| /* |
| * Userland implementation of gettimeofday() for 32 bits processes in a |
| * ppc64 kernel for use in the vDSO |
| * |
| * Copyright (C) 2004 Benjamin Herrenschmuidt (benh@kernel.crashing.org, |
| * IBM Corp. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/config.h> |
| #include <asm/processor.h> |
| #include <asm/ppc_asm.h> |
| #include <asm/vdso.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/unistd.h> |
| |
| .text |
| /* |
| * Exact prototype of gettimeofday |
| * |
| * int __kernel_gettimeofday(struct timeval *tv, struct timezone *tz); |
| * |
| */ |
| V_FUNCTION_BEGIN(__kernel_gettimeofday) |
| .cfi_startproc |
| mflr r12 |
| .cfi_register lr,r12 |
| |
| mr r10,r3 /* r10 saves tv */ |
| mr r11,r4 /* r11 saves tz */ |
| bl __get_datapage@local /* get data page */ |
| mr r9, r3 /* datapage ptr in r9 */ |
| bl __do_get_xsec@local /* get xsec from tb & kernel */ |
| bne- 2f /* out of line -> do syscall */ |
| |
| /* seconds are xsec >> 20 */ |
| rlwinm r5,r4,12,20,31 |
| rlwimi r5,r3,12,0,19 |
| stw r5,TVAL32_TV_SEC(r10) |
| |
| /* get remaining xsec and convert to usec. we scale |
| * up remaining xsec by 12 bits and get the top 32 bits |
| * of the multiplication |
| */ |
| rlwinm r5,r4,12,0,19 |
| lis r6,1000000@h |
| ori r6,r6,1000000@l |
| mulhwu r5,r5,r6 |
| stw r5,TVAL32_TV_USEC(r10) |
| |
| cmpli cr0,r11,0 /* check if tz is NULL */ |
| beq 1f |
| lwz r4,CFG_TZ_MINUTEWEST(r9)/* fill tz */ |
| lwz r5,CFG_TZ_DSTTIME(r9) |
| stw r4,TZONE_TZ_MINWEST(r11) |
| stw r5,TZONE_TZ_DSTTIME(r11) |
| |
| 1: mtlr r12 |
| li r3,0 |
| blr |
| |
| 2: |
| mtlr r12 |
| mr r3,r10 |
| mr r4,r11 |
| li r0,__NR_gettimeofday |
| sc |
| blr |
| .cfi_endproc |
| V_FUNCTION_END(__kernel_gettimeofday) |
| |
| /* |
| * Exact prototype of clock_gettime() |
| * |
| * int __kernel_clock_gettime(clockid_t clock_id, struct timespec *tp); |
| * |
| */ |
| V_FUNCTION_BEGIN(__kernel_clock_gettime) |
| .cfi_startproc |
| /* Check for supported clock IDs */ |
| cmpli cr0,r3,CLOCK_REALTIME |
| cmpli cr1,r3,CLOCK_MONOTONIC |
| cror cr0,cr0,cr1 |
| bne cr0,99f |
| |
| mflr r12 /* r12 saves lr */ |
| .cfi_register lr,r12 |
| mr r10,r3 /* r10 saves id */ |
| mr r11,r4 /* r11 saves tp */ |
| bl __get_datapage@local /* get data page */ |
| mr r9, r3 /* datapage ptr in r9 */ |
| beq cr1,50f /* if monotonic -> jump there */ |
| |
| /* |
| * CLOCK_REALTIME |
| */ |
| |
| bl __do_get_xsec@local /* get xsec from tb & kernel */ |
| bne- 98f /* out of line -> do syscall */ |
| |
| /* seconds are xsec >> 20 */ |
| rlwinm r5,r4,12,20,31 |
| rlwimi r5,r3,12,0,19 |
| stw r5,TSPC32_TV_SEC(r11) |
| |
| /* get remaining xsec and convert to nsec. we scale |
| * up remaining xsec by 12 bits and get the top 32 bits |
| * of the multiplication, then we multiply by 1000 |
| */ |
| rlwinm r5,r4,12,0,19 |
| lis r6,1000000@h |
| ori r6,r6,1000000@l |
| mulhwu r5,r5,r6 |
| mulli r5,r5,1000 |
| stw r5,TSPC32_TV_NSEC(r11) |
| mtlr r12 |
| li r3,0 |
| blr |
| |
| /* |
| * CLOCK_MONOTONIC |
| */ |
| |
| 50: bl __do_get_xsec@local /* get xsec from tb & kernel */ |
| bne- 98f /* out of line -> do syscall */ |
| |
| /* seconds are xsec >> 20 */ |
| rlwinm r6,r4,12,20,31 |
| rlwimi r6,r3,12,0,19 |
| |
| /* get remaining xsec and convert to nsec. we scale |
| * up remaining xsec by 12 bits and get the top 32 bits |
| * of the multiplication, then we multiply by 1000 |
| */ |
| rlwinm r7,r4,12,0,19 |
| lis r5,1000000@h |
| ori r5,r5,1000000@l |
| mulhwu r7,r7,r5 |
| mulli r7,r7,1000 |
| |
| /* now we must fixup using wall to monotonic. We need to snapshot |
| * that value and do the counter trick again. Fortunately, we still |
| * have the counter value in r8 that was returned by __do_get_xsec. |
| * At this point, r6,r7 contain our sec/nsec values, r3,r4 and r5 |
| * can be used |
| */ |
| |
| lwz r3,WTOM_CLOCK_SEC(r9) |
| lwz r4,WTOM_CLOCK_NSEC(r9) |
| |
| /* We now have our result in r3,r4. We create a fake dependency |
