesn't autodecode _and_ the gadget API hides.
*/
udc->ep0_in = (u.r.bRequestType & USB_DIR_IN) != 0;
udc->ep0_set_config = 0;
udc->ep0_pending = 1;
ep0->stopped = 0;
ep0->ackwait = 0;
switch (u.r.bRequest) {
case USB_REQ_SET_CONFIGURATION:
/* udc needs to know when ep != 0 is valid */
if (u.r.bRequestType != USB_RECIP_DEVICE)
goto delegate;
if (w_length != 0)
goto do_stall;
udc->ep0_set_config = 1;
udc->ep0_reset_config = (w_value == 0);
VDBG("set config %d\n", w_value);
/* update udc NOW since gadget driver may start
* queueing requests immediately; clear config
* later if it fails the request.
*/
if (udc->ep0_reset_config)
UDC_SYSCON2_REG = UDC_CLR_CFG;
else
UDC_SYSCON2_REG = UDC_DEV_CFG;
update_otg(udc);
goto delegate;
case USB_REQ_CLEAR_FEATURE:
/* clear endpoint halt */
if (u.r.bRequestType != USB_RECIP_ENDPOINT)
goto delegate;
if (w_value != USB_ENDPOINT_HALT
|| w_length != 0)
goto do_stall;
ep = &udc->ep[w_index & 0xf];
if (ep != ep0) {
if (w_index & USB_DIR_IN)
ep += 16;
if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
|| !ep->desc)
goto do_stall;
use_ep(ep, 0);
UDC_CTRL_REG = udc->clr_halt;
ep->ackwait = 0;
if (!(ep->bEndpointAddress & USB_DIR_IN)) {
UDC_CTRL_REG = UDC_SET_FIFO_EN;
ep->ackwait = 1 + ep->double_buf;
}
/* NOTE: assumes the host behaves sanely,
* only clearing real halts. Else we may
* need to kill pending transfers and then
* restart the queue... very messy for DMA!
*/
}
VDBG("%s halt cleared by host\n", ep->name);
goto ep0out_status_stage;
case USB_REQ_SET_FEATURE:
/* set endpoint halt */
if (u.r.bRequestType != USB_RECIP_ENDPOINT)
goto delegate;
if (w_value != USB_ENDPOINT_HALT
|| w_length != 0)
goto do_stall;
ep = &udc->ep[w_index & 0xf];
if (w_index & USB_DIR_IN)
ep += 16;
if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
|| ep == ep0 || !ep->desc)
goto do_stall;
if (use_dma && ep->has_dma) {
/* this has rude side-effects (aborts) and
* can't really work if DMA-IN is active
*/
DBG("%s host set_halt, NYET \n", ep->name);
goto do_stall;
}
use_ep(ep, 0);
/* can't halt if fifo isn't empty... */
UDC_CTRL_REG = UDC_CLR_EP;
UDC_CTRL_REG = UDC_SET_HALT;
VDBG("%s halted by host\n", ep->name);
ep0out_status_stage:
status = 0;
UDC_EP_NUM_REG = UDC_EP_SEL|UDC_EP_DIR;
UDC_CTRL_REG = UDC_CLR_EP;
UDC_CTRL_REG = UDC_SET_FIFO_EN;
UDC_EP_NUM_REG = UDC_EP_DIR;
udc->ep0_pending = 0;
break;
case USB_REQ_GET_STATUS:
/* return interface status. if we were pedantic,
* we'd detect non-existent interfaces, and stall.
*/
if (u.r.bRequestType
!= (USB_DIR_IN|USB_RECIP_INTERFACE))
goto delegate;
/* return two zero bytes */
UDC_EP_NUM_REG = UDC_EP_SEL|UDC_EP_DIR;
UDC_DATA_REG = 0;
UDC_CTRL_REG = UDC_SET_FIFO_EN;
UDC_EP_NUM_REG = UDC_EP_DIR;
status = 0;
VDBG("GET_STATUS, interface %d\n", w_index);
/* next, status stage */
break;
default:
delegate:
/* activate the ep0out fifo right away */
if (!udc->ep0_in && w_length) {
UDC_EP_NUM_REG = 0;
UDC_CTRL_REG = UDC_SET_FIFO_EN;
}
/* gadget drivers see class/vendor specific requests,
* {SET,GET}_{INTERFACE,DESCRIPTOR,CONFIGURATION},
* and more
*/
VDBG("SETUP %02x.%02x v%04x i%04x l%04x\n",
u.r.bRequestType, u.r.bRequest,
w_value, w_index, w_length);
#undef w_value
#undef w_index
#undef w_length
/* The gadget driver may return an error here,
* causing an immediate protocol stall.
*
* Else it must issue a response, either queueing a
* response buffer for the DATA stage, or halting ep0
* (causing a protocol stall, not a real halt). A
* zero length buffer means no DATA stage.
*
* It's fine to issue that response after the setup()
* call returns, and this IRQ was handled.
*/
udc->ep0_setup = 1;
spin_unlock(&udc->lock);
status = udc->driver->setup (&udc->gadget, &u.r);
spin_lock(&udc->lock);
udc->ep0_setup = 0;
}
if (status < 0) {
do_stall:
VDBG("req %02x.%02x protocol STALL; stat %d\n",
u.r.bRequestType, u.r.bRequest, status);
if (udc->ep0_set_config) {
if (udc->ep0_reset_config)
WARN("error resetting config?\n");
else
UDC_SYSCON2_REG = UDC_CLR_CFG;
}
UDC_SYSCON2_REG = UDC_STALL_CMD;
udc->ep0_pending = 0;
}
}
}
/*-------------------------------------------------------------------------*/
#define OTG_FLAGS (UDC_B_HNP_ENABLE|UDC_A_HNP_SUPPORT|UDC_A_ALT_HNP_SUPPORT)
static void devstate_irq(struct omap_udc *udc, u16 irq_src)
{
u16 devstat, change;
devstat = UDC_DEVSTAT_REG;
change = devstat ^ udc->devstat;
udc->devstat = devstat;
if (change & (UDC_USB_RESET|UDC_ATT)) {
udc_quiesce(udc);
if (change & UDC_ATT) {
/* driver for any external transceiver will
* have called omap_vbus_session() already
*/
if (devstat & UDC_ATT) {
udc->gadget.speed = USB_SPEED_FULL;
VDBG("connect\n");
if (!udc->transceiver)
pullup_enable(udc);
// if (driver->connect) call it
} else if (udc->gadget.speed != USB_SPEED_UNKNOWN) {
udc->gadget.speed = USB_SPEED_UNKNOWN;
if (!udc->transceiver)
pullup_disable(udc);
DBG("disconnect, gadget %s\n",
udc->driver->driver.name);
if (udc->driver->disconnect) {
spin_unlock(&udc->lock);
udc->driver->disconnect(&udc->gadget);
spin_lock(&udc->lock);
}
}
change &= ~UDC_ATT;
}
if (change & UDC_USB_RESET) {
if (devstat & UDC_USB_RESET) {
VDBG("RESET=1\n");
} else {
udc->gadget.speed = USB_SPEED_FULL;
INFO("USB reset done, gadget %s\n",
udc->driver->driver.name);
/* ep0 traffic is legal from now on */
UDC_IRQ_EN_REG = UDC_DS_CHG_IE | UDC_EP0_IE;
}
change &= ~UDC_USB_RESET;
}
}
if (change & UDC_SUS) {
if (udc->gadget.speed != USB_SPEED_UNKNOWN) {
// FIXME tell isp1301 to suspend/resume (?)
