| /* |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| * Copyright (C) 1996 Paul Mackerras |
| * |
| * Derived from "arch/i386/mm/init.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * Dave Engebretsen <engebret@us.ibm.com> |
| * Rework for PPC64 port. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/stddef.h> |
| #include <linux/vmalloc.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/bootmem.h> |
| #include <linux/highmem.h> |
| #include <linux/idr.h> |
| #include <linux/nodemask.h> |
| #include <linux/module.h> |
| #include <linux/poison.h> |
| #include <linux/memblock.h> |
| #include <linux/hugetlb.h> |
| #include <linux/slab.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/page.h> |
| #include <asm/prom.h> |
| #include <asm/rtas.h> |
| #include <asm/io.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/uaccess.h> |
| #include <asm/smp.h> |
| #include <asm/machdep.h> |
| #include <asm/tlb.h> |
| #include <asm/eeh.h> |
| #include <asm/processor.h> |
| #include <asm/mmzone.h> |
| #include <asm/cputable.h> |
| #include <asm/sections.h> |
| #include <asm/iommu.h> |
| #include <asm/vdso.h> |
| |
| #include "mmu_decl.h" |
| |
| #ifdef CONFIG_PPC_STD_MMU_64 |
| #if PGTABLE_RANGE > USER_VSID_RANGE |
| #warning Limited user VSID range means pagetable space is wasted |
| #endif |
| |
| #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE) |
| #warning TASK_SIZE is smaller than it needs to be. |
| #endif |
| #endif /* CONFIG_PPC_STD_MMU_64 */ |
| |
| phys_addr_t memstart_addr = ~0; |
| EXPORT_SYMBOL_GPL(memstart_addr); |
| phys_addr_t kernstart_addr; |
| EXPORT_SYMBOL_GPL(kernstart_addr); |
| |
| static void pgd_ctor(void *addr) |
| { |
| memset(addr, 0, PGD_TABLE_SIZE); |
| } |
| |
| static void pmd_ctor(void *addr) |
| { |
| memset(addr, 0, PMD_TABLE_SIZE); |
| } |
| |
| struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE]; |
| |
| /* |
| * Create a kmem_cache() for pagetables. This is not used for PTE |
| * pages - they're linked to struct page, come from the normal free |
| * pages pool and have a different entry size (see real_pte_t) to |
| * everything else. Caches created by this function are used for all |
| * the higher level pagetables, and for hugepage pagetables. |
| */ |
| void pgtable_cache_add(unsigned shift, void (*ctor)(void *)) |
| { |
| char *name; |
| unsigned long table_size = sizeof(void *) << shift; |
| unsigned long align = table_size; |
| |
| /* When batching pgtable pointers for RCU freeing, we store |
| * the index size in the low bits. Table alignment must be |
| * big enough to fit it. |
| * |
| * Likewise, hugeapge pagetable pointers contain a (different) |
| * shift value in the low bits. All tables must be aligned so |
| * as to leave enough 0 bits in the address to contain it. */ |
| unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1, |
| HUGEPD_SHIFT_MASK + 1); |
| struct kmem_cache *new; |
| |
| /* It would be nice if this was a BUILD_BUG_ON(), but at the |
| * moment, gcc doesn't seem to recognize is_power_of_2 as a |
| * constant expression, so so much for that. */ |
| BUG_ON(!is_power_of_2(minalign)); |
| BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE)); |
| |
| if (PGT_CACHE(shift)) |
| return; /* Already have a cache of this size */ |
| |
| align = max_t(unsigned long, align, minalign); |
| name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift); |
| new = kmem_cache_create(name, table_size, align, 0, ctor); |
| PGT_CACHE(shift) = new; |
| |
| pr_debug("Allocated pgtable cache for order %d\n", shift); |
| } |
| |
| |
| void pgtable_cache_init(void) |
| { |
| pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor); |
| pgtable_cache_add(PMD_INDEX_SIZE, pmd_ctor); |
| if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_INDEX_SIZE)) |
| panic("Couldn't allocate pgtable caches"); |
| |
| /* In all current configs, when the PUD index exists it's the |
| * same size as either the pgd or pmd index. Verify that the |
| * initialization above has also created a PUD cache. This |
| * will need re-examiniation if we add new possibilities for |
| * the pagetable layout. */ |
| BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE)); |
| } |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| /* |
| * Given an address within the vmemmap, determine the pfn of the page that |
| * represents the start of the section it is within. Note that we have to |
| * do this by hand as the proffered address may not be correctly aligned. |
| * Subtraction of non-aligned pointers produces undefined results. |
| */ |
| static unsigned long __meminit vmemmap_section_start(unsigned long page) |
| { |
| unsigned long offset = page - ((unsigned long)(vmemmap)); |
| |
| /* Return the pfn of the start of the section. */ |
| return (offset / sizeof(struct page)) & PAGE_SECTION_MASK; |
| } |
| |
| /* |
| * Check if this vmemmap page is already initialised. If any section |
| * which overlaps this vmemmap page is initialised then this page is |
| * initialised already. |
| */ |
| static int __meminit vmemmap_populated(unsigned long start, int page_size) |
| { |
| unsigned long end = start + page_size; |
| |
| for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page))) |
| if (pfn_valid(vmemmap_section_start(start))) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* On hash-based CPUs, the vmemmap is bolted in the hash table. |
| * |
| * On Book3E CPUs, the vmemmap is currently mapped in the top half of |
| * the vmalloc space using normal page tables, though the size of |
| * pages encoded in the PTEs can be different |
| */ |
| |
| #ifdef CONFIG_PPC_BOOK3E |
| static void __meminit vmemmap_create_mapping(unsigned long start, |
| unsigned long page_size, |
| unsigned long phys) |
| { |
| /* Create a PTE encoding without page size */ |
| unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED | |
| _PAGE_KERNEL_RW; |
| |
| /* PTEs only contain page size encodings up to 32M */ |
| BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf); |
| |
| /* Encode the size in the PTE */ |
| flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8; |
| |
| /* For each PTE for that area, map things. Note that we don't |
| * increment phys because all PTEs are of the large size and |
| * thus must have the low bits clear |
| */ |
| for (i = 0; i < page_size; i += PAGE_SIZE) |
| BUG_ON(map_kernel_page(start + i, phys, flags)); |
| } |
| #else /* CONFIG_PPC_BOOK3E */ |
| static void __meminit vmemmap_create_mapping(unsigned long start, |
| unsigned long page_size, |
| unsigned long phys) |
| { |
| int mapped = htab_bolt_mapping(start, start + page_size, phys, |
| PAGE_KERNEL, mmu_vmemmap_psize, |
| mmu_kernel_ssize); |
| BUG_ON(mapped < 0); |
| } |
| #endif /* CONFIG_PPC_BOOK3E */ |
| |
| struct vmemmap_backing *vmemmap_list; |
| |
| static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node) |
| { |
| static struct vmemmap_backing *next; |
| static int num_left; |
| |
| /* allocate a page when required and hand out chunks */ |
| if (!next || !num_left) { |
| next = vmemmap_alloc_block(PAGE_SIZE, node); |
| if (unlikely(!next)) { |
| WARN_ON(1); |
| return NULL; |
| } |
| num_left = PAGE_SIZE / sizeof(struct vmemmap_backing); |
| } |
| |
| num_left--; |
| |
| return next++; |
| } |
| |
| static __meminit void vmemmap_list_populate(unsigned long phys, |
| unsigned long start, |
| int node) |
| { |
| struct vmemmap_backing *vmem_back; |
| |
| vmem_back = vmemmap_list_alloc(node); |
| if (unlikely(!vmem_back)) { |
| WARN_ON(1); |
| return; |
| } |
| |
| vmem_back->phys = phys; |
| vmem_back->virt_addr = start; |
| vmem_back->list = vmemmap_list; |
| |
| vmemmap_list = vmem_back; |
| } |
| |
| int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) |
| { |
| unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; |
| |
| /* Align to the page size of the linear mapping. */ |
| start = _ALIGN_DOWN(start, page_size); |
| |
| pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node); |
| |
| for (; start < end; start += page_size) { |
| void *p; |
| |
| if (vmemmap_populated(start, page_size)) |
| continue; |
| |
| p = vmemmap_alloc_block(page_size, node); |
| if (!p) |
| return -ENOMEM; |
| |
| vmemmap_list_populate(__pa(p), start, node); |
| |
| pr_debug(" * %016lx..%016lx allocated at %p\n", |
| start, start + page_size, p); |
| |
| vmemmap_create_mapping(start, page_size, __pa(p)); |
| } |
| |
| return 0; |
| } |
| |
| void vmemmap_free(unsigned long start, unsigned long end) |
| { |
| } |
| |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
| |