| * on that result and re-check the counter |
| */ |
| or r5,r4,r3 |
| xor r0,r5,r5 |
| add r9,r9,r0 |
| #ifdef CONFIG_PPC64 |
| lwz r0,(CFG_TB_UPDATE_COUNT+4)(r9) |
| #else |
| lwz r0,(CFG_TB_UPDATE_COUNT)(r9) |
| #endif |
| cmpl cr0,r8,r0 /* check if updated */ |
| bne- 50b |
| |
| /* Calculate and store result. Note that this mimmics the C code, |
| * which may cause funny results if nsec goes negative... is that |
| * possible at all ? |
| */ |
| add r3,r3,r6 |
| add r4,r4,r7 |
| lis r5,NSEC_PER_SEC@h |
| ori r5,r5,NSEC_PER_SEC@l |
| cmpli cr0,r4,r5 |
| blt 1f |
| subf r4,r5,r4 |
| addi r3,r3,1 |
| 1: stw r3,TSPC32_TV_SEC(r11) |
| stw r4,TSPC32_TV_NSEC(r11) |
| |
| mtlr r12 |
| li r3,0 |
| blr |
| |
| /* |
| * syscall fallback |
| */ |
| 98: |
| mtlr r12 |
| mr r3,r10 |
| mr r4,r11 |
| 99: |
| li r0,__NR_clock_gettime |
| sc |
| blr |
| .cfi_endproc |
| V_FUNCTION_END(__kernel_clock_gettime) |
| |
| |
| /* |
| * Exact prototype of clock_getres() |
| * |
| * int __kernel_clock_getres(clockid_t clock_id, struct timespec *res); |
| * |
| */ |
| V_FUNCTION_BEGIN(__kernel_clock_getres) |
| .cfi_startproc |
| /* Check for supported clock IDs */ |
| cmpwi cr0,r3,CLOCK_REALTIME |
| cmpwi cr1,r3,CLOCK_MONOTONIC |
| cror cr0,cr0,cr1 |
| bne cr0,99f |
| |
| li r3,0 |
| cmpli cr0,r4,0 |
| beqlr |
| lis r5,CLOCK_REALTIME_RES@h |
| ori r5,r5,CLOCK_REALTIME_RES@l |
| stw r3,TSPC32_TV_SEC(r4) |
| stw r5,TSPC32_TV_NSEC(r4) |
| blr |
| |
| /* |
| * syscall fallback |
| */ |
| 99: |
| li r0,__NR_clock_getres |
| sc |
| blr |
| .cfi_endproc |
| V_FUNCTION_END(__kernel_clock_getres) |
| |
| |
| /* |
| * This is the core of gettimeofday() & friends, it returns the xsec |
| * value in r3 & r4 and expects the datapage ptr (non clobbered) |
| * in r9. clobbers r0,r4,r5,r6,r7,r8. |
| * When returning, r8 contains the counter value that can be reused |
| * by the monotonic clock implementation |
| */ |
| __do_get_xsec: |
| .cfi_startproc |
| /* Check for update count & load values. We use the low |
| * order 32 bits of the update count |
| */ |
| #ifdef CONFIG_PPC64 |
| 1: lwz r8,(CFG_TB_UPDATE_COUNT+4)(r9) |
| #else |
| 1: lwz r8,(CFG_TB_UPDATE_COUNT)(r9) |
| #endif |
| andi. r0,r8,1 /* pending update ? loop */ |
| bne- 1b |
| xor r0,r8,r8 /* create dependency */ |
| add r9,r9,r0 |
| |
| /* Load orig stamp (offset to TB) */ |
| lwz r5,CFG_TB_ORIG_STAMP(r9) |
| lwz r6,(CFG_TB_ORIG_STAMP+4)(r9) |
| |
| /* Get a stable TB value */ |
| 2: mftbu r3 |
| mftbl r4 |
| mftbu r0 |
| cmpl cr0,r3,r0 |
| bne- 2b |
| |
| /* Substract tb orig stamp. If the high part is non-zero, we jump to |
| * the slow path which call the syscall. |
| * If it's ok, then we have our 32 bits tb_ticks value in r7 |
| */ |
| subfc r7,r6,r4 |
| subfe. r0,r5,r3 |
| bne- 3f |
| |
| /* Load scale factor & do multiplication */ |
| lwz r5,CFG_TB_TO_XS(r9) /* load values */ |
| lwz r6,(CFG_TB_TO_XS+4)(r9) |
| mulhwu r4,r7,r5 |
| mulhwu r6,r7,r6 |
| mullw r0,r7,r5 |
| addc r6,r6,r0 |
| |
| /* At this point, we have the scaled xsec value in r4 + XER:CA |
| * we load & add the stamp since epoch |
| */ |
| lwz r5,CFG_STAMP_XSEC(r9) |
| lwz r6,(CFG_STAMP_XSEC+4)(r9) |
| adde r4,r4,r6 |
| addze r3,r5 |
| |
| /* We now have our result in r3,r4. We create a fake dependency |
| * on that result and re-check the counter |
| */ |
| or r6,r4,r3 |
| xor r0,r6,r6 |
| add r9,r9,r0 |
| #ifdef CONFIG_PPC64 |
| lwz r0,(CFG_TB_UPDATE_COUNT+4)(r9) |
| #else |
| lwz r0,(CFG_TB_UPDATE_COUNT)(r9) |
| #endif |
| cmpl cr0,r8,r0 /* check if updated */ |
| bne- 1b |
| |
| /* Warning ! The caller expects CR:EQ to be set to indicate a |
| * successful calculation (so it won't fallback to the syscall |
| * method). We have overriden that CR bit in the counter check, |
| * but fortunately, the loop exit condition _is_ CR:EQ set, so |
| * we can exit safely here. If you change this code, be careful |
| * of that side effect. |
| */ |
| 3: blr |
| .cfi_endproc |