| /* |
| * arch/s390/kernel/process.c |
| * |
| * S390 version |
| * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation |
| * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), |
| * Hartmut Penner (hp@de.ibm.com), |
| * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), |
| * |
| * Derived from "arch/i386/kernel/process.c" |
| * Copyright (C) 1995, Linus Torvalds |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #include <linux/compiler.h> |
| #include <linux/cpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/fs.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/user.h> |
| #include <linux/a.out.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/reboot.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/notifier.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/irq.h> |
| #include <asm/timer.h> |
| |
| asmlinkage void ret_from_fork(void) asm ("ret_from_fork"); |
| |
| /* |
| * Return saved PC of a blocked thread. used in kernel/sched. |
| * resume in entry.S does not create a new stack frame, it |
| * just stores the registers %r6-%r15 to the frame given by |
| * schedule. We want to return the address of the caller of |
| * schedule, so we have to walk the backchain one time to |
| * find the frame schedule() store its return address. |
| */ |
| unsigned long thread_saved_pc(struct task_struct *tsk) |
| { |
| struct stack_frame *sf, *low, *high; |
| |
| if (!tsk || !task_stack_page(tsk)) |
| return 0; |
| low = task_stack_page(tsk); |
| high = (struct stack_frame *) task_pt_regs(tsk); |
| sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN); |
| if (sf <= low || sf > high) |
| return 0; |
| sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); |
| if (sf <= low || sf > high) |
| return 0; |
| return sf->gprs[8]; |
| } |
| |
| /* |
| * Need to know about CPUs going idle? |
| */ |
| static ATOMIC_NOTIFIER_HEAD(idle_chain); |
| |
| int register_idle_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_register(&idle_chain, nb); |
| } |
| EXPORT_SYMBOL(register_idle_notifier); |
| |
| int unregister_idle_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_unregister(&idle_chain, nb); |
| } |
| EXPORT_SYMBOL(unregister_idle_notifier); |
| |
| void do_monitor_call(struct pt_regs *regs, long interruption_code) |
| { |
| /* disable monitor call class 0 */ |
| __ctl_clear_bit(8, 15); |
| |
| atomic_notifier_call_chain(&idle_chain, S390_CPU_NOT_IDLE, |
| (void *)(long) smp_processor_id()); |
| } |
| |
| extern void s390_handle_mcck(void); |
| /* |
| * The idle loop on a S390... |
| */ |
| static void default_idle(void) |
| { |
| int cpu, rc; |
| |
| /* CPU is going idle. */ |
| cpu = smp_processor_id(); |
| |
| local_irq_disable(); |
| if (need_resched()) { |
| local_irq_enable(); |
| return; |
| } |
| |
| rc = atomic_notifier_call_chain(&idle_chain, |
| S390_CPU_IDLE, (void *)(long) cpu); |
| if (rc != NOTIFY_OK && rc != NOTIFY_DONE) |
| BUG(); |
| if (rc != NOTIFY_OK) { |
| local_irq_enable(); |
| return; |
| } |
| |
| /* enable monitor call class 0 */ |
| __ctl_set_bit(8, 15); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| if (cpu_is_offline(cpu)) { |
| preempt_enable_no_resched(); |
| cpu_die(); |
| } |
| #endif |
| |
| local_mcck_disable(); |
| if (test_thread_flag(TIF_MCCK_PENDING)) { |
| local_mcck_enable(); |
| local_irq_enable(); |
| s390_handle_mcck(); |
| return; |
| } |
| |
| trace_hardirqs_on(); |
| /* Wait for external, I/O or machine check interrupt. */ |
| __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT | |
| PSW_MASK_IO | PSW_MASK_EXT); |
| } |
| |