if (devstat & UDC_SUS) {
VDBG("suspend\n");
update_otg(udc);
/* HNP could be under way already */
if (udc->gadget.speed == USB_SPEED_FULL
&& udc->driver->suspend) {
spin_unlock(&udc->lock);
udc->driver->suspend(&udc->gadget);
spin_lock(&udc->lock);
}
if (udc->transceiver)
otg_set_suspend(udc->transceiver, 1);
} else {
VDBG("resume\n");
if (udc->transceiver)
otg_set_suspend(udc->transceiver, 0);
if (udc->gadget.speed == USB_SPEED_FULL
&& udc->driver->resume) {
spin_unlock(&udc->lock);
udc->driver->resume(&udc->gadget);
spin_lock(&udc->lock);
}
}
}
change &= ~UDC_SUS;
}
if (!cpu_is_omap15xx() && (change & OTG_FLAGS)) {
update_otg(udc);
change &= ~OTG_FLAGS;
}
change &= ~(UDC_CFG|UDC_DEF|UDC_ADD);
if (change)
VDBG("devstat %03x, ignore change %03x\n",
devstat, change);
UDC_IRQ_SRC_REG = UDC_DS_CHG;
}
static irqreturn_t omap_udc_irq(int irq, void *_udc)
{
struct omap_udc *udc = _udc;
u16 irq_src;
irqreturn_t status = IRQ_NONE;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
irq_src = UDC_IRQ_SRC_REG;
/* Device state change (usb ch9 stuff) */
if (irq_src & UDC_DS_CHG) {
devstate_irq(_udc, irq_src);
status = IRQ_HANDLED;
irq_src &= ~UDC_DS_CHG;
}
/* EP0 control transfers */
if (irq_src & (UDC_EP0_RX|UDC_SETUP|UDC_EP0_TX)) {
ep0_irq(_udc, irq_src);
status = IRQ_HANDLED;
irq_src &= ~(UDC_EP0_RX|UDC_SETUP|UDC_EP0_TX);
}
/* DMA transfer completion */
if (use_dma && (irq_src & (UDC_TXN_DONE|UDC_RXN_CNT|UDC_RXN_EOT))) {
dma_irq(_udc, irq_src);
status = IRQ_HANDLED;
irq_src &= ~(UDC_TXN_DONE|UDC_RXN_CNT|UDC_RXN_EOT);
}
irq_src &= ~(UDC_SOF|UDC_EPN_TX|UDC_EPN_RX);
if (irq_src)
DBG("udc_irq, unhandled %03x\n", irq_src);
spin_unlock_irqrestore(&udc->lock, flags);
return status;
}
/* workaround for seemingly-lost IRQs for RX ACKs... */
#define PIO_OUT_TIMEOUT (jiffies + HZ/3)
#define HALF_FULL(f) (!((f)&(UDC_NON_ISO_FIFO_FULL|UDC_NON_ISO_FIFO_EMPTY)))
static void pio_out_timer(unsigned long _ep)
{
struct omap_ep *ep = (void *) _ep;
unsigned long flags;
u16 stat_flg;
spin_lock_irqsave(&ep->udc->lock, flags);
if (!list_empty(&ep->queue) && ep->ackwait) {
use_ep(ep, UDC_EP_SEL);
stat_flg = UDC_STAT_FLG_REG;
if ((stat_flg & UDC_ACK) && (!(stat_flg & UDC_FIFO_EN)
|| (ep->double_buf && HALF_FULL(stat_flg)))) {
struct omap_req *req;
VDBG("%s: lose, %04x\n", ep->ep.name, stat_flg);
req = container_of(ep->queue.next,
struct omap_req, queue);
(void) read_fifo(ep, req);
UDC_EP_NUM_REG = ep->bEndpointAddress;
UDC_CTRL_REG = UDC_SET_FIFO_EN;
ep->ackwait = 1 + ep->double_buf;
} else
deselect_ep();
}
mod_timer(&ep->timer, PIO_OUT_TIMEOUT);
spin_unlock_irqrestore(&ep->udc->lock, flags);
}
static irqreturn_t omap_udc_pio_irq(int irq, void *_dev)
{
u16 epn_stat, irq_src;
irqreturn_t status = IRQ_NONE;
struct omap_ep *ep;
int epnum;
struct omap_udc *udc = _dev;
struct omap_req *req;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
epn_stat = UDC_EPN_STAT_REG;
irq_src = UDC_IRQ_SRC_REG;
/* handle OUT first, to avoid some wasteful NAKs */
if (irq_src & UDC_EPN_RX) {
epnum = (epn_stat >> 8) & 0x0f;
UDC_IRQ_SRC_REG = UDC_EPN_RX;
status = IRQ_HANDLED;
ep = &udc->ep[epnum];
ep->irqs++;
UDC_EP_NUM_REG = epnum | UDC_EP_SEL;
ep->fnf = 0;
if ((UDC_STAT_FLG_REG & UDC_ACK)) {
ep->ackwait--;
if (!list_empty(&ep->queue)) {
int stat;
req = container_of(ep->queue.next,
struct omap_req, queue);
stat = read_fifo(ep, req);
if (!ep->double_buf)
ep->fnf = 1;
}
}
/* min 6 clock delay before clearing EP_SEL ... */
epn_stat = UDC_EPN_STAT_REG;
epn_stat = UDC_EPN_STAT_REG;
UDC_EP_NUM_REG = epnum;
/* enabling fifo _after_ clearing ACK, contrary to docs,
* reduces lossage; timer still needed though (sigh).
