| /* -*- mode: c; c-basic-offset: 8 -*- */ |
| |
| /* Copyright (C) 1999,2001 |
| * |
| * Author: J.E.J.Bottomley@HansenPartnership.com |
| * |
| * linux/arch/i386/kernel/voyager_smp.c |
| * |
| * This file provides all the same external entries as smp.c but uses |
| * the voyager hal to provide the functionality |
| */ |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/delay.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/cache.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp_lock.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/bootmem.h> |
| #include <linux/completion.h> |
| #include <asm/desc.h> |
| #include <asm/voyager.h> |
| #include <asm/vic.h> |
| #include <asm/mtrr.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlbflush.h> |
| #include <asm/arch_hooks.h> |
| #include <asm/pda.h> |
| |
| /* TLB state -- visible externally, indexed physically */ |
| DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0 }; |
| |
| /* CPU IRQ affinity -- set to all ones initially */ |
| static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1] = ~0UL }; |
| |
| /* per CPU data structure (for /proc/cpuinfo et al), visible externally |
| * indexed physically */ |
| struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned; |
| EXPORT_SYMBOL(cpu_data); |
| |
| /* physical ID of the CPU used to boot the system */ |
| unsigned char boot_cpu_id; |
| |
| /* The memory line addresses for the Quad CPIs */ |
| struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned; |
| |
| /* The masks for the Extended VIC processors, filled in by cat_init */ |
| __u32 voyager_extended_vic_processors = 0; |
| |
| /* Masks for the extended Quad processors which cannot be VIC booted */ |
| __u32 voyager_allowed_boot_processors = 0; |
| |
| /* The mask for the Quad Processors (both extended and non-extended) */ |
| __u32 voyager_quad_processors = 0; |
| |
| /* Total count of live CPUs, used in process.c to display |
| * the CPU information and in irq.c for the per CPU irq |
| * activity count. Finally exported by i386_ksyms.c */ |
| static int voyager_extended_cpus = 1; |
| |
| /* Have we found an SMP box - used by time.c to do the profiling |
| interrupt for timeslicing; do not set to 1 until the per CPU timer |
| interrupt is active */ |
| int smp_found_config = 0; |
| |
| /* Used for the invalidate map that's also checked in the spinlock */ |
| static volatile unsigned long smp_invalidate_needed; |
| |
| /* Bitmask of currently online CPUs - used by setup.c for |
| /proc/cpuinfo, visible externally but still physical */ |
| cpumask_t cpu_online_map = CPU_MASK_NONE; |
| EXPORT_SYMBOL(cpu_online_map); |
| |
| /* Bitmask of CPUs present in the system - exported by i386_syms.c, used |
| * by scheduler but indexed physically */ |
| cpumask_t phys_cpu_present_map = CPU_MASK_NONE; |
| |
| |
| /* The internal functions */ |
| static void send_CPI(__u32 cpuset, __u8 cpi); |
| static void ack_CPI(__u8 cpi); |
| static int ack_QIC_CPI(__u8 cpi); |
| static void ack_special_QIC_CPI(__u8 cpi); |
| static void ack_VIC_CPI(__u8 cpi); |
| static void send_CPI_allbutself(__u8 cpi); |
| static void mask_vic_irq(unsigned int irq); |
| static void unmask_vic_irq(unsigned int irq); |
| static unsigned int startup_vic_irq(unsigned int irq); |
| static void enable_local_vic_irq(unsigned int irq); |
| static void disable_local_vic_irq(unsigned int irq); |
| static void before_handle_vic_irq(unsigned int irq); |
| static void after_handle_vic_irq(unsigned int irq); |
| static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask); |
| static void ack_vic_irq(unsigned int irq); |
| static void vic_enable_cpi(void); |
| static void do_boot_cpu(__u8 cpuid); |
| static void do_quad_bootstrap(void); |
| |
| int hard_smp_processor_id(void); |
| int safe_smp_processor_id(void); |
| |
| /* Inline functions */ |
| static inline void |
| send_one_QIC_CPI(__u8 cpu, __u8 cpi) |
| { |
| voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi = |
| (smp_processor_id() << 16) + cpi; |
| } |
| |
| static inline void |
| send_QIC_CPI(__u32 cpuset, __u8 cpi) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| if(cpuset & (1<<cpu)) { |
| #ifdef VOYAGER_DEBUG |
| if(!cpu_isset(cpu, cpu_online_map)) |
| VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu)); |
| #endif |
| send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET); |
| } |
| } |
| } |
| |
| static inline void |
| wrapper_smp_local_timer_interrupt(void) |
| { |
| irq_enter(); |
| smp_local_timer_interrupt(); |
| irq_exit(); |
| } |
| |
| static inline void |
| send_one_CPI(__u8 cpu, __u8 cpi) |
| { |
| if(voyager_quad_processors & (1<<cpu)) |
| send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET); |
| else |
| send_CPI(1<<cpu, cpi); |
| } |
| |
| static inline void |
| send_CPI_allbutself(__u8 cpi) |
| { |
| __u8 cpu = smp_processor_id(); |
| __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu); |
| send_CPI(mask, cpi); |
| } |
| |
| static inline int |
| is_cpu_quad(void) |
| { |
| __u8 cpumask = inb(VIC_PROC_WHO_AM_I); |
| return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER); |
| } |
| |
| static inline int |
| is_cpu_extended(void) |
| { |
| __u8 cpu = hard_smp_processor_id(); |
| |
| return(voyager_extended_vic_processors & (1<<cpu)); |
| } |
| |
| static inline int |
| is_cpu_vic_boot(void) |
| { |
| __u8 cpu = hard_smp_processor_id(); |
| |
| return(voyager_extended_vic_processors |
| & voyager_allowed_boot_processors & (1<<cpu)); |
| } |
| |
| |
| static inline void |
| ack_CPI(__u8 cpi) |
| { |
| switch(cpi) { |
| case VIC_CPU_BOOT_CPI: |
| if(is_cpu_quad() && !is_cpu_vic_boot()) |
| ack_QIC_CPI(cpi); |
| else |
| ack_VIC_CPI(cpi); |
| break; |
| case VIC_SYS_INT: |
| case VIC_CMN_INT: |
| /* These are slightly strange. Even on the Quad card, |
| * They are vectored as VIC CPIs */ |
| if(is_cpu_quad()) |
| ack_special_QIC_CPI(cpi); |
| else |
| ack_VIC_CPI(cpi); |
| break; |
| default: |
| printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi); |
| break; |
| } |
| } |
| |
| /* local variables */ |
| |
| /* The VIC IRQ descriptors -- these look almost identical to the |
| * 8259 IRQs except that masks and things must be kept per processor |
| */ |
| static struct irq_chip vic_chip = { |
| .name = "VIC", |
| .startup = startup_vic_irq, |
| .mask = mask_vic_irq, |
| .unmask = unmask_vic_irq, |
| .set_affinity = set_vic_irq_affinity, |
| }; |
| |
| /* used to count up as CPUs are brought on line (starts at 0) */ |
| static int cpucount = 0; |
| |
| /* steal a page from the bottom of memory for the trampoline and |
| * squirrel its address away here. This will be in kernel virtual |
| * space */ |
| static __u32 trampoline_base; |
| |
| /* The per cpu profile stuff - used in smp_local_timer_interrupt */ |
