| /* |
| * several functions that help interpret ARC instructions |
| * used for unaligned accesses, kprobes and kgdb |
| * |
| * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kprobes.h> |
| #include <linux/slab.h> |
| #include <asm/disasm.h> |
| #include <asm/uaccess.h> |
| |
| #if defined(CONFIG_KGDB) || defined(CONFIG_ARC_MISALIGN_ACCESS) || \ |
| defined(CONFIG_KPROBES) |
| |
| /* disasm_instr: Analyses instruction at addr, stores |
| * findings in *state |
| */ |
| void __kprobes disasm_instr(unsigned long addr, struct disasm_state *state, |
| int userspace, struct pt_regs *regs, struct callee_regs *cregs) |
| { |
| int fieldA = 0; |
| int fieldC = 0, fieldCisReg = 0; |
| uint16_t word1 = 0, word0 = 0; |
| int subopcode, is_linked, op_format; |
| uint16_t *ins_ptr; |
| uint16_t ins_buf[4]; |
| int bytes_not_copied = 0; |
| |
| memset(state, 0, sizeof(struct disasm_state)); |
| |
| /* This fetches the upper part of the 32 bit instruction |
| * in both the cases of Little Endian or Big Endian configurations. */ |
| if (userspace) { |
| bytes_not_copied = copy_from_user(ins_buf, |
| (const void __user *) addr, 8); |
| if (bytes_not_copied > 6) |
| goto fault; |
| ins_ptr = ins_buf; |
| } else { |
| ins_ptr = (uint16_t *) addr; |
| } |
| |
| word1 = *((uint16_t *)addr); |
| |
| state->major_opcode = (word1 >> 11) & 0x1F; |
| |
| /* Check if the instruction is 32 bit or 16 bit instruction */ |
| if (state->major_opcode < 0x0B) { |
| if (bytes_not_copied > 4) |
| goto fault; |
| state->instr_len = 4; |
| word0 = *((uint16_t *)(addr+2)); |
| state->words[0] = (word1 << 16) | word0; |
| } else { |
| state->instr_len = 2; |
| state->words[0] = word1; |
| } |
| |
| /* Read the second word in case of limm */ |
| word1 = *((uint16_t *)(addr + state->instr_len)); |
| word0 = *((uint16_t *)(addr + state->instr_len + 2)); |
| state->words[1] = (word1 << 16) | word0; |
| |
| switch (state->major_opcode) { |
| case op_Bcc: |
| state->is_branch = 1; |
| |
| /* unconditional branch s25, conditional branch s21 */ |
| fieldA = (IS_BIT(state->words[0], 16)) ? |
| FIELD_s25(state->words[0]) : |
| FIELD_s21(state->words[0]); |
| |
| state->delay_slot = IS_BIT(state->words[0], 5); |
| state->target = fieldA + (addr & ~0x3); |
| state->flow = direct_jump; |
| break; |
| |
| case op_BLcc: |
| if (IS_BIT(state->words[0], 16)) { |
| /* Branch and Link*/ |
| /* unconditional branch s25, conditional branch s21 */ |
| fieldA = (IS_BIT(state->words[0], 17)) ? |
| (FIELD_s25(state->words[0]) & ~0x3) : |
| FIELD_s21(state->words[0]); |
| |
| state->flow = direct_call; |
| } else { |
| /*Branch On Compare */ |
| fieldA = FIELD_s9(state->words[0]) & ~0x3; |
| state->flow = direct_jump; |
| } |
| |
| state->delay_slot = IS_BIT(state->words[0], 5); |
| state->target = fieldA + (addr & ~0x3); |
| state->is_branch = 1; |
| break; |
| |
| case op_LD: /* LD<zz> a,[b,s9] */ |
| state->write = 0; |
| state->di = BITS(state->words[0], 11, 11); |
| if (state->di) |
| break; |
| state->x = BITS(state->words[0], 6, 6); |
| state->zz = BITS(state->words[0], 7, 8); |
| state->aa = BITS(state->words[0], 9, 10); |
| state->wb_reg = FIELD_B(state->words[0]); |
| if (state->wb_reg == REG_LIMM) { |
| state->instr_len += 4; |
| state->aa = 0; |
| state->src1 = state->words[1]; |
| } else { |
| state->src1 = get_reg(state->wb_reg, regs, cregs); |
| } |
| state->src2 = FIELD_s9(state->words[0]); |
| state->dest = FIELD_A(state->words[0]); |
| state->pref = (state->dest == REG_LIMM); |
| break; |
| |
| case op_ST: |
| state->write = 1; |
| state->di = BITS(state->words[0], 5, 5); |
| if (state->di) |
| break; |
| state->aa = BITS(state->words[0], 3, 4); |