*/
if (ep->fnf) {
UDC_CTRL_REG = UDC_SET_FIFO_EN;
ep->ackwait = 1 + ep->double_buf;
}
mod_timer(&ep->timer, PIO_OUT_TIMEOUT);
}
/* then IN transfers */
else if (irq_src & UDC_EPN_TX) {
epnum = epn_stat & 0x0f;
UDC_IRQ_SRC_REG = UDC_EPN_TX;
status = IRQ_HANDLED;
ep = &udc->ep[16 + epnum];
ep->irqs++;
UDC_EP_NUM_REG = epnum | UDC_EP_DIR | UDC_EP_SEL;
if ((UDC_STAT_FLG_REG & UDC_ACK)) {
ep->ackwait = 0;
if (!list_empty(&ep->queue)) {
req = container_of(ep->queue.next,
struct omap_req, queue);
(void) write_fifo(ep, req);
}
}
/* min 6 clock delay before clearing EP_SEL ... */
epn_stat = UDC_EPN_STAT_REG;
epn_stat = UDC_EPN_STAT_REG;
UDC_EP_NUM_REG = epnum | UDC_EP_DIR;
/* then 6 clocks before it'd tx */
}
spin_unlock_irqrestore(&udc->lock, flags);
return status;
}
#ifdef USE_ISO
static irqreturn_t omap_udc_iso_irq(int irq, void *_dev)
{
struct omap_udc *udc = _dev;
struct omap_ep *ep;
int pending = 0;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
/* handle all non-DMA ISO transfers */
list_for_each_entry (ep, &udc->iso, iso) {
u16 stat;
struct omap_req *req;
if (ep->has_dma || list_empty(&ep->queue))
continue;
req = list_entry(ep->queue.next, struct omap_req, queue);
use_ep(ep, UDC_EP_SEL);
stat = UDC_STAT_FLG_REG;
/* NOTE: like the other controller drivers, this isn't
* currently reporting lost or damaged frames.
*/
if (ep->bEndpointAddress & USB_DIR_IN) {
if (stat & UDC_MISS_IN)
/* done(ep, req, -EPROTO) */;
else
write_fifo(ep, req);
} else {
int status = 0;
if (stat & UDC_NO_RXPACKET)
status = -EREMOTEIO;
else if (stat & UDC_ISO_ERR)
status = -EILSEQ;
else if (stat & UDC_DATA_FLUSH)
status = -ENOSR;
if (status)
/* done(ep, req, status) */;
else
read_fifo(ep, req);
}
deselect_ep();
/* 6 wait states before next EP */
ep->irqs++;
if (!list_empty(&ep->queue))
pending = 1;
}
if (!pending)
UDC_IRQ_EN_REG &= ~UDC_SOF_IE;
UDC_IRQ_SRC_REG = UDC_SOF;
spin_unlock_irqrestore(&udc->lock, flags);
return IRQ_HANDLED;
}
#endif
/*-------------------------------------------------------------------------*/
static inline int machine_needs_vbus_session(void)
{
return (machine_is_omap_innovator()
|| machine_is_omap_osk()
|| machine_is_omap_apollon()
#ifndef CONFIG_MACH_OMAP_H4_OTG
|| machine_is_omap_h4()
#endif
|| machine_is_sx1()
);
}
int usb_gadget_register_driver (struct usb_gadget_driver *driver)
{
int status = -ENODEV;
struct omap_ep *ep;
unsigned long flags;
/* basic sanity tests */
if (!udc)
return -ENODEV;
if (!driver
// FIXME if otg, check: driver->is_otg
|| driver->speed < USB_SPEED_FULL
|| !driver->bind
|| !driver->setup)
return -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
if (udc->driver) {
spin_unlock_irqrestore(&udc->lock, flags);
return -EBUSY;
}
/* reset state */
list_for_each_entry (ep, &udc->gadget.ep_list, ep.ep_list) {
ep->irqs = 0;
if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC)
continue;
use_ep(ep, 0);
UDC_CTRL_REG = UDC_SET_HALT;
}
udc->ep0_pending = 0;
udc->ep[0].irqs = 0;
udc->softconnect = 1;
/* hook up the driver */
driver->driver.bus = NULL;
udc->driver = driver;
udc->gadget.dev.driver = &driver->driver;
spin_unlock_irqrestore(&udc->lock, flags);
if (udc->dc_clk != NULL)
omap_udc_enable_clock(1);
status = driver->bind (&udc->gadget);
if (status) {
DBG("bind to %s --> %d\n", driver->driver.name, status);
udc->gadget.dev.driver = NULL;
udc->driver = NULL;
goto done;
}
DBG("bound to driver %s\n", driver->driver.name);
UDC_IRQ_SRC_REG = UDC_IRQ_SRC_MASK;
/* connect to bus through transceiver */
if (udc->transceiver) {
status = otg_set_peripheral(udc->transceiver, &udc->gadget);
if (status < 0) {
ERR("can't bind to transceiver\n");
if (driver->unbind) {
driver->unbind (&udc->gadget);
udc->gadget.dev.driver = NULL;
udc->driver = NULL;
}
goto done;
}
} else {
if (can_pullup(udc))
pullup_enable (udc);
else
pullup_disable (udc);
}
/* boards that don't have VBUS sensing can't autogate 48MHz;
* can't enter deep sleep while a gadget driver is active.