| void cpu_idle(void) |
| { |
| for (;;) { |
| while (!need_resched()) |
| default_idle(); |
| |
| preempt_enable_no_resched(); |
| schedule(); |
| preempt_disable(); |
| } |
| } |
| |
| void show_regs(struct pt_regs *regs) |
| { |
| struct task_struct *tsk = current; |
| |
| printk("CPU: %d %s\n", task_thread_info(tsk)->cpu, print_tainted()); |
| printk("Process %s (pid: %d, task: %p, ksp: %p)\n", |
| current->comm, task_pid_nr(current), (void *) tsk, |
| (void *) tsk->thread.ksp); |
| |
| show_registers(regs); |
| /* Show stack backtrace if pt_regs is from kernel mode */ |
| if (!(regs->psw.mask & PSW_MASK_PSTATE)) |
| show_trace(NULL, (unsigned long *) regs->gprs[15]); |
| } |
| |
| extern void kernel_thread_starter(void); |
| |
| asm( |
| ".align 4\n" |
| "kernel_thread_starter:\n" |
| " la 2,0(10)\n" |
| " basr 14,9\n" |
| " la 2,0\n" |
| " br 11\n"); |
| |
| int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) |
| { |
| struct pt_regs regs; |
| |
| memset(®s, 0, sizeof(regs)); |
| regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT; |
| regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE; |
| regs.gprs[9] = (unsigned long) fn; |
| regs.gprs[10] = (unsigned long) arg; |
| regs.gprs[11] = (unsigned long) do_exit; |
| regs.orig_gpr2 = -1; |
| |
| /* Ok, create the new process.. */ |
| return do_fork(flags | CLONE_VM | CLONE_UNTRACED, |
| 0, ®s, 0, NULL, NULL); |
| } |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| } |
| |
| void flush_thread(void) |
| { |
| clear_used_math(); |
| clear_tsk_thread_flag(current, TIF_USEDFPU); |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| } |
| |
| int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp, |
| unsigned long unused, |
| struct task_struct * p, struct pt_regs * regs) |
| { |
| struct fake_frame |
| { |
| struct stack_frame sf; |
| struct pt_regs childregs; |
| } *frame; |
| |
| frame = container_of(task_pt_regs(p), struct fake_frame, childregs); |
| p->thread.ksp = (unsigned long) frame; |
| /* Store access registers to kernel stack of new process. */ |
| frame->childregs = *regs; |
| frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ |
| frame->childregs.gprs[15] = new_stackp; |
| frame->sf.back_chain = 0; |
| |
| /* new return point is ret_from_fork */ |
| frame->sf.gprs[8] = (unsigned long) ret_from_fork; |
| |
| /* fake return stack for resume(), don't go back to schedule */ |
| frame->sf.gprs[9] = (unsigned long) frame; |
| |
| /* Save access registers to new thread structure. */ |
| save_access_regs(&p->thread.acrs[0]); |
| |
| #ifndef CONFIG_64BIT |
| /* |
| * save fprs to current->thread.fp_regs to merge them with |
| * the emulated registers and then copy the result to the child. |
| */ |
| save_fp_regs(¤t->thread.fp_regs); |
| memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs, |
| sizeof(s390_fp_regs)); |
| p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _SEGMENT_TABLE; |
| /* Set a new TLS ? */ |
| if (clone_flags & CLONE_SETTLS) |
| p->thread.acrs[0] = regs->gprs[6]; |
| #else /* CONFIG_64BIT */ |
| /* Save the fpu registers to new thread structure. */ |
| save_fp_regs(&p->thread.fp_regs); |
| p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _REGION_TABLE; |
| /* Set a new TLS ? */ |
| if (clone_flags & CLONE_SETTLS) { |
| if (test_thread_flag(TIF_31BIT)) { |
| p->thread.acrs[0] = (unsigned int) regs->gprs[6]; |
| } else { |
| p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32); |
| p->thread.acrs[1] = (unsigned int) regs->gprs[6]; |
| } |
| } |
| #endif /* CONFIG_64BIT */ |