| state->zz = BITS(state->words[0], 1, 2); |
| state->src1 = FIELD_C(state->words[0]); |
| if (state->src1 == REG_LIMM) { |
| state->instr_len += 4; |
| state->src1 = state->words[1]; |
| } else { |
| state->src1 = get_reg(state->src1, regs, cregs); |
| } |
| state->wb_reg = FIELD_B(state->words[0]); |
| if (state->wb_reg == REG_LIMM) { |
| state->aa = 0; |
| state->instr_len += 4; |
| state->src2 = state->words[1]; |
| } else { |
| state->src2 = get_reg(state->wb_reg, regs, cregs); |
| } |
| state->src3 = FIELD_s9(state->words[0]); |
| break; |
| |
| case op_MAJOR_4: |
| subopcode = MINOR_OPCODE(state->words[0]); |
| switch (subopcode) { |
| case 32: /* Jcc */ |
| case 33: /* Jcc.D */ |
| case 34: /* JLcc */ |
| case 35: /* JLcc.D */ |
| is_linked = 0; |
| |
| if (subopcode == 33 || subopcode == 35) |
| state->delay_slot = 1; |
| |
| if (subopcode == 34 || subopcode == 35) |
| is_linked = 1; |
| |
| fieldCisReg = 0; |
| op_format = BITS(state->words[0], 22, 23); |
| if (op_format == 0 || ((op_format == 3) && |
| (!IS_BIT(state->words[0], 5)))) { |
| fieldC = FIELD_C(state->words[0]); |
| |
| if (fieldC == REG_LIMM) { |
| fieldC = state->words[1]; |
| state->instr_len += 4; |
| } else { |
| fieldCisReg = 1; |
| } |
| } else if (op_format == 1 || ((op_format == 3) |
| && (IS_BIT(state->words[0], 5)))) { |
| fieldC = FIELD_C(state->words[0]); |
| } else { |
| /* op_format == 2 */ |
| fieldC = FIELD_s12(state->words[0]); |
| } |
| |
| if (!fieldCisReg) { |
| state->target = fieldC; |
| state->flow = is_linked ? |
| direct_call : direct_jump; |
| } else { |
| state->target = get_reg(fieldC, regs, cregs); |
| state->flow = is_linked ? |
| indirect_call : indirect_jump; |
| } |
| state->is_branch = 1; |
| break; |
| |
| case 40: /* LPcc */ |
| if (BITS(state->words[0], 22, 23) == 3) { |
| /* Conditional LPcc u7 */ |
| fieldC = FIELD_C(state->words[0]); |
| |
| fieldC = fieldC << 1; |
| fieldC += (addr & ~0x03); |
| state->is_branch = 1; |
| state->flow = direct_jump; |
| state->target = fieldC; |
| } |
| /* For Unconditional lp, next pc is the fall through |
| * which is updated */ |
| break; |
| |
| case 48 ... 55: /* LD a,[b,c] */ |
| state->di = BITS(state->words[0], 15, 15); |
| if (state->di) |
| break; |
| state->x = BITS(state->words[0], 16, 16); |
| state->zz = BITS(state->words[0], 17, 18); |
| state->aa = BITS(state->words[0], 22, 23); |
| state->wb_reg = FIELD_B(state->words[0]); |
| if (state->wb_reg == REG_LIMM) { |
| state->instr_len += 4; |
| state->src1 = state->words[1]; |
| } else { |
| state->src1 = get_reg(state->wb_reg, regs, |
| cregs); |
| } |
| state->src2 = FIELD_C(state->words[0]); |
| if (state->src2 == REG_LIMM) { |
| state->instr_len += 4; |
| state->src2 = state->words[1]; |
| } else { |
| state->src2 = get_reg(state->src2, regs, |
| cregs); |
| } |
| state->dest = FIELD_A(state->words[0]); |
| if (state->dest == REG_LIMM) |
| state->pref = 1; |
| break; |
| |
| case 10: /* MOV */ |
| /* still need to check for limm to extract instr len */ |
| /* MOV is special case because it only takes 2 args */ |
| switch (BITS(state->words[0], 22, 23)) { |
| case 0: /* OP a,b,c */ |
| if (FIELD_C(state->words[0]) == REG_LIMM) |
| state->instr_len += 4; |
| break; |
| case 1: /* OP a,b,u6 */ |
| break; |
| case 2: /* OP b,b,s12 */ |
| break; |
| case 3: /* OP.cc b,b,c/u6 */ |
| if ((!IS_BIT(state->words[0], 5)) && |
| (FIELD_C(state->words[0]) == REG_LIMM)) |
| state->instr_len += 4; |
| break; |
| } |
| break; |
| |
| |
| default: |
| /* Not a Load, Jump or Loop instruction */ |
| /* still need to check for limm to extract instr len */ |
| switch (BITS(state->words[0], 22, 23)) { |