*/
if (machine_needs_vbus_session())
omap_vbus_session(&udc->gadget, 1);
done:
if (udc->dc_clk != NULL)
omap_udc_enable_clock(0);
return status;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
int usb_gadget_unregister_driver (struct usb_gadget_driver *driver)
{
unsigned long flags;
int status = -ENODEV;
if (!udc)
return -ENODEV;
if (!driver || driver != udc->driver || !driver->unbind)
return -EINVAL;
if (udc->dc_clk != NULL)
omap_udc_enable_clock(1);
if (machine_needs_vbus_session())
omap_vbus_session(&udc->gadget, 0);
if (udc->transceiver)
(void) otg_set_peripheral(udc->transceiver, NULL);
else
pullup_disable(udc);
spin_lock_irqsave(&udc->lock, flags);
udc_quiesce(udc);
spin_unlock_irqrestore(&udc->lock, flags);
driver->unbind(&udc->gadget);
udc->gadget.dev.driver = NULL;
udc->driver = NULL;
if (udc->dc_clk != NULL)
omap_udc_enable_clock(0);
DBG("unregistered driver '%s'\n", driver->driver.name);
return status;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
#include <linux/seq_file.h>
static const char proc_filename[] = "driver/udc";
#define FOURBITS "%s%s%s%s"
#define EIGHTBITS FOURBITS FOURBITS
static void proc_ep_show(struct seq_file *s, struct omap_ep *ep)
{
u16 stat_flg;
struct omap_req *req;
char buf[20];
use_ep(ep, 0);
if (use_dma && ep->has_dma)
snprintf(buf, sizeof buf, "(%cxdma%d lch%d) ",
(ep->bEndpointAddress & USB_DIR_IN) ? 't' : 'r',
ep->dma_channel - 1, ep->lch);
else
buf[0] = 0;
stat_flg = UDC_STAT_FLG_REG;
seq_printf(s,
"\n%s %s%s%sirqs %ld stat %04x " EIGHTBITS FOURBITS "%s\n",
ep->name, buf,
ep->double_buf ? "dbuf " : "",
({char *s; switch(ep->ackwait){
case 0: s = ""; break;
case 1: s = "(ackw) "; break;
case 2: s = "(ackw2) "; break;
default: s = "(?) "; break;
} s;}),
ep->irqs, stat_flg,
(stat_flg & UDC_NO_RXPACKET) ? "no_rxpacket " : "",
(stat_flg & UDC_MISS_IN) ? "miss_in " : "",
(stat_flg & UDC_DATA_FLUSH) ? "data_flush " : "",
(stat_flg & UDC_ISO_ERR) ? "iso_err " : "",
(stat_flg & UDC_ISO_FIFO_EMPTY) ? "iso_fifo_empty " : "",
(stat_flg & UDC_ISO_FIFO_FULL) ? "iso_fifo_full " : "",
(stat_flg & UDC_EP_HALTED) ? "HALT " : "",
(stat_flg & UDC_STALL) ? "STALL " : "",
(stat_flg & UDC_NAK) ? "NAK " : "",
(stat_flg & UDC_ACK) ? "ACK " : "",
(stat_flg & UDC_FIFO_EN) ? "fifo_en " : "",
(stat_flg & UDC_NON_ISO_FIFO_EMPTY) ? "fifo_empty " : "",
(stat_flg & UDC_NON_ISO_FIFO_FULL) ? "fifo_full " : "");
if (list_empty (&ep->queue))
seq_printf(s, "\t(queue empty)\n");
else
list_for_each_entry (req, &ep->queue, queue) {
unsigned length = req->req.actual;
if (use_dma && buf[0]) {
length += ((ep->bEndpointAddress & USB_DIR_IN)
? dma_src_len : dma_dest_len)
(ep, req->req.dma + length);
buf[0] = 0;
}
seq_printf(s, "\treq %p len %d/%d buf %p\n",
&req->req, length,
req->req.length, req->req.buf);
}
}
static char *trx_mode(unsigned m, int enabled)
{
switch (m) {
case 0: return enabled ? "*6wire" : "unused";
case 1: return "4wire";
case 2: return "3wire";
case 3: return "6wire";
default: return "unknown";
}
}
static int proc_otg_show(struct seq_file *s)
{
u32 tmp;
u32 trans;
char *ctrl_name;
tmp = OTG_REV_REG;
if (cpu_is_omap24xx()) {
ctrl_name = "control_devconf";
trans = CONTROL_DEVCONF_REG;
} else {
ctrl_name = "tranceiver_ctrl";
trans = USB_TRANSCEIVER_CTRL_REG;
}
seq_printf(s, "\nOTG rev %d.%d, %s %05x\n",
tmp >> 4, tmp & 0xf, ctrl_name, trans);
tmp = OTG_SYSCON_1_REG;
seq_printf(s, "otg_syscon1 %08x usb2 %s, usb1 %s, usb0 %s,"
FOURBITS "\n", tmp,
trx_mode(USB2_TRX_MODE(tmp), trans & CONF_USB2_UNI_R),
trx_mode(USB1_TRX_MODE(tmp), trans & CONF_USB1_UNI_R),
(USB0_TRX_MODE(tmp) == 0 && !cpu_is_omap1710())
? "internal"
: trx_mode(USB0_TRX_MODE(tmp), 1),
(tmp & OTG_IDLE_EN) ? " !otg" : "",
(tmp & HST_IDLE_EN) ? " !host" : "",
(tmp & DEV_IDLE_EN) ? " !dev" : "",
(tmp & OTG_RESET_DONE) ? " reset_done" : " reset_active");
tmp = OTG_SYSCON_2_REG;
seq_printf(s, "otg_syscon2 %08x%s" EIGHTBITS
" b_ase_brst=%d hmc=%d\n", tmp,
(tmp & OTG_EN) ? " otg_en" : "",
(tmp & USBX_SYNCHRO) ? " synchro" : "",
// much more SRP stuff
(tmp & SRP_DATA) ? " srp_data" : "",
(tmp & SRP_VBUS) ? " srp_vbus" : "",
(tmp & OTG_PADEN) ? " otg_paden" : "",
(tmp & HMC_PADEN) ? " hmc_paden" : "",
(tmp & UHOST_EN) ? " uhost_en" : "",
(tmp & HMC_TLLSPEED) ? " tllspeed" : "",
(tmp & HMC_TLLATTACH) ? " tllattach" : "",
B_ASE_BRST(tmp),
OTG_HMC(tmp));
tmp = OTG_CTRL_REG;
seq_printf(s, "otg_ctrl %06x" EIGHTBITS EIGHTBITS "%s\n", tmp,
(tmp & OTG_ASESSVLD) ? " asess" : "",
(tmp & OTG_BSESSEND) ? " bsess_end" : "",
(tmp & OTG_BSESSVLD) ? " bsess" : "",
(tmp & OTG_VBUSVLD) ? " vbus" : "",
(tmp & OTG_ID) ? " id" : "",
(tmp & OTG_DRIVER_SEL) ? " DEVICE" : " HOST",
(tmp & OTG_A_SETB_HNPEN) ? " a_setb_hnpen" : "",
(tmp & OTG_A_BUSREQ) ? " a_bus" : "",
(tmp & OTG_B_HNPEN) ? " b_hnpen" : "",
(tmp & OTG_B_BUSREQ) ? " b_bus" : "",
(tmp & OTG_BUSDROP) ? " busdrop" : "",
(tmp & OTG_PULLDOWN) ? " down" : "",
(tmp & OTG_PULLUP) ? " up" : "",
(tmp & OTG_DRV_VBUS) ? " drv" : "",
(tmp & OTG_PD_VBUS) ? " pd_vb" : "",