| static DEFINE_PER_CPU(int, prof_multiplier) = 1; |
| static DEFINE_PER_CPU(int, prof_old_multiplier) = 1; |
| static DEFINE_PER_CPU(int, prof_counter) = 1; |
| |
| /* the map used to check if a CPU has booted */ |
| static __u32 cpu_booted_map; |
| |
| /* the synchronize flag used to hold all secondary CPUs spinning in |
| * a tight loop until the boot sequence is ready for them */ |
| static cpumask_t smp_commenced_mask = CPU_MASK_NONE; |
| |
| /* This is for the new dynamic CPU boot code */ |
| cpumask_t cpu_callin_map = CPU_MASK_NONE; |
| cpumask_t cpu_callout_map = CPU_MASK_NONE; |
| EXPORT_SYMBOL(cpu_callout_map); |
| cpumask_t cpu_possible_map = CPU_MASK_NONE; |
| EXPORT_SYMBOL(cpu_possible_map); |
| |
| /* The per processor IRQ masks (these are usually kept in sync) */ |
| static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned; |
| |
| /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */ |
| static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 }; |
| |
| /* Lock for enable/disable of VIC interrupts */ |
| static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock); |
| |
| /* The boot processor is correctly set up in PC mode when it |
| * comes up, but the secondaries need their master/slave 8259 |
| * pairs initializing correctly */ |
| |
| /* Interrupt counters (per cpu) and total - used to try to |
| * even up the interrupt handling routines */ |
| static long vic_intr_total = 0; |
| static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 }; |
| static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 }; |
| |
| /* Since we can only use CPI0, we fake all the other CPIs */ |
| static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned; |
| |
| /* debugging routine to read the isr of the cpu's pic */ |
| static inline __u16 |
| vic_read_isr(void) |
| { |
| __u16 isr; |
| |
| outb(0x0b, 0xa0); |
| isr = inb(0xa0) << 8; |
| outb(0x0b, 0x20); |
| isr |= inb(0x20); |
| |
| return isr; |
| } |
| |
| static __init void |
| qic_setup(void) |
| { |
| if(!is_cpu_quad()) { |
| /* not a quad, no setup */ |
| return; |
| } |
| outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0); |
| outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1); |
| |
| if(is_cpu_extended()) { |
| /* the QIC duplicate of the VIC base register */ |
| outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER); |
| outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER); |
| |
| /* FIXME: should set up the QIC timer and memory parity |
| * error vectors here */ |
| } |
| } |
| |
| static __init void |
| vic_setup_pic(void) |
| { |
| outb(1, VIC_REDIRECT_REGISTER_1); |
| /* clear the claim registers for dynamic routing */ |
| outb(0, VIC_CLAIM_REGISTER_0); |
| outb(0, VIC_CLAIM_REGISTER_1); |
| |
| outb(0, VIC_PRIORITY_REGISTER); |
| /* Set the Primary and Secondary Microchannel vector |
| * bases to be the same as the ordinary interrupts |
| * |
| * FIXME: This would be more efficient using separate |
| * vectors. */ |
| outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE); |
| outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE); |
| /* Now initiallise the master PIC belonging to this CPU by |
| * sending the four ICWs */ |
| |
| /* ICW1: level triggered, ICW4 needed */ |
| outb(0x19, 0x20); |
| |
| /* ICW2: vector base */ |
| outb(FIRST_EXTERNAL_VECTOR, 0x21); |
| |
| /* ICW3: slave at line 2 */ |
| outb(0x04, 0x21); |
| |
| /* ICW4: 8086 mode */ |
| outb(0x01, 0x21); |
| |
| /* now the same for the slave PIC */ |
| |
| /* ICW1: level trigger, ICW4 needed */ |
| outb(0x19, 0xA0); |
| |
| /* ICW2: slave vector base */ |
| outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1); |
| |
| /* ICW3: slave ID */ |
| outb(0x02, 0xA1); |
| |
| /* ICW4: 8086 mode */ |
| outb(0x01, 0xA1); |
| } |
| |
| static void |
| do_quad_bootstrap(void) |
| { |
| if(is_cpu_quad() && is_cpu_vic_boot()) { |
| int i; |
| unsigned long flags; |
| __u8 cpuid = hard_smp_processor_id(); |
| |
| local_irq_save(flags); |
| |
| for(i = 0; i<4; i++) { |
| /* FIXME: this would be >>3 &0x7 on the 32 way */ |
| if(((cpuid >> 2) & 0x03) == i) |
| /* don't lower our own mask! */ |
| continue; |
| |
| /* masquerade as local Quad CPU */ |
| outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID); |
| /* enable the startup CPI */ |
| outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1); |
| /* restore cpu id */ |
| outb(0, QIC_PROCESSOR_ID); |
| } |
| local_irq_restore(flags); |
| } |
| } |
| |
| |
| /* Set up all the basic stuff: read the SMP config and make all the |
| * SMP information reflect only the boot cpu. All others will be |
| * brought on-line later. */ |
| void __init |
| find_smp_config(void) |
| { |
| int i; |
| |
| boot_cpu_id = hard_smp_processor_id(); |
| |
| printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id); |
| |
| /* initialize the CPU structures (moved from smp_boot_cpus) */ |
| for(i=0; i<NR_CPUS; i++) { |
| cpu_irq_affinity[i] = ~0; |
| } |
| cpu_online_map = cpumask_of_cpu(boot_cpu_id); |
| |
| /* The boot CPU must be extended */ |
| voyager_extended_vic_processors = 1<<boot_cpu_id; |
| /* initially, all of the first 8 cpu's can boot */ |
| voyager_allowed_boot_processors = 0xff; |
| /* set up everything for just this CPU, we can alter |
| * this as we start the other CPUs later */ |
| /* now get the CPU disposition from the extended CMOS */ |
| cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK); |
| cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8; |
| cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16; |
| cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24; |
| cpu_possible_map = phys_cpu_present_map; |
| printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]); |
| /* Here we set up the VIC to enable SMP */ |
| /* enable the CPIs by writing the base vector to their register */ |
| outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER); |
| outb(1, VIC_REDIRECT_REGISTER_1); |
| /* set the claim registers for static routing --- Boot CPU gets |
| * all interrupts untill all other CPUs started */ |
| outb(0xff, VIC_CLAIM_REGISTER_0); |
| outb(0xff, VIC_CLAIM_REGISTER_1); |
| /* Set the Primary and Secondary Microchannel vector |
| * bases to be the same as the ordinary interrupts |
| * |
| * FIXME: This would be more efficient using separate |
| * vectors. */ |
| outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE); |
| outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE); |
| |
| /* Finally tell the firmware that we're driving */ |
| outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG, |
| VOYAGER_SUS_IN_CONTROL_PORT); |
| |
| current_thread_info()->cpu = boot_cpu_id; |
| write_pda(cpu_number, boot_cpu_id); |
| } |
| |
| /* |
| * The bootstrap kernel entry code has set these up. Save them |