| case 0: /* OP a,b,c */ |
| if ((FIELD_B(state->words[0]) == REG_LIMM) || |
| (FIELD_C(state->words[0]) == REG_LIMM)) |
| state->instr_len += 4; |
| break; |
| case 1: /* OP a,b,u6 */ |
| break; |
| case 2: /* OP b,b,s12 */ |
| break; |
| case 3: /* OP.cc b,b,c/u6 */ |
| if ((!IS_BIT(state->words[0], 5)) && |
| ((FIELD_B(state->words[0]) == REG_LIMM) || |
| (FIELD_C(state->words[0]) == REG_LIMM))) |
| state->instr_len += 4; |
| break; |
| } |
| break; |
| } |
| break; |
| |
| /* 16 Bit Instructions */ |
| case op_LD_ADD: /* LD_S|LDB_S|LDW_S a,[b,c] */ |
| state->zz = BITS(state->words[0], 3, 4); |
| state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); |
| state->src2 = get_reg(FIELD_S_C(state->words[0]), regs, cregs); |
| state->dest = FIELD_S_A(state->words[0]); |
| break; |
| |
| case op_ADD_MOV_CMP: |
| /* check for limm, ignore mov_s h,b (== mov_s 0,b) */ |
| if ((BITS(state->words[0], 3, 4) < 3) && |
| (FIELD_S_H(state->words[0]) == REG_LIMM)) |
| state->instr_len += 4; |
| break; |
| |
| case op_S: |
| subopcode = BITS(state->words[0], 5, 7); |
| switch (subopcode) { |
| case 0: /* j_s */ |
| case 1: /* j_s.d */ |
| case 2: /* jl_s */ |
| case 3: /* jl_s.d */ |
| state->target = get_reg(FIELD_S_B(state->words[0]), |
| regs, cregs); |
| state->delay_slot = subopcode & 1; |
| state->flow = (subopcode >= 2) ? |
| direct_call : indirect_jump; |
| break; |
| case 7: |
| switch (BITS(state->words[0], 8, 10)) { |
| case 4: /* jeq_s [blink] */ |
| case 5: /* jne_s [blink] */ |
| case 6: /* j_s [blink] */ |
| case 7: /* j_s.d [blink] */ |
| state->delay_slot = (subopcode == 7); |
| state->flow = indirect_jump; |
| state->target = get_reg(31, regs, cregs); |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| break; |
| |
| case op_LD_S: /* LD_S c, [b, u7] */ |
| state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); |
| state->src2 = FIELD_S_u7(state->words[0]); |
| state->dest = FIELD_S_C(state->words[0]); |
| break; |
| |
| case op_LDB_S: |
| case op_STB_S: |
| /* no further handling required as byte accesses should not |
| * cause an unaligned access exception */ |
| state->zz = 1; |
| break; |
| |
| case op_LDWX_S: /* LDWX_S c, [b, u6] */ |
| state->x = 1; |
| /* intentional fall-through */ |
| |
| case op_LDW_S: /* LDW_S c, [b, u6] */ |
| state->zz = 2; |
| state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); |
| state->src2 = FIELD_S_u6(state->words[0]); |
| state->dest = FIELD_S_C(state->words[0]); |
| break; |
| |
| case op_ST_S: /* ST_S c, [b, u7] */ |
| state->write = 1; |
| state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs); |
| state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); |
| state->src3 = FIELD_S_u7(state->words[0]); |
| break; |
| |
| case op_STW_S: /* STW_S c,[b,u6] */ |
| state->write = 1; |
| state->zz = 2; |
| state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs); |
| state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); |
| state->src3 = FIELD_S_u6(state->words[0]); |
| break; |
| |
| case op_SP: /* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */ |
| /* note: we are ignoring possibility of: |
| * ADD_S, SUB_S, PUSH_S, POP_S as these should not |
| * cause unaliged exception anyway */ |
| state->write = BITS(state->words[0], 6, 6); |
| state->zz = BITS(state->words[0], 5, 5); |
| if (state->zz) |
| break; /* byte accesses should not come here */ |
| if (!state->write) { |
| state->src1 = get_reg(28, regs, cregs); |
| state->src2 = FIELD_S_u7(state->words[0]); |
| state->dest = FIELD_S_B(state->words[0]); |
| } else { |
| state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, |
| cregs); |