(tmp & OTG_PU_VBUS) ? " pu_vb" : "",
(tmp & OTG_PU_ID) ? " pu_id" : ""
);
tmp = OTG_IRQ_EN_REG;
seq_printf(s, "otg_irq_en %04x" "\n", tmp);
tmp = OTG_IRQ_SRC_REG;
seq_printf(s, "otg_irq_src %04x" "\n", tmp);
tmp = OTG_OUTCTRL_REG;
seq_printf(s, "otg_outctrl %04x" "\n", tmp);
tmp = OTG_TEST_REG;
seq_printf(s, "otg_test %04x" "\n", tmp);
return 0;
}
static int proc_udc_show(struct seq_file *s, void *_)
{
u32 tmp;
struct omap_ep *ep;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
seq_printf(s, "%s, version: " DRIVER_VERSION
#ifdef USE_ISO
" (iso)"
#endif
"%s\n",
driver_desc,
use_dma ? " (dma)" : "");
tmp = UDC_REV_REG & 0xff;
seq_printf(s,
"UDC rev %d.%d, fifo mode %d, gadget %s\n"
"hmc %d, transceiver %s\n",
tmp >> 4, tmp & 0xf,
fifo_mode,
udc->driver ? udc->driver->driver.name : "(none)",
HMC,
udc->transceiver
? udc->transceiver->label
: ((cpu_is_omap1710() || cpu_is_omap24xx())
? "external" : "(none)"));
if (cpu_class_is_omap1()) {
seq_printf(s, "ULPD control %04x req %04x status %04x\n",
__REG16(ULPD_CLOCK_CTRL),
__REG16(ULPD_SOFT_REQ),
__REG16(ULPD_STATUS_REQ));
}
/* OTG controller registers */
if (!cpu_is_omap15xx())
proc_otg_show(s);
tmp = UDC_SYSCON1_REG;
seq_printf(s, "\nsyscon1 %04x" EIGHTBITS "\n", tmp,
(tmp & UDC_CFG_LOCK) ? " cfg_lock" : "",
(tmp & UDC_DATA_ENDIAN) ? " data_endian" : "",
(tmp & UDC_DMA_ENDIAN) ? " dma_endian" : "",
(tmp & UDC_NAK_EN) ? " nak" : "",
(tmp & UDC_AUTODECODE_DIS) ? " autodecode_dis" : "",
(tmp & UDC_SELF_PWR) ? " self_pwr" : "",
(tmp & UDC_SOFF_DIS) ? " soff_dis" : "",
(tmp & UDC_PULLUP_EN) ? " PULLUP" : "");
// syscon2 is write-only
/* UDC controller registers */
if (!(tmp & UDC_PULLUP_EN)) {
seq_printf(s, "(suspended)\n");
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
tmp = UDC_DEVSTAT_REG;
seq_printf(s, "devstat %04x" EIGHTBITS "%s%s\n", tmp,
(tmp & UDC_B_HNP_ENABLE) ? " b_hnp" : "",
(tmp & UDC_A_HNP_SUPPORT) ? " a_hnp" : "",
(tmp & UDC_A_ALT_HNP_SUPPORT) ? " a_alt_hnp" : "",
(tmp & UDC_R_WK_OK) ? " r_wk_ok" : "",
(tmp & UDC_USB_RESET) ? " usb_reset" : "",
(tmp & UDC_SUS) ? " SUS" : "",
(tmp & UDC_CFG) ? " CFG" : "",
(tmp & UDC_ADD) ? " ADD" : "",
(tmp & UDC_DEF) ? " DEF" : "",
(tmp & UDC_ATT) ? " ATT" : "");
seq_printf(s, "sof %04x\n", UDC_SOF_REG);
tmp = UDC_IRQ_EN_REG;
seq_printf(s, "irq_en %04x" FOURBITS "%s\n", tmp,
(tmp & UDC_SOF_IE) ? " sof" : "",
(tmp & UDC_EPN_RX_IE) ? " epn_rx" : "",
(tmp & UDC_EPN_TX_IE) ? " epn_tx" : "",
(tmp & UDC_DS_CHG_IE) ? " ds_chg" : "",
(tmp & UDC_EP0_IE) ? " ep0" : "");
tmp = UDC_IRQ_SRC_REG;
seq_printf(s, "irq_src %04x" EIGHTBITS "%s%s\n", tmp,
(tmp & UDC_TXN_DONE) ? " txn_done" : "",
(tmp & UDC_RXN_CNT) ? " rxn_cnt" : "",
(tmp & UDC_RXN_EOT) ? " rxn_eot" : "",
(tmp & UDC_SOF) ? " sof" : "",
(tmp & UDC_EPN_RX) ? " epn_rx" : "",
(tmp & UDC_EPN_TX) ? " epn_tx" : "",
(tmp & UDC_DS_CHG) ? " ds_chg" : "",
(tmp & UDC_SETUP) ? " setup" : "",
(tmp & UDC_EP0_RX) ? " ep0out" : "",
(tmp & UDC_EP0_TX) ? " ep0in" : "");
if (use_dma) {
unsigned i;
tmp = UDC_DMA_IRQ_EN_REG;
seq_printf(s, "dma_irq_en %04x%s" EIGHTBITS "\n", tmp,
(tmp & UDC_TX_DONE_IE(3)) ? " tx2_done" : "",
(tmp & UDC_RX_CNT_IE(3)) ? " rx2_cnt" : "",
(tmp & UDC_RX_EOT_IE(3)) ? " rx2_eot" : "",
(tmp & UDC_TX_DONE_IE(2)) ? " tx1_done" : "",
(tmp & UDC_RX_CNT_IE(2)) ? " rx1_cnt" : "",
(tmp & UDC_RX_EOT_IE(2)) ? " rx1_eot" : "",
(tmp & UDC_TX_DONE_IE(1)) ? " tx0_done" : "",
(tmp & UDC_RX_CNT_IE(1)) ? " rx0_cnt" : "",
(tmp & UDC_RX_EOT_IE(1)) ? " rx0_eot" : "");
tmp = UDC_RXDMA_CFG_REG;
seq_printf(s, "rxdma_cfg %04x\n", tmp);
if (tmp) {
for (i = 0; i < 3; i++) {
if ((tmp & (0x0f << (i * 4))) == 0)
continue;
seq_printf(s, "rxdma[%d] %04x\n", i,
UDC_RXDMA_REG(i + 1));
}
}
tmp = UDC_TXDMA_CFG_REG;
seq_printf(s, "txdma_cfg %04x\n", tmp);
if (tmp) {
for (i = 0; i < 3; i++) {
if (!(tmp & (0x0f << (i * 4))))
continue;
seq_printf(s, "txdma[%d] %04x\n", i,
UDC_TXDMA_REG(i + 1));
}
}
}
tmp = UDC_DEVSTAT_REG;
if (tmp & UDC_ATT) {
proc_ep_show(s, &udc->ep[0]);
if (tmp & UDC_ADD) {
list_for_each_entry (ep, &udc->gadget.ep_list,
ep.ep_list) {
if (ep->desc)
proc_ep_show(s, ep);
}
}
}
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int proc_udc_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_udc_show, NULL);
}
static const struct file_operations proc_ops = {
.open = proc_udc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void create_proc_file(void)
{
struct proc_dir_entry *pde;
pde = create_proc_entry (proc_filename, 0, NULL);
if (pde)
pde->proc_fops = &proc_ops;
}
static void remove_proc_file(void)
{
remove_proc_entry(proc_filename, NULL);
}
#else
static inline void create_proc_file(void) {}
static inline void remove_proc_file(void) {}
#endif
/*-------------------------------------------------------------------------*/
/* Before this controller can enumerate, we need to pick an endpoint
* configuration, or "fifo_mode" That involves allocating 2KB of packet
* buffer space among the endpoints we'll be operating.