| * for a given CPU, id is physical */ |
| void __init |
| smp_store_cpu_info(int id) |
| { |
| struct cpuinfo_x86 *c=&cpu_data[id]; |
| |
| *c = boot_cpu_data; |
| |
| identify_cpu(c); |
| } |
| |
| /* set up the trampoline and return the physical address of the code */ |
| static __u32 __init |
| setup_trampoline(void) |
| { |
| /* these two are global symbols in trampoline.S */ |
| extern __u8 trampoline_end[]; |
| extern __u8 trampoline_data[]; |
| |
| memcpy((__u8 *)trampoline_base, trampoline_data, |
| trampoline_end - trampoline_data); |
| return virt_to_phys((__u8 *)trampoline_base); |
| } |
| |
| /* Routine initially called when a non-boot CPU is brought online */ |
| static void __init |
| start_secondary(void *unused) |
| { |
| __u8 cpuid = hard_smp_processor_id(); |
| /* external functions not defined in the headers */ |
| extern void calibrate_delay(void); |
| |
| secondary_cpu_init(); |
| |
| /* OK, we're in the routine */ |
| ack_CPI(VIC_CPU_BOOT_CPI); |
| |
| /* setup the 8259 master slave pair belonging to this CPU --- |
| * we won't actually receive any until the boot CPU |
| * relinquishes it's static routing mask */ |
| vic_setup_pic(); |
| |
| qic_setup(); |
| |
| if(is_cpu_quad() && !is_cpu_vic_boot()) { |
| /* clear the boot CPI */ |
| __u8 dummy; |
| |
| dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi; |
| printk("read dummy %d\n", dummy); |
| } |
| |
| /* lower the mask to receive CPIs */ |
| vic_enable_cpi(); |
| |
| VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid)); |
| |
| /* enable interrupts */ |
| local_irq_enable(); |
| |
| /* get our bogomips */ |
| calibrate_delay(); |
| |
| /* save our processor parameters */ |
| smp_store_cpu_info(cpuid); |
| |
| /* if we're a quad, we may need to bootstrap other CPUs */ |
| do_quad_bootstrap(); |
| |
| /* FIXME: this is rather a poor hack to prevent the CPU |
| * activating softirqs while it's supposed to be waiting for |
| * permission to proceed. Without this, the new per CPU stuff |
| * in the softirqs will fail */ |
| local_irq_disable(); |
| cpu_set(cpuid, cpu_callin_map); |
| |
| /* signal that we're done */ |
| cpu_booted_map = 1; |
| |
| while (!cpu_isset(cpuid, smp_commenced_mask)) |
| rep_nop(); |
| local_irq_enable(); |
| |
| local_flush_tlb(); |
| |
| cpu_set(cpuid, cpu_online_map); |
| wmb(); |
| cpu_idle(); |
| } |
| |
| |
| /* Routine to kick start the given CPU and wait for it to report ready |
| * (or timeout in startup). When this routine returns, the requested |
| * CPU is either fully running and configured or known to be dead. |
| * |
| * We call this routine sequentially 1 CPU at a time, so no need for |
| * locking */ |
| |
| static void __init |
| do_boot_cpu(__u8 cpu) |
| { |
| struct task_struct *idle; |
| int timeout; |
| unsigned long flags; |
| int quad_boot = (1<<cpu) & voyager_quad_processors |
| & ~( voyager_extended_vic_processors |
| & voyager_allowed_boot_processors); |
| |
| /* For the 486, we can't use the 4Mb page table trick, so |
| * must map a region of memory */ |
| #ifdef CONFIG_M486 |
| int i; |
| unsigned long *page_table_copies = (unsigned long *) |
| __get_free_page(GFP_KERNEL); |
| #endif |
| pgd_t orig_swapper_pg_dir0; |
| |
| /* This is an area in head.S which was used to set up the |
| * initial kernel stack. We need to alter this to give the |
| * booting CPU a new stack (taken from its idle process) */ |
| extern struct { |
| __u8 *esp; |
| unsigned short ss; |
| } stack_start; |
| /* This is the format of the CPI IDT gate (in real mode) which |
| * we're hijacking to boot the CPU */ |
| union IDTFormat { |
| struct seg { |
| __u16 Offset; |
| __u16 Segment; |
| } idt; |
| __u32 val; |
| } hijack_source; |
| |
| __u32 *hijack_vector; |
| __u32 start_phys_address = setup_trampoline(); |
| |
| /* There's a clever trick to this: The linux trampoline is |
| * compiled to begin at absolute location zero, so make the |
| * address zero but have the data segment selector compensate |
| * for the actual address */ |
| hijack_source.idt.Offset = start_phys_address & 0x000F; |
| hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF; |
| |
| cpucount++; |
| idle = fork_idle(cpu); |
| if(IS_ERR(idle)) |
| panic("failed fork for CPU%d", cpu); |
| idle->thread.eip = (unsigned long) start_secondary; |
| /* init_tasks (in sched.c) is indexed logically */ |
| stack_start.esp = (void *) idle->thread.esp; |
| |
| /* Pre-allocate and initialize the CPU's GDT and PDA so it |
| doesn't have to do any memory allocation during the |
| delicate CPU-bringup phase. */ |
| if (!init_gdt(cpu, idle)) { |
| printk(KERN_INFO "Couldn't allocate GDT/PDA for CPU %d\n", cpu); |
| cpucount--; |
| return; |
| } |
| |
| irq_ctx_init(cpu); |
| |
| /* Note: Don't modify initial ss override */ |
| VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu, |
| (unsigned long)hijack_source.val, hijack_source.idt.Segment, |
| hijack_source.idt.Offset, stack_start.esp)); |
| /* set the original swapper_pg_dir[0] to map 0 to 4Mb transparently |
| * (so that the booting CPU can find start_32 */ |
| orig_swapper_pg_dir0 = swapper_pg_dir[0]; |
| #ifdef CONFIG_M486 |
| if(page_table_copies == NULL) |
| panic("No free memory for 486 page tables\n"); |
| for(i = 0; i < PAGE_SIZE/sizeof(unsigned long); i++) |
| page_table_copies[i] = (i * PAGE_SIZE) |
| | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT; |
| |
| ((unsigned long *)swapper_pg_dir)[0] = |
| ((virt_to_phys(page_table_copies)) & PAGE_MASK) |
| | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT; |
| #else |
| ((unsigned long *)swapper_pg_dir)[0] = |
| (virt_to_phys(pg0) & PAGE_MASK) |
| | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT; |
| #endif |
| |
| if(quad_boot) { |
| printk("CPU %d: non extended Quad boot\n", cpu); |
| hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4); |
| *hijack_vector = hijack_source.val; |
| } else { |
| printk("CPU%d: extended VIC boot\n", cpu); |
| hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4); |
| *hijack_vector = hijack_source.val; |
| /* VIC errata, may also receive interrupt at this address */ |
| hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4); |
| *hijack_vector = hijack_source.val; |
| } |
| /* All non-boot CPUs start with interrupts fully masked. Need |
| * to lower the mask of the CPI we're about to send. We do |
| * this in the VIC by masquerading as the processor we're |
| * about to boot and lowering its interrupt mask */ |
| local_irq_save(flags); |
| if(quad_boot) { |
| send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI); |
| } else { |
| outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID); |
| /* here we're altering registers belonging to `cpu' */ |
| |
| outb(VIC_BOOT_INTERRUPT_MASK, 0x21); |
| /* now go back to our original identity */ |