| /* start new process with ar4 pointing to the correct address space */ |
| p->thread.mm_segment = get_fs(); |
| /* Don't copy debug registers */ |
| memset(&p->thread.per_info,0,sizeof(p->thread.per_info)); |
| |
| return 0; |
| } |
| |
| asmlinkage long sys_fork(void) |
| { |
| struct pt_regs *regs = task_pt_regs(current); |
| return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL); |
| } |
| |
| asmlinkage long sys_clone(void) |
| { |
| struct pt_regs *regs = task_pt_regs(current); |
| unsigned long clone_flags; |
| unsigned long newsp; |
| int __user *parent_tidptr, *child_tidptr; |
| |
| clone_flags = regs->gprs[3]; |
| newsp = regs->orig_gpr2; |
| parent_tidptr = (int __user *) regs->gprs[4]; |
| child_tidptr = (int __user *) regs->gprs[5]; |
| if (!newsp) |
| newsp = regs->gprs[15]; |
| return do_fork(clone_flags, newsp, regs, 0, |
| parent_tidptr, child_tidptr); |
| } |
| |
| /* |
| * This is trivial, and on the face of it looks like it |
| * could equally well be done in user mode. |
| * |
| * Not so, for quite unobvious reasons - register pressure. |
| * In user mode vfork() cannot have a stack frame, and if |
| * done by calling the "clone()" system call directly, you |
| * do not have enough call-clobbered registers to hold all |
| * the information you need. |
| */ |
| asmlinkage long sys_vfork(void) |
| { |
| struct pt_regs *regs = task_pt_regs(current); |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, |
| regs->gprs[15], regs, 0, NULL, NULL); |
| } |
| |
| asmlinkage void execve_tail(void) |
| { |
| task_lock(current); |
| current->ptrace &= ~PT_DTRACE; |
| task_unlock(current); |
| current->thread.fp_regs.fpc = 0; |
| if (MACHINE_HAS_IEEE) |
| asm volatile("sfpc %0,%0" : : "d" (0)); |
| } |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| asmlinkage long sys_execve(void) |
| { |
| struct pt_regs *regs = task_pt_regs(current); |
| char *filename; |
| unsigned long result; |
| int rc; |
| |
| filename = getname((char __user *) regs->orig_gpr2); |
| if (IS_ERR(filename)) { |
| result = PTR_ERR(filename); |
| goto out; |
| } |
| rc = do_execve(filename, (char __user * __user *) regs->gprs[3], |
| (char __user * __user *) regs->gprs[4], regs); |
| if (rc) { |
| result = rc; |
| goto out_putname; |
| } |
| execve_tail(); |
| result = regs->gprs[2]; |
| out_putname: |
| putname(filename); |
| out: |
| return result; |
| } |
| |
| /* |
| * fill in the FPU structure for a core dump. |
| */ |
| int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs) |
| { |
| #ifndef CONFIG_64BIT |
| /* |
| * save fprs to current->thread.fp_regs to merge them with |
| * the emulated registers and then copy the result to the dump. |
| */ |
| save_fp_regs(¤t->thread.fp_regs); |
| memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); |
| #else /* CONFIG_64BIT */ |
| save_fp_regs(fpregs); |
| #endif /* CONFIG_64BIT */ |
| return 1; |
| } |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| struct stack_frame *sf, *low, *high; |
| unsigned long return_address; |
| int count; |
| |
| if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p)) |
| return 0; |
| low = task_stack_page(p); |
| high = (struct stack_frame *) task_pt_regs(p); |
| sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN); |
| if (sf <= low || sf > high) |
| return 0; |
| for (count = 0; count < 16; count++) { |
| sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); |
| if (sf <= low || sf > high) |
| return 0; |
| return_address = sf->gprs[8] & PSW_ADDR_INSN; |
| if (!in_sched_functions(return_address)) |
| return return_address; |
| } |
| return 0; |
| } |
| |