*
* NOTE: as of OMAP 1710 ES2.0, writing a new endpoint config when
* UDC_SYSCON_1_REG.CFG_LOCK is set can now work. We won't use that
* capability yet though.
*/
static unsigned __init
omap_ep_setup(char *name, u8 addr, u8 type,
unsigned buf, unsigned maxp, int dbuf)
{
struct omap_ep *ep;
u16 epn_rxtx = 0;
/* OUT endpoints first, then IN */
ep = &udc->ep[addr & 0xf];
if (addr & USB_DIR_IN)
ep += 16;
/* in case of ep init table bugs */
BUG_ON(ep->name[0]);
/* chip setup ... bit values are same for IN, OUT */
if (type == USB_ENDPOINT_XFER_ISOC) {
switch (maxp) {
case 8: epn_rxtx = 0 << 12; break;
case 16: epn_rxtx = 1 << 12; break;
case 32: epn_rxtx = 2 << 12; break;
case 64: epn_rxtx = 3 << 12; break;
case 128: epn_rxtx = 4 << 12; break;
case 256: epn_rxtx = 5 << 12; break;
case 512: epn_rxtx = 6 << 12; break;
default: BUG();
}
epn_rxtx |= UDC_EPN_RX_ISO;
dbuf = 1;
} else {
/* double-buffering "not supported" on 15xx,
* and ignored for PIO-IN on newer chips
* (for more reliable behavior)
*/
if (!use_dma || cpu_is_omap15xx() || cpu_is_omap24xx())
dbuf = 0;
switch (maxp) {
case 8: epn_rxtx = 0 << 12; break;
case 16: epn_rxtx = 1 << 12; break;
case 32: epn_rxtx = 2 << 12; break;
case 64: epn_rxtx = 3 << 12; break;
default: BUG();
}
if (dbuf && addr)
epn_rxtx |= UDC_EPN_RX_DB;
init_timer(&ep->timer);
ep->timer.function = pio_out_timer;
ep->timer.data = (unsigned long) ep;
}
if (addr)
epn_rxtx |= UDC_EPN_RX_VALID;
BUG_ON(buf & 0x07);
epn_rxtx |= buf >> 3;
DBG("%s addr %02x rxtx %04x maxp %d%s buf %d\n",
name, addr, epn_rxtx, maxp, dbuf ? "x2" : "", buf);
if (addr & USB_DIR_IN)
UDC_EP_TX_REG(addr & 0xf) = epn_rxtx;
else
UDC_EP_RX_REG(addr) = epn_rxtx;
/* next endpoint's buffer starts after this one's */
buf += maxp;
if (dbuf)
buf += maxp;
BUG_ON(buf > 2048);
/* set up driver data structures */
BUG_ON(strlen(name) >= sizeof ep->name);
strlcpy(ep->name, name, sizeof ep->name);
INIT_LIST_HEAD(&ep->queue);
INIT_LIST_HEAD(&ep->iso);
ep->bEndpointAddress = addr;
ep->bmAttributes = type;
ep->double_buf = dbuf;
ep->udc = udc;
ep->ep.name = ep->name;
ep->ep.ops = &omap_ep_ops;
ep->ep.maxpacket = ep->maxpacket = maxp;
list_add_tail (&ep->ep.ep_list, &udc->gadget.ep_list);
return buf;
}
static void omap_udc_release(struct device *dev)
{
complete(udc->done);
kfree (udc);
udc = NULL;
}
static int __init
omap_udc_setup(struct platform_device *odev, struct otg_transceiver *xceiv)
{
unsigned tmp, buf;
/* abolish any previous hardware state */
UDC_SYSCON1_REG = 0;
UDC_IRQ_EN_REG = 0;
UDC_IRQ_SRC_REG = UDC_IRQ_SRC_MASK;
UDC_DMA_IRQ_EN_REG = 0;
UDC_RXDMA_CFG_REG = 0;
UDC_TXDMA_CFG_REG = 0;
/* UDC_PULLUP_EN gates the chip clock */
// OTG_SYSCON_1_REG |= DEV_IDLE_EN;
udc = kzalloc(sizeof(*udc), GFP_KERNEL);
if (!udc)
return -ENOMEM;
spin_lock_init (&udc->lock);
udc->gadget.ops = &omap_gadget_ops;
udc->gadget.ep0 = &udc->ep[0].ep;
INIT_LIST_HEAD(&udc->gadget.ep_list);
INIT_LIST_HEAD(&udc->iso);
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->gadget.name = driver_name;
device_initialize(&udc->gadget.dev);
strcpy (udc->gadget.dev.bus_id, "gadget");
udc->gadget.dev.release = omap_udc_release;
udc->gadget.dev.parent = &odev->dev;
if (use_dma)
udc->gadget.dev.dma_mask = odev->dev.dma_mask;
udc->transceiver = xceiv;
/* ep0 is special; put it right after the SETUP buffer */
buf = omap_ep_setup("ep0", 0, USB_ENDPOINT_XFER_CONTROL,
8 /* after SETUP */, 64 /* maxpacket */, 0);
list_del_init(&udc->ep[0].ep.ep_list);
/* initially disable all non-ep0 endpoints */
for (tmp = 1; tmp < 15; tmp++) {
UDC_EP_RX_REG(tmp) = 0;
UDC_EP_TX_REG(tmp) = 0;
}
#define OMAP_BULK_EP(name,addr) \
buf = omap_ep_setup(name "-bulk", addr, \
USB_ENDPOINT_XFER_BULK, buf, 64, 1);
#define OMAP_INT_EP(name,addr, maxp) \
buf = omap_ep_setup(name "-int", addr, \
USB_ENDPOINT_XFER_INT, buf, maxp, 0);
#define OMAP_ISO_EP(name,addr, maxp) \
buf = omap_ep_setup(name "-iso", addr, \
USB_ENDPOINT_XFER_ISOC, buf, maxp, 1);
switch (fifo_mode) {
case 0:
OMAP_BULK_EP("ep1in", USB_DIR_IN | 1);
OMAP_BULK_EP("ep2out", USB_DIR_OUT | 2);
OMAP_INT_EP("ep3in", USB_DIR_IN | 3, 16);
break;
case 1:
OMAP_BULK_EP("ep1in", USB_DIR_IN | 1);
OMAP_BULK_EP("ep2out", USB_DIR_OUT | 2);
OMAP_INT_EP("ep9in", USB_DIR_IN | 9, 16);
OMAP_BULK_EP("ep3in", USB_DIR_IN | 3);
OMAP_BULK_EP("ep4out", USB_DIR_OUT | 4);
OMAP_INT_EP("ep10in", USB_DIR_IN | 10, 16);
OMAP_BULK_EP("ep5in", USB_DIR_IN | 5);
OMAP_BULK_EP("ep5out", USB_DIR_OUT | 5);
OMAP_INT_EP("ep11in", USB_DIR_IN | 11, 16);
OMAP_BULK_EP("ep6in", USB_DIR_IN | 6);
OMAP_BULK_EP("ep6out", USB_DIR_OUT | 6);
OMAP_INT_EP("ep12in", USB_DIR_IN | 12, 16);
OMAP_BULK_EP("ep7in", USB_DIR_IN | 7);
OMAP_BULK_EP("ep7out", USB_DIR_OUT | 7);
OMAP_INT_EP("ep13in", USB_DIR_IN | 13, 16);
OMAP_INT_EP("ep13out", USB_DIR_OUT | 13, 16);
OMAP_BULK_EP("ep8in", USB_DIR_IN | 8);
OMAP_BULK_EP("ep8out", USB_DIR_OUT | 8);
OMAP_INT_EP("ep14in", USB_DIR_IN | 14, 16);
OMAP_INT_EP("ep14out", USB_DIR_OUT | 14, 16);
OMAP_BULK_EP("ep15in", USB_DIR_IN | 15);
OMAP_BULK_EP("ep15out", USB_DIR_OUT | 15);
break;
#ifdef USE_ISO
case 2: /* mixed iso/bulk */
OMAP_ISO_EP("ep1in", USB_DIR_IN | 1, 256);
OMAP_ISO_EP("ep2out", USB_DIR_OUT | 2, 256);
OMAP_ISO_EP("ep3in", USB_DIR_IN | 3, 128);
OMAP_ISO_EP("ep4out", USB_DIR_OUT | 4, 128);
OMAP_INT_EP("ep5in", USB_DIR_IN | 5, 16);
OMAP_BULK_EP("ep6in", USB_DIR_IN | 6);
OMAP_BULK_EP("ep7out", USB_DIR_OUT | 7);
OMAP_INT_EP("ep8in", USB_DIR_IN | 8, 16);
break;
case 3: /* mixed bulk/iso */
OMAP_BULK_EP("ep1in", USB_DIR_IN | 1);
OMAP_BULK_EP("ep2out", USB_DIR_OUT | 2);
OMAP_INT_EP("ep3in", USB_DIR_IN | 3, 16);
OMAP_BULK_EP("ep4in", USB_DIR_IN | 4);
OMAP_BULK_EP("ep5out", USB_DIR_OUT | 5);
OMAP_INT_EP("ep6in", USB_DIR_IN | 6, 16);
OMAP_ISO_EP("ep7in", USB_DIR_IN | 7, 256);
OMAP_ISO_EP("ep8out", USB_DIR_OUT | 8, 256);
OMAP_INT_EP("ep9in", USB_DIR_IN | 9, 16);
break;
#endif
/* add more modes as needed */
default:
ERR("unsupported fifo_mode #%d\n", fifo_mode);
return -ENODEV;
}
UDC_SYSCON1_REG = UDC_CFG_LOCK|UDC_SELF_PWR;
INFO("fifo mode %d, %d bytes not used\n", fifo_mode, 2048 - buf);
return 0;
}
static int __init omap_udc_probe(struct platform_device *pdev)
{
int status = -ENODEV;
int hmc;
struct otg_transceiver *xceiv = NULL;
const char *type = NULL;
struct omap_usb_config *config = pdev->dev.platform_data;
struct clk *dc_clk;
struct clk *hhc_clk;
/* NOTE: "knows" the order of the resources! */
if (!request_mem_region(pdev->resource[0].start,
pdev->resource[0].end - pdev->resource[0].start + 1,
driver_name)) {
DBG("request_mem_region failed\n");
return -EBUSY;
}
if (cpu_is_omap16xx()) {
dc_clk = clk_get(&pdev->dev, "usb_dc_ck");
hhc_clk = clk_get(&pdev->dev, "usb_hhc_ck");
BUG_ON(IS_ERR(dc_clk) || IS_ERR(hhc_clk));
/* can't use omap_udc_enable_clock yet */
clk_enable(dc_clk);
clk_enable(hhc_clk);
udelay(100);
}
if (cpu_is_omap24xx()) {
dc_clk = clk_get(&pdev->dev, "usb_fck");
hhc_clk = clk_get(&pdev->dev, "usb_l4_ick");
BUG_ON(IS_ERR(dc_clk) || IS_ERR(hhc_clk));
/* can't use omap_udc_enable_clock yet */
clk_enable(dc_clk);
clk_enable(hhc_clk);
udelay(100);
}
INFO("OMAP UDC rev %d.%d%s\n",
UDC_REV_REG >> 4, UDC_REV_REG & 0xf,
config->otg ? ", Mini-AB" : "");
/* use the mode given to us by board init code */
if (cpu_is_omap15xx()) {
hmc = HMC_1510;
type = "(unknown)";
if (machine_is_omap_innovator() || machine_is_sx1()) {
/* just set up software VBUS detect, and then
* later rig it so we always report VBUS.
* FIXME without really sensing VBUS, we can't
* know when to turn PULLUP_EN on/off; and that
* means we always "need" the 48MHz clock.
*/
u32 tmp = FUNC_MUX_CTRL_0_REG;
FUNC_MUX_CTRL_0_REG &= ~VBUS_CTRL_1510;
tmp |= VBUS_MODE_1510;
tmp &= ~VBUS_CTRL_1510;
FUNC_MUX_CTRL_0_REG = tmp;
}
} else {
/* The transceiver may package some GPIO logic or handle
* loopback and/or transceiverless setup; if we find one,
* use it. Except for OTG, we don't _need_ to talk to one;
* but not having one probably means no VBUS detection.
*/
xceiv = otg_get_transceiver();
if (xceiv)
type = xceiv->label;
else if (config->otg) {
DBG("OTG requires external transceiver!\n");
goto cleanup0;
}
hmc = HMC_1610;
if (cpu_is_omap24xx()) {
/* this could be transceiverless in one of the
* "we don't need to know" modes.
*/
type = "external";
goto known;
}
switch (hmc) {
case 0: /* POWERUP DEFAULT == 0 */
case 4:
case 12:
case 20:
if (!cpu_is_omap1710()) {
type = "integrated";
break;
}
/* FALL THROUGH */
case 3:
case 11:
case 16:
case 19:
case 25:
if (!xceiv) {
DBG("external transceiver not registered!\n");
type = "unknown";
}
break;
case 21: /* internal loopback */
type = "loopback";
break;
case 14: /* transceiverless */
if (cpu_is_omap1710())
goto bad_on_1710;
/* FALL THROUGH */
case 13:
case 15:
type = "no";
break;
default:
bad_on_1710:
ERR("unrecognized UDC HMC mode %d\n", hmc);
goto cleanup0;
}
}
known:
INFO("hmc mode %d, %s transceiver\n", hmc, type);
/* a "gadget" abstracts/virtualizes the controller */
status = omap_udc_setup(pdev, xceiv);
if (status) {
goto cleanup0;
}
xceiv = NULL;
// "udc" is now valid
pullup_disable(udc);
#if defined(CONFIG_USB_OHCI_HCD) || defined(CONFIG_USB_OHCI_HCD_MODULE)
udc->gadget.is_otg = (config->otg != 0);
#endif
/* starting with omap1710 es2.0, clear toggle is a separate bit */
if (UDC_REV_REG >= 0x61)
udc->clr_halt = UDC_RESET_EP | UDC_CLRDATA_TOGGLE;
else
udc->clr_halt = UDC_RESET_EP;
/* USB general purpose IRQ: ep0, state changes, dma, etc */
status = request_irq(pdev->resource[1].start, omap_udc_irq,
IRQF_SAMPLE_RANDOM, driver_name, udc);
if (status != 0) {
ERR("can't get irq %d, err %d\n",
(int) pdev->resource[1].start, status);
goto cleanup1;
}
/* USB "non-iso" IRQ (PIO for all but ep0) */
status = request_irq(pdev->resource[2].start, omap_udc_pio_irq,
IRQF_SAMPLE_RANDOM, "omap_udc pio", udc);
if (status != 0) {
ERR("can't get irq %d, err %d\n",
(int) pdev->resource[2].start, status);
goto cleanup2;
}
#ifdef USE_ISO
status = request_irq(pdev->resource[3].start, omap_udc_iso_irq,
IRQF_DISABLED, "omap_udc iso", udc);
if (status != 0) {
ERR("can't get irq %d, err %d\n",
(int) pdev->resource[3].start, status);
goto cleanup3;
}
#endif
if (cpu_is_omap16xx()) {
udc->dc_clk = dc_clk;
udc->hhc_clk = hhc_clk;
clk_disable(hhc_clk);
clk_disable(dc_clk);
}
if (cpu_is_omap24xx()) {
udc->dc_clk = dc_clk;
udc->hhc_clk = hhc_clk;
/* FIXME OMAP2 don't release hhc & dc clock */
#if 0
clk_disable(hhc_clk);
clk_disable(dc_clk);
#endif
}
create_proc_file();
status = device_add(&udc->gadget.dev);
if (!status)
return status;
/* If fail, fall through */
#ifdef USE_ISO
cleanup3:
free_irq(pdev->resource[2].start, udc);
#endif
cleanup2:
free_irq(pdev->resource[1].start, udc);
cleanup1:
kfree (udc);
udc = NULL;
cleanup0:
if (xceiv)
put_device(xceiv->dev);
if (cpu_is_omap16xx() || cpu_is_omap24xx()) {
clk_disable(hhc_clk);
clk_disable(dc_clk);
clk_put(hhc_clk);
clk_put(dc_clk);
}
release_mem_region(pdev->resource[0].start,
pdev->resource[0].end - pdev->resource[0].start + 1);
return status;
}
static int __exit omap_udc_remove(struct platform_device *pdev)
{
DECLARE_COMPLETION_ONSTACK(done);
if (!udc)
return -ENODEV;
if (udc->driver)
return -EBUSY;
udc->done = &done;
pullup_disable(udc);
if (udc->transceiver) {
put_device(udc->transceiver->dev);
udc->transceiver = NULL;
}
UDC_SYSCON1_REG = 0;
remove_proc_file();
#ifdef USE_ISO
free_irq(pdev->resource[3].start, udc);
#endif
free_irq(pdev->resource[2].start, udc);
free_irq(pdev->resource[1].start, udc);
if (udc->dc_clk) {
if (udc->clk_requested)
omap_udc_enable_clock(0);
clk_put(udc->hhc_clk);
clk_put(udc->dc_clk);
}
release_mem_region(pdev->resource[0].start,
pdev->resource[0].end - pdev->resource[0].start + 1);
device_unregister(&udc->gadget.dev);
wait_for_completion(&done);
return 0;
}
/* suspend/resume/wakeup from sysfs (echo > power/state) or when the
* system is forced into deep sleep
*
* REVISIT we should probably reject suspend requests when there's a host
* session active, rather than disconnecting, at least on boards that can
* report VBUS irqs (UDC_DEVSTAT_REG.UDC_ATT). And in any case, we need to
* make host resumes and VBUS detection trigger OMAP wakeup events; that
* may involve talking to an external transceiver (e.g. isp1301).
*/
static int omap_udc_suspend(struct platform_device *dev, pm_message_t message)
{
u32 devstat;
devstat = UDC_DEVSTAT_REG;
/* we're requesting 48 MHz clock if the pullup is enabled
* (== we're attached to the host) and we're not suspended,
* which would prevent entry to deep sleep...
*/
if ((devstat & UDC_ATT) != 0 && (devstat & UDC_SUS) == 0) {
WARN("session active; suspend requires disconnect\n");
omap_pullup(&udc->gadget, 0);
}
udc->gadget.dev.power.power_state = PMSG_SUSPEND;
udc->gadget.dev.parent->power.power_state = PMSG_SUSPEND;
return 0;
}
static int omap_udc_resume(struct platform_device *dev)
{
DBG("resume + wakeup/SRP\n");
omap_pullup(&udc->gadget, 1);
/* maybe the host would enumerate us if we nudged it */
msleep(100);
return omap_wakeup(&udc->gadget);
}
/*-------------------------------------------------------------------------*/
static struct platform_driver udc_driver = {
.probe = omap_udc_probe,
.remove = __exit_p(omap_udc_remove),
.suspend = omap_udc_suspend,
.resume = omap_udc_resume,
.driver = {
.owner = THIS_MODULE,
.name = (char *) driver_name,
},
};
static int __init udc_init(void)
{
INFO("%s, version: " DRIVER_VERSION
#ifdef USE_ISO
" (iso)"
#endif
"%s\n", driver_desc,
use_dma ? " (dma)" : "");
return platform_driver_register(&udc_driver);
}
module_init(udc_init);
static void __exit udc_exit(void)
{
platform_driver_unregister(&udc_driver);
}
module_exit(udc_exit);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");