| outb(boot_cpu_id, VIC_PROCESSOR_ID); |
| |
| /* and boot the CPU */ |
| |
| send_CPI((1<<cpu), VIC_CPU_BOOT_CPI); |
| } |
| cpu_booted_map = 0; |
| local_irq_restore(flags); |
| |
| /* now wait for it to become ready (or timeout) */ |
| for(timeout = 0; timeout < 50000; timeout++) { |
| if(cpu_booted_map) |
| break; |
| udelay(100); |
| } |
| /* reset the page table */ |
| swapper_pg_dir[0] = orig_swapper_pg_dir0; |
| local_flush_tlb(); |
| #ifdef CONFIG_M486 |
| free_page((unsigned long)page_table_copies); |
| #endif |
| |
| if (cpu_booted_map) { |
| VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n", |
| cpu, smp_processor_id())); |
| |
| printk("CPU%d: ", cpu); |
| print_cpu_info(&cpu_data[cpu]); |
| wmb(); |
| cpu_set(cpu, cpu_callout_map); |
| cpu_set(cpu, cpu_present_map); |
| } |
| else { |
| printk("CPU%d FAILED TO BOOT: ", cpu); |
| if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5) |
| printk("Stuck.\n"); |
| else |
| printk("Not responding.\n"); |
| |
| cpucount--; |
| } |
| } |
| |
| void __init |
| smp_boot_cpus(void) |
| { |
| int i; |
| |
| /* CAT BUS initialisation must be done after the memory */ |
| /* FIXME: The L4 has a catbus too, it just needs to be |
| * accessed in a totally different way */ |
| if(voyager_level == 5) { |
| voyager_cat_init(); |
| |
| /* now that the cat has probed the Voyager System Bus, sanity |
| * check the cpu map */ |
| if( ((voyager_quad_processors | voyager_extended_vic_processors) |
| & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) { |
| /* should panic */ |
| printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n"); |
| } |
| } else if(voyager_level == 4) |
| voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0]; |
| |
| /* this sets up the idle task to run on the current cpu */ |
| voyager_extended_cpus = 1; |
| /* Remove the global_irq_holder setting, it triggers a BUG() on |
| * schedule at the moment */ |
| //global_irq_holder = boot_cpu_id; |
| |
| /* FIXME: Need to do something about this but currently only works |
| * on CPUs with a tsc which none of mine have. |
| smp_tune_scheduling(); |
| */ |
| smp_store_cpu_info(boot_cpu_id); |
| printk("CPU%d: ", boot_cpu_id); |
| print_cpu_info(&cpu_data[boot_cpu_id]); |
| |
| if(is_cpu_quad()) { |
| /* booting on a Quad CPU */ |
| printk("VOYAGER SMP: Boot CPU is Quad\n"); |
| qic_setup(); |
| do_quad_bootstrap(); |
| } |
| |
| /* enable our own CPIs */ |
| vic_enable_cpi(); |
| |
| cpu_set(boot_cpu_id, cpu_online_map); |
| cpu_set(boot_cpu_id, cpu_callout_map); |
| |
| /* loop over all the extended VIC CPUs and boot them. The |
| * Quad CPUs must be bootstrapped by their extended VIC cpu */ |
| for(i = 0; i < NR_CPUS; i++) { |
| if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map)) |
| continue; |
| do_boot_cpu(i); |
| /* This udelay seems to be needed for the Quad boots |
| * don't remove unless you know what you're doing */ |
| udelay(1000); |
| } |
| /* we could compute the total bogomips here, but why bother?, |
| * Code added from smpboot.c */ |
| { |
| unsigned long bogosum = 0; |
| for (i = 0; i < NR_CPUS; i++) |
| if (cpu_isset(i, cpu_online_map)) |
| bogosum += cpu_data[i].loops_per_jiffy; |
| printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", |
| cpucount+1, |
| bogosum/(500000/HZ), |
| (bogosum/(5000/HZ))%100); |
| } |
| voyager_extended_cpus = hweight32(voyager_extended_vic_processors); |
| printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus); |
| /* that's it, switch to symmetric mode */ |
| outb(0, VIC_PRIORITY_REGISTER); |
| outb(0, VIC_CLAIM_REGISTER_0); |
| outb(0, VIC_CLAIM_REGISTER_1); |
| |
| VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus())); |
| } |
| |
| /* Reload the secondary CPUs task structure (this function does not |
| * return ) */ |
| void __init |
| initialize_secondary(void) |
| { |
| #if 0 |
| // AC kernels only |
| set_current(hard_get_current()); |
| #endif |
| |
| /* |
| * We don't actually need to load the full TSS, |
| * basically just the stack pointer and the eip. |
| */ |
| |
| asm volatile( |
| "movl %0,%%esp\n\t" |
| "jmp *%1" |
| : |
| :"r" (current->thread.esp),"r" (current->thread.eip)); |
| } |
| |
| /* handle a Voyager SYS_INT -- If we don't, the base board will |
| * panic the system. |
| * |
| * System interrupts occur because some problem was detected on the |
| * various busses. To find out what you have to probe all the |
| * hardware via the CAT bus. FIXME: At the moment we do nothing. */ |
| fastcall void |
| smp_vic_sys_interrupt(struct pt_regs *regs) |
| { |
| ack_CPI(VIC_SYS_INT); |
| printk("Voyager SYSTEM INTERRUPT\n"); |
| } |
| |
| /* Handle a voyager CMN_INT; These interrupts occur either because of |
| * a system status change or because a single bit memory error |
| * occurred. FIXME: At the moment, ignore all this. */ |
| fastcall void |
| smp_vic_cmn_interrupt(struct pt_regs *regs) |
| { |
| static __u8 in_cmn_int = 0; |
| static DEFINE_SPINLOCK(cmn_int_lock); |
| |
| /* common ints are broadcast, so make sure we only do this once */ |
| _raw_spin_lock(&cmn_int_lock); |
| if(in_cmn_int) |
| goto unlock_end; |
| |
| in_cmn_int++; |
| _raw_spin_unlock(&cmn_int_lock); |
| |
| VDEBUG(("Voyager COMMON INTERRUPT\n")); |
| |
| if(voyager_level == 5) |
| voyager_cat_do_common_interrupt(); |
| |
| _raw_spin_lock(&cmn_int_lock); |
| in_cmn_int = 0; |
| unlock_end: |
| _raw_spin_unlock(&cmn_int_lock); |
| ack_CPI(VIC_CMN_INT); |
| } |
| |
| /* |
| * Reschedule call back. Nothing to do, all the work is done |
| * automatically when we return from the interrupt. */ |
| static void |
| smp_reschedule_interrupt(void) |
| { |
| /* do nothing */ |
| } |
| |
| static struct mm_struct * flush_mm; |
| static unsigned long flush_va; |
| static DEFINE_SPINLOCK(tlbstate_lock); |
| #define FLUSH_ALL 0xffffffff |
| |
| /* |
| * We cannot call mmdrop() because we are in interrupt context, |
| * instead update mm->cpu_vm_mask. |
| * |
| * We need to reload %cr3 since the page tables may be going |
| * away from under us.. |
| */ |
| static inline void |
| leave_mm (unsigned long cpu) |
| { |
| if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) |
| BUG(); |
| cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask); |
| load_cr3(swapper_pg_dir); |
| } |
| |
| |
| /* |
| * Invalidate call-back |
| */ |
| static void |
| smp_invalidate_interrupt(void) |
| { |
| __u8 cpu = smp_processor_id(); |
| |
| if (!test_bit(cpu, &smp_invalidate_needed)) |
| return; |
| /* This will flood messages. Don't uncomment unless you see |
| * Problems with cross cpu invalidation |
| VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n", |
| smp_processor_id())); |
| */ |
| |
| if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) { |