| state->src2 = get_reg(28, regs, cregs); |
| state->src3 = FIELD_S_u7(state->words[0]); |
| } |
| break; |
| |
| case op_GP: /* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */ |
| /* note: ADD_S r0, gp, s11 is ignored */ |
| state->zz = BITS(state->words[0], 9, 10); |
| state->src1 = get_reg(26, regs, cregs); |
| state->src2 = state->zz ? FIELD_S_s10(state->words[0]) : |
| FIELD_S_s11(state->words[0]); |
| state->dest = 0; |
| break; |
| |
| case op_Pcl: /* LD_S b,[pcl,u10] */ |
| state->src1 = regs->ret & ~3; |
| state->src2 = FIELD_S_u10(state->words[0]); |
| state->dest = FIELD_S_B(state->words[0]); |
| break; |
| |
| case op_BR_S: |
| state->target = FIELD_S_s8(state->words[0]) + (addr & ~0x03); |
| state->flow = direct_jump; |
| state->is_branch = 1; |
| break; |
| |
| case op_B_S: |
| fieldA = (BITS(state->words[0], 9, 10) == 3) ? |
| FIELD_S_s7(state->words[0]) : |
| FIELD_S_s10(state->words[0]); |
| state->target = fieldA + (addr & ~0x03); |
| state->flow = direct_jump; |
| state->is_branch = 1; |
| break; |
| |
| case op_BL_S: |
| state->target = FIELD_S_s13(state->words[0]) + (addr & ~0x03); |
| state->flow = direct_call; |
| state->is_branch = 1; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (bytes_not_copied <= (8 - state->instr_len)) |
| return; |
| |
| fault: state->fault = 1; |
| } |
| |
| long __kprobes get_reg(int reg, struct pt_regs *regs, |
| struct callee_regs *cregs) |
| { |
| long *p; |
| |
| if (reg <= 12) { |
| p = ®s->r0; |
| return p[-reg]; |
| } |
| |
| if (cregs && (reg <= 25)) { |
| p = &cregs->r13; |
| return p[13-reg]; |
| } |
| |
| if (reg == 26) |
| return regs->r26; |
| if (reg == 27) |
| return regs->fp; |
| if (reg == 28) |
| return regs->sp; |
| if (reg == 31) |
| return regs->blink; |
| |
| return 0; |
| } |
| |
| void __kprobes set_reg(int reg, long val, struct pt_regs *regs, |
| struct callee_regs *cregs) |
| { |
| long *p; |
| |
| switch (reg) { |
| case 0 ... 12: |
| p = ®s->r0; |
| p[-reg] = val; |
| break; |
| case 13 ... 25: |
| if (cregs) { |
| p = &cregs->r13; |
| p[13-reg] = val; |
| } |
| break; |
| case 26: |
| regs->r26 = val; |
| break; |
| case 27: |
| regs->fp = val; |
| break; |
| case 28: |
| regs->sp = val; |
| break; |
| case 31: |
| regs->blink = val; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Disassembles the insn at @pc and sets @next_pc to next PC (which could be |
| * @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns). |
| * |
| * If @pc is a branch |
| * -@tgt_if_br is set to branch target. |
| * -If branch has delay slot, @next_pc updated with actual next PC. |
| */ |
| int __kprobes disasm_next_pc(unsigned long pc, struct pt_regs *regs, |
| struct callee_regs *cregs, |
| unsigned long *next_pc, unsigned long *tgt_if_br) |
| { |
| struct disasm_state instr; |
| |
| memset(&instr, 0, sizeof(struct disasm_state)); |
| disasm_instr(pc, &instr, 0, regs, cregs); |
| |
| *next_pc = pc + instr.instr_len; |
| |
| /* Instruction with possible two targets branch, jump and loop */ |
| if (instr.is_branch) |
| *tgt_if_br = instr.target; |
| |
| /* For the instructions with delay slots, the fall through is the |
| * instruction following the instruction in delay slot. |
| */ |
| if (instr.delay_slot) { |
| struct disasm_state instr_d; |
| |
| disasm_instr(*next_pc, &instr_d, 0, regs, cregs); |
| |
| *next_pc += instr_d.instr_len; |
| } |
| |
| /* Zero Overhead Loop - end of the loop */ |
| if (!(regs->status32 & STATUS32_L) && (*next_pc == regs->lp_end) |
| && (regs->lp_count > 1)) { |
| *next_pc = regs->lp_start; |
| } |
| |
| return instr.is_branch; |
| } |
| |
| #endif /* CONFIG_KGDB || CONFIG_ARC_MISALIGN_ACCESS || CONFIG_KPROBES */ |