| if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) { |
| if (flush_va == FLUSH_ALL) |
| local_flush_tlb(); |
| else |
| __flush_tlb_one(flush_va); |
| } else |
| leave_mm(cpu); |
| } |
| smp_mb__before_clear_bit(); |
| clear_bit(cpu, &smp_invalidate_needed); |
| smp_mb__after_clear_bit(); |
| } |
| |
| /* All the new flush operations for 2.4 */ |
| |
| |
| /* This routine is called with a physical cpu mask */ |
| static void |
| flush_tlb_others (unsigned long cpumask, struct mm_struct *mm, |
| unsigned long va) |
| { |
| int stuck = 50000; |
| |
| if (!cpumask) |
| BUG(); |
| if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask) |
| BUG(); |
| if (cpumask & (1 << smp_processor_id())) |
| BUG(); |
| if (!mm) |
| BUG(); |
| |
| spin_lock(&tlbstate_lock); |
| |
| flush_mm = mm; |
| flush_va = va; |
| atomic_set_mask(cpumask, &smp_invalidate_needed); |
| /* |
| * We have to send the CPI only to |
| * CPUs affected. |
| */ |
| send_CPI(cpumask, VIC_INVALIDATE_CPI); |
| |
| while (smp_invalidate_needed) { |
| mb(); |
| if(--stuck == 0) { |
| printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id()); |
| break; |
| } |
| } |
| |
| /* Uncomment only to debug invalidation problems |
| VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu)); |
| */ |
| |
| flush_mm = NULL; |
| flush_va = 0; |
| spin_unlock(&tlbstate_lock); |
| } |
| |
| void |
| flush_tlb_current_task(void) |
| { |
| struct mm_struct *mm = current->mm; |
| unsigned long cpu_mask; |
| |
| preempt_disable(); |
| |
| cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id()); |
| local_flush_tlb(); |
| if (cpu_mask) |
| flush_tlb_others(cpu_mask, mm, FLUSH_ALL); |
| |
| preempt_enable(); |
| } |
| |
| |
| void |
| flush_tlb_mm (struct mm_struct * mm) |
| { |
| unsigned long cpu_mask; |
| |
| preempt_disable(); |
| |
| cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id()); |
| |
| if (current->active_mm == mm) { |
| if (current->mm) |
| local_flush_tlb(); |
| else |
| leave_mm(smp_processor_id()); |
| } |
| if (cpu_mask) |
| flush_tlb_others(cpu_mask, mm, FLUSH_ALL); |
| |
| preempt_enable(); |
| } |
| |
| void flush_tlb_page(struct vm_area_struct * vma, unsigned long va) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long cpu_mask; |
| |
| preempt_disable(); |
| |
| cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id()); |
| if (current->active_mm == mm) { |
| if(current->mm) |
| __flush_tlb_one(va); |
| else |
| leave_mm(smp_processor_id()); |
| } |
| |
| if (cpu_mask) |
| flush_tlb_others(cpu_mask, mm, va); |
| |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL(flush_tlb_page); |
| |
| /* enable the requested IRQs */ |
| static void |
| smp_enable_irq_interrupt(void) |
| { |
| __u8 irq; |
| __u8 cpu = get_cpu(); |
| |
| VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu, |
| vic_irq_enable_mask[cpu])); |
| |
| spin_lock(&vic_irq_lock); |
| for(irq = 0; irq < 16; irq++) { |
| if(vic_irq_enable_mask[cpu] & (1<<irq)) |
| enable_local_vic_irq(irq); |
| } |
| vic_irq_enable_mask[cpu] = 0; |
| spin_unlock(&vic_irq_lock); |
| |
| put_cpu_no_resched(); |
| } |
| |
| /* |
| * CPU halt call-back |
| */ |
| static void |
| smp_stop_cpu_function(void *dummy) |
| { |
| VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id())); |
| cpu_clear(smp_processor_id(), cpu_online_map); |
| local_irq_disable(); |
| for(;;) |
| halt(); |
| } |
| |
| static DEFINE_SPINLOCK(call_lock); |
| |
| struct call_data_struct { |
| void (*func) (void *info); |
| void *info; |
| volatile unsigned long started; |
| volatile unsigned long finished; |
| int wait; |
| }; |
| |
| static struct call_data_struct * call_data; |
| |
| /* execute a thread on a new CPU. The function to be called must be |
| * previously set up. This is used to schedule a function for |
| * execution on all CPU's - set up the function then broadcast a |
| * function_interrupt CPI to come here on each CPU */ |
| static void |
| smp_call_function_interrupt(void) |
| { |
| void (*func) (void *info) = call_data->func; |
| void *info = call_data->info; |
| /* must take copy of wait because call_data may be replaced |
| * unless the function is waiting for us to finish */ |
| int wait = call_data->wait; |
| __u8 cpu = smp_processor_id(); |
| |
| /* |
| * Notify initiating CPU that I've grabbed the data and am |
| * about to execute the function |
| */ |
| mb(); |
| if(!test_and_clear_bit(cpu, &call_data->started)) { |
| /* If the bit wasn't set, this could be a replay */ |
| printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu); |
| return; |
| } |
| /* |
| * At this point the info structure may be out of scope unless wait==1 |
| */ |
| irq_enter(); |
| (*func)(info); |
| irq_exit(); |
| if (wait) { |
| mb(); |
| clear_bit(cpu, &call_data->finished); |
| } |
| } |
| |
| /* Call this function on all CPUs using the function_interrupt above |
| <func> The function to run. This must be fast and non-blocking. |
| <info> An arbitrary pointer to pass to the function. |
| <retry> If true, keep retrying until ready. |
| <wait> If true, wait until function has completed on other CPUs. |
| [RETURNS] 0 on success, else a negative status code. Does not return until |
| remote CPUs are nearly ready to execute <<func>> or are or have executed. |
| */ |
| int |
| smp_call_function (void (*func) (void *info), void *info, int retry, |
| int wait) |
| { |
| struct call_data_struct data; |
| __u32 mask = cpus_addr(cpu_online_map)[0]; |
| |
| mask &= ~(1<<smp_processor_id()); |
| |
| if (!mask) |
| return 0; |
| |
| /* Can deadlock when called with interrupts disabled */ |
| WARN_ON(irqs_disabled()); |
| |
| data.func = func; |
| data.info = info; |
| data.started = mask; |
| data.wait = wait; |
| if (wait) |
| data.finished = mask; |
| |
| spin_lock(&call_lock); |
| call_data = &data; |
| wmb(); |
| /* Send a message to all other CPUs and wait for them to respond */ |
| send_CPI_allbutself(VIC_CALL_FUNCTION_CPI); |
| |
| /* Wait for response */ |
| while (data.started) |
| barrier(); |
| |
| if (wait) |
| while (data.finished) |
| barrier(); |
| |
| spin_unlock(&call_lock); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(smp_call_function); |
| |
| /* Sorry about the name. In an APIC based system, the APICs |
| * themselves are programmed to send a timer interrupt. This is used |
| * by linux to reschedule the processor. Voyager doesn't have this, |
| * so we use the system clock to interrupt one processor, which in |
| * turn, broadcasts a timer CPI to all the others --- we receive that |
| * CPI here. We don't use this actually for counting so losing |
| * ticks doesn't matter |
| * |
| * FIXME: For those CPU's which actually have a local APIC, we could |
| * try to use it to trigger this interrupt instead of having to |
| * broadcast the timer tick. Unfortunately, all my pentium DYADs have |
| * no local APIC, so I can't do this |
| * |
| * This function is currently a placeholder and is unused in the code */ |
| fastcall void |
| smp_apic_timer_interrupt(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| wrapper_smp_local_timer_interrupt(); |
| set_irq_regs(old_regs); |
| } |
| |
| /* All of the QUAD interrupt GATES */ |
| fastcall void |
| smp_qic_timer_interrupt(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| ack_QIC_CPI(QIC_TIMER_CPI); |
| wrapper_smp_local_timer_interrupt(); |
| set_irq_regs(old_regs); |
| } |
| |
| fastcall void |
| smp_qic_invalidate_interrupt(struct pt_regs *regs) |
| { |
| ack_QIC_CPI(QIC_INVALIDATE_CPI); |
| smp_invalidate_interrupt(); |
| } |
| |
| fastcall void |
| smp_qic_reschedule_interrupt(struct pt_regs *regs) |
| { |
| ack_QIC_CPI(QIC_RESCHEDULE_CPI); |
| smp_reschedule_interrupt(); |
| } |
| |
| fastcall void |
| smp_qic_enable_irq_interrupt(struct pt_regs *regs) |
| { |
| ack_QIC_CPI(QIC_ENABLE_IRQ_CPI); |
| smp_enable_irq_interrupt(); |
| } |
| |
| fastcall void |
| smp_qic_call_function_interrupt(struct pt_regs *regs) |
| { |
| ack_QIC_CPI(QIC_CALL_FUNCTION_CPI); |
| smp_call_function_interrupt(); |
| } |
| |
| fastcall void |
| smp_vic_cpi_interrupt(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| __u8 cpu = smp_processor_id(); |
| |
| if(is_cpu_quad()) |
| ack_QIC_CPI(VIC_CPI_LEVEL0); |
| else |
| ack_VIC_CPI(VIC_CPI_LEVEL0); |
| |
| if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu])) |
| wrapper_smp_local_timer_interrupt(); |
| if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu])) |
| smp_invalidate_interrupt(); |
| if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu])) |
| smp_reschedule_interrupt(); |
| if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu])) |
| smp_enable_irq_interrupt(); |
| if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu])) |
| smp_call_function_interrupt(); |
| set_irq_regs(old_regs); |
| } |
| |
| static void |
| do_flush_tlb_all(void* info) |
| { |
| unsigned long cpu = smp_processor_id(); |
| |
| __flush_tlb_all(); |
| if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY) |
| leave_mm(cpu); |
| } |
| |
| |
| /* flush the TLB of every active CPU in the system */ |
| void |
| flush_tlb_all(void) |
| { |
| on_each_cpu(do_flush_tlb_all, 0, 1, 1); |
| } |
| |
| /* used to set up the trampoline for other CPUs when the memory manager |
| * is sorted out */ |
| void __init |
| smp_alloc_memory(void) |
| { |
| trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE); |
| if(__pa(trampoline_base) >= 0x93000) |
| BUG(); |
| } |
| |
| /* send a reschedule CPI to one CPU by physical CPU number*/ |
| void |
| smp_send_reschedule(int cpu) |
| { |
| send_one_CPI(cpu, VIC_RESCHEDULE_CPI); |
| } |
| |
| |
| int |
| hard_smp_processor_id(void) |
| { |
| __u8 i; |
| __u8 cpumask = inb(VIC_PROC_WHO_AM_I); |
| if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER) |
| return cpumask & 0x1F; |
| |
| for(i = 0; i < 8; i++) { |
| if(cpumask & (1<<i)) |
| return i; |
| } |
| printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask); |
| return 0; |
| } |
| |
| int |
| safe_smp_processor_id(void) |
| { |
| return hard_smp_processor_id(); |
| } |
| |
| /* broadcast a halt to all other CPUs */ |
| void |
| smp_send_stop(void) |
| { |
| smp_call_function(smp_stop_cpu_function, NULL, 1, 1); |
| } |
| |
| /* this function is triggered in time.c when a clock tick fires |
| * we need to re-broadcast the tick to all CPUs */ |
| void |
| smp_vic_timer_interrupt(void) |
| { |
| send_CPI_allbutself(VIC_TIMER_CPI); |
| smp_local_timer_interrupt(); |
| } |
| |
| /* local (per CPU) timer interrupt. It does both profiling and |
| * process statistics/rescheduling. |
| * |
| * We do profiling in every local tick, statistics/rescheduling |
| * happen only every 'profiling multiplier' ticks. The default |
| * multiplier is 1 and it can be changed by writing the new multiplier |
| * value into /proc/profile. |
| */ |
| void |
| smp_local_timer_interrupt(void) |
| { |
| int cpu = smp_processor_id(); |
| long weight; |
| |
| profile_tick(CPU_PROFILING); |
| if (--per_cpu(prof_counter, cpu) <= 0) { |
| /* |
| * The multiplier may have changed since the last time we got |
| * to this point as a result of the user writing to |
| * /proc/profile. In this case we need to adjust the APIC |
| * timer accordingly. |
| * |
| * Interrupts are already masked off at this point. |
| */ |
| per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu); |
| if (per_cpu(prof_counter, cpu) != |
| per_cpu(prof_old_multiplier, cpu)) { |
| /* FIXME: need to update the vic timer tick here */ |
| per_cpu(prof_old_multiplier, cpu) = |
| per_cpu(prof_counter, cpu); |
| } |
| |
| update_process_times(user_mode_vm(get_irq_regs())); |
| } |
| |
| if( ((1<<cpu) & voyager_extended_vic_processors) == 0) |
| /* only extended VIC processors participate in |
| * interrupt distribution */ |
| return; |
| |
| /* |
| * We take the 'long' return path, and there every subsystem |
| * grabs the apropriate locks (kernel lock/ irq lock). |
| * |
| * we might want to decouple profiling from the 'long path', |
| * and do the profiling totally in assembly. |
| * |
| * Currently this isn't too much of an issue (performance wise), |
| * we can take more than 100K local irqs per second on a 100 MHz P5. |
| */ |
| |
| if((++vic_tick[cpu] & 0x7) != 0) |
| return; |
| /* get here every 16 ticks (about every 1/6 of a second) */ |
| |
| /* Change our priority to give someone else a chance at getting |
| * the IRQ. The algorithm goes like this: |
| * |
| * In the VIC, the dynamically routed interrupt is always |
| * handled by the lowest priority eligible (i.e. receiving |
| * interrupts) CPU. If >1 eligible CPUs are equal lowest, the |
| * lowest processor number gets it. |
| * |
| * The priority of a CPU is controlled by a special per-CPU |
| * VIC priority register which is 3 bits wide 0 being lowest |
| * and 7 highest priority.. |
| * |
| * Therefore we subtract the average number of interrupts from |
| * the number we've fielded. If this number is negative, we |
| * lower the activity count and if it is positive, we raise |
| * it. |
| * |
| * I'm afraid this still leads to odd looking interrupt counts: |
| * the totals are all roughly equal, but the individual ones |
| * look rather skewed. |
| * |
| * FIXME: This algorithm is total crap when mixed with SMP |
| * affinity code since we now try to even up the interrupt |
| * counts when an affinity binding is keeping them on a |
| * particular CPU*/ |
| weight = (vic_intr_count[cpu]*voyager_extended_cpus |
| - vic_intr_total) >> 4; |
| weight += 4; |
| if(weight > 7) |
| weight = 7; |
| if(weight < 0) |
| weight = 0; |
| |
| outb((__u8)weight, VIC_PRIORITY_REGISTER); |
| |
| #ifdef VOYAGER_DEBUG |
| if((vic_tick[cpu] & 0xFFF) == 0) { |
| /* print this message roughly every 25 secs */ |
| printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n", |
| cpu, vic_tick[cpu], weight); |
| } |
| #endif |
| } |
| |
| /* setup the profiling timer */ |
| int |
| setup_profiling_timer(unsigned int multiplier) |
| { |
| int i; |
| |
| if ( (!multiplier)) |
| return -EINVAL; |
| |
| /* |
| * Set the new multiplier for each CPU. CPUs don't start using the |
| * new values until the next timer interrupt in which they do process |
| * accounting. |
| */ |
| for (i = 0; i < NR_CPUS; ++i) |
| per_cpu(prof_multiplier, i) = multiplier; |
| |
| return 0; |
| } |
| |
| /* This is a bit of a mess, but forced on us by the genirq changes |
| * there's no genirq handler that really does what voyager wants |
| * so hack it up with the simple IRQ handler */ |
| static void fastcall |
| handle_vic_irq(unsigned int irq, struct irq_desc *desc) |
| { |
| before_handle_vic_irq(irq); |
| handle_simple_irq(irq, desc); |
| after_handle_vic_irq(irq); |
| } |
| |
| |
| /* The CPIs are handled in the per cpu 8259s, so they must be |
| * enabled to be received: FIX: enabling the CPIs in the early |
| * boot sequence interferes with bug checking; enable them later |
| * on in smp_init */ |
| #define VIC_SET_GATE(cpi, vector) \ |
| set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector)) |
| #define QIC_SET_GATE(cpi, vector) \ |
| set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector)) |
| |
| void __init |
| smp_intr_init(void) |
| { |
| int i; |
| |
| /* initialize the per cpu irq mask to all disabled */ |
| for(i = 0; i < NR_CPUS; i++) |
| vic_irq_mask[i] = 0xFFFF; |
| |
| VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt); |
| |
| VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt); |
| VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt); |
| |
| QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt); |
| QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt); |
| QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt); |
| QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt); |
| QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt); |
| |
| |
| /* now put the VIC descriptor into the first 48 IRQs |
| * |
| * This is for later: first 16 correspond to PC IRQs; next 16 |
| * are Primary MC IRQs and final 16 are Secondary MC IRQs */ |
| for(i = 0; i < 48; i++) |
| set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq); |
| } |
| |
| /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per |
| * processor to receive CPI */ |
| static void |
| send_CPI(__u32 cpuset, __u8 cpi) |
| { |
| int cpu; |
| __u32 quad_cpuset = (cpuset & voyager_quad_processors); |
| |
| if(cpi < VIC_START_FAKE_CPI) { |
| /* fake CPI are only used for booting, so send to the |
| * extended quads as well---Quads must be VIC booted */ |
| outb((__u8)(cpuset), VIC_CPI_Registers[cpi]); |
| return; |
| } |
| if(quad_cpuset) |
| send_QIC_CPI(quad_cpuset, cpi); |
| cpuset &= ~quad_cpuset; |
| cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */ |
| if(cpuset == 0) |
| return; |
| for_each_online_cpu(cpu) { |
| if(cpuset & (1<<cpu)) |
| set_bit(cpi, &vic_cpi_mailbox[cpu]); |
| } |
| if(cpuset) |
| outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]); |
| } |
| |
| /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and |
| * set the cache line to shared by reading it. |
| * |
| * DON'T make this inline otherwise the cache line read will be |
| * optimised away |
| * */ |
| static int |
| ack_QIC_CPI(__u8 cpi) { |
| __u8 cpu = hard_smp_processor_id(); |
| |
| cpi &= 7; |
| |
| outb(1<<cpi, QIC_INTERRUPT_CLEAR1); |
| return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi; |
| } |
| |
| static void |
| ack_special_QIC_CPI(__u8 cpi) |
| { |
| switch(cpi) { |
| case VIC_CMN_INT: |
| outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0); |
| break; |
| case VIC_SYS_INT: |
| outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0); |
| break; |
| } |
| /* also clear at the VIC, just in case (nop for non-extended proc) */ |
| ack_VIC_CPI(cpi); |
| } |
| |
| /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */ |
| static void |
| ack_VIC_CPI(__u8 cpi) |
| { |
| #ifdef VOYAGER_DEBUG |
| unsigned long flags; |
| __u16 isr; |
| __u8 cpu = smp_processor_id(); |
| |
| local_irq_save(flags); |
| isr = vic_read_isr(); |
| if((isr & (1<<(cpi &7))) == 0) { |
| printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi); |
| } |
| #endif |
| /* send specific EOI; the two system interrupts have |
| * bit 4 set for a separate vector but behave as the |
| * corresponding 3 bit intr */ |
| outb_p(0x60|(cpi & 7),0x20); |
| |
| #ifdef VOYAGER_DEBUG |
| if((vic_read_isr() & (1<<(cpi &7))) != 0) { |
| printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi); |
| } |
| local_irq_restore(flags); |
| #endif |
| } |
| |
| /* cribbed with thanks from irq.c */ |
| #define __byte(x,y) (((unsigned char *)&(y))[x]) |
| #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu])) |
| #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu])) |
| |
| static unsigned int |
| startup_vic_irq(unsigned int irq) |
| { |
| unmask_vic_irq(irq); |
| |
| return 0; |
| } |
| |
| /* The enable and disable routines. This is where we run into |
| * conflicting architectural philosophy. Fundamentally, the voyager |
| * architecture does not expect to have to disable interrupts globally |
| * (the IRQ controllers belong to each CPU). The processor masquerade |
| * which is used to start the system shouldn't be used in a running OS |
| * since it will cause great confusion if two separate CPUs drive to |
| * the same IRQ controller (I know, I've tried it). |
| * |
| * The solution is a variant on the NCR lazy SPL design: |
| * |
| * 1) To disable an interrupt, do nothing (other than set the |
| * IRQ_DISABLED flag). This dares the interrupt actually to arrive. |
| * |
| * 2) If the interrupt dares to come in, raise the local mask against |
| * it (this will result in all the CPU masks being raised |
| * eventually). |
| * |
| * 3) To enable the interrupt, lower the mask on the local CPU and |
| * broadcast an Interrupt enable CPI which causes all other CPUs to |
| * adjust their masks accordingly. */ |
| |
| static void |
| unmask_vic_irq(unsigned int irq) |
| { |
| /* linux doesn't to processor-irq affinity, so enable on |
| * all CPUs we know about */ |
| int cpu = smp_processor_id(), real_cpu; |
| __u16 mask = (1<<irq); |
| __u32 processorList = 0; |
| unsigned long flags; |
| |
| VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n", |
| irq, cpu, cpu_irq_affinity[cpu])); |
| spin_lock_irqsave(&vic_irq_lock, flags); |
| for_each_online_cpu(real_cpu) { |
| if(!(voyager_extended_vic_processors & (1<<real_cpu))) |
| continue; |
| if(!(cpu_irq_affinity[real_cpu] & mask)) { |
| /* irq has no affinity for this CPU, ignore */ |
| continue; |
| } |
| if(real_cpu == cpu) { |
| enable_local_vic_irq(irq); |
| } |
| else if(vic_irq_mask[real_cpu] & mask) { |
| vic_irq_enable_mask[real_cpu] |= mask; |
| processorList |= (1<<real_cpu); |
| } |
| } |
| spin_unlock_irqrestore(&vic_irq_lock, flags); |
| if(processorList) |
| send_CPI(processorList, VIC_ENABLE_IRQ_CPI); |
| } |
| |
| static void |
| mask_vic_irq(unsigned int irq) |
| { |
| /* lazy disable, do nothing */ |
| } |
| |
| static void |
| enable_local_vic_irq(unsigned int irq) |
| { |
| __u8 cpu = smp_processor_id(); |
| __u16 mask = ~(1 << irq); |
| __u16 old_mask = vic_irq_mask[cpu]; |
| |
| vic_irq_mask[cpu] &= mask; |
| if(vic_irq_mask[cpu] == old_mask) |
| return; |
| |
| VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n", |
| irq, cpu)); |
| |
| if (irq & 8) { |
| outb_p(cached_A1(cpu),0xA1); |
| (void)inb_p(0xA1); |
| } |
| else { |
| outb_p(cached_21(cpu),0x21); |
| (void)inb_p(0x21); |
| } |
| } |
| |
| static void |
| disable_local_vic_irq(unsigned int irq) |
| { |
| __u8 cpu = smp_processor_id(); |
| __u16 mask = (1 << irq); |
| __u16 old_mask = vic_irq_mask[cpu]; |
| |
| if(irq == 7) |
| return; |
| |
| vic_irq_mask[cpu] |= mask; |
| if(old_mask == vic_irq_mask[cpu]) |
| return; |
| |
| VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n", |
| irq, cpu)); |
| |
| if (irq & 8) { |
| outb_p(cached_A1(cpu),0xA1); |
| (void)inb_p(0xA1); |
| } |
| else { |
| outb_p(cached_21(cpu),0x21); |
| (void)inb_p(0x21); |
| } |
| } |
| |
| /* The VIC is level triggered, so the ack can only be issued after the |
| * interrupt completes. However, we do Voyager lazy interrupt |
| * handling here: It is an extremely expensive operation to mask an |
| * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If |
| * this interrupt actually comes in, then we mask and ack here to push |
| * the interrupt off to another CPU */ |
| static void |
| before_handle_vic_irq(unsigned int irq) |
| { |
| irq_desc_t *desc = irq_desc + irq; |
| __u8 cpu = smp_processor_id(); |
| |
| _raw_spin_lock(&vic_irq_lock); |
| vic_intr_total++; |
| vic_intr_count[cpu]++; |
| |
| if(!(cpu_irq_affinity[cpu] & (1<<irq))) { |
| /* The irq is not in our affinity mask, push it off |
| * onto another CPU */ |
| VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n", |
| irq, cpu)); |
| disable_local_vic_irq(irq); |
| /* set IRQ_INPROGRESS to prevent the handler in irq.c from |
| * actually calling the interrupt routine */ |
| desc->status |= IRQ_REPLAY | IRQ_INPROGRESS; |
| } else if(desc->status & IRQ_DISABLED) { |
| /* Damn, the interrupt actually arrived, do the lazy |
| * disable thing. The interrupt routine in irq.c will |
| * not handle a IRQ_DISABLED interrupt, so nothing more |
| * need be done here */ |
| VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n", |
| irq, cpu)); |
| disable_local_vic_irq(irq); |
| desc->status |= IRQ_REPLAY; |
| } else { |
| desc->status &= ~IRQ_REPLAY; |
| } |
| |
| _raw_spin_unlock(&vic_irq_lock); |
| } |
| |
| /* Finish the VIC interrupt: basically mask */ |
| static void |
| after_handle_vic_irq(unsigned int irq) |
| { |
| irq_desc_t *desc = irq_desc + irq; |
| |
| _raw_spin_lock(&vic_irq_lock); |
| { |
| unsigned int status = desc->status & ~IRQ_INPROGRESS; |
| #ifdef VOYAGER_DEBUG |
| __u16 isr; |
| #endif |
| |
| desc->status = status; |
| if ((status & IRQ_DISABLED)) |
| disable_local_vic_irq(irq); |
| #ifdef VOYAGER_DEBUG |
| /* DEBUG: before we ack, check what's in progress */ |
| isr = vic_read_isr(); |
| if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) { |
| int i; |
| __u8 cpu = smp_processor_id(); |
| __u8 real_cpu; |
| int mask; /* Um... initialize me??? --RR */ |
| |
| printk("VOYAGER SMP: CPU%d lost interrupt %d\n", |
| cpu, irq); |
| for_each_possible_cpu(real_cpu, mask) { |
| |
| outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu, |
| VIC_PROCESSOR_ID); |
| isr = vic_read_isr(); |
| if(isr & (1<<irq)) { |
| printk("VOYAGER SMP: CPU%d ack irq %d\n", |
| real_cpu, irq); |
| ack_vic_irq(irq); |
| } |
| outb(cpu, VIC_PROCESSOR_ID); |
| } |
| } |
| #endif /* VOYAGER_DEBUG */ |
| /* as soon as we ack, the interrupt is eligible for |
| * receipt by another CPU so everything must be in |
| * order here */ |
| ack_vic_irq(irq); |
| if(status & IRQ_REPLAY) { |
| /* replay is set if we disable the interrupt |
| * in the before_handle_vic_irq() routine, so |
| * clear the in progress bit here to allow the |
| * next CPU to handle this correctly */ |
| desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS); |
| } |
| #ifdef VOYAGER_DEBUG |
| isr = vic_read_isr(); |
| if((isr & (1<<irq)) != 0) |
| printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n", |
| irq, isr); |
| #endif /* VOYAGER_DEBUG */ |
| } |
| _raw_spin_unlock(&vic_irq_lock); |
| |
| /* All code after this point is out of the main path - the IRQ |
| * may be intercepted by another CPU if reasserted */ |
| } |
| |
| |
| /* Linux processor - interrupt affinity manipulations. |
| * |
| * For each processor, we maintain a 32 bit irq affinity mask. |
| * Initially it is set to all 1's so every processor accepts every |
| * interrupt. In this call, we change the processor's affinity mask: |
| * |
| * Change from enable to disable: |
| * |
| * If the interrupt ever comes in to the processor, we will disable it |
| * and ack it to push it off to another CPU, so just accept the mask here. |
| * |
| * Change from disable to enable: |
| * |
| * change the mask and then do an interrupt enable CPI to re-enable on |
| * the selected processors */ |
| |
| void |
| set_vic_irq_affinity(unsigned int irq, cpumask_t mask) |
| { |
| /* Only extended processors handle interrupts */ |
| unsigned long real_mask; |
| unsigned long irq_mask = 1 << irq; |
| int cpu; |
| |
| real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors; |
| |
| if(cpus_addr(mask)[0] == 0) |
| /* can't have no cpu's to accept the interrupt -- extremely |
| * bad things will happen */ |
| return; |
| |
| if(irq == 0) |
| /* can't change the affinity of the timer IRQ. This |
| * is due to the constraint in the voyager |
| * architecture that the CPI also comes in on and IRQ |
| * line and we have chosen IRQ0 for this. If you |
| * raise the mask on this interrupt, the processor |
| * will no-longer be able to accept VIC CPIs */ |
| return; |
| |
| if(irq >= 32) |
| /* You can only have 32 interrupts in a voyager system |
| * (and 32 only if you have a secondary microchannel |
| * bus) */ |
| return; |
| |
| for_each_online_cpu(cpu) { |
| unsigned long cpu_mask = 1 << cpu; |
| |
| if(cpu_mask & real_mask) { |
| /* enable the interrupt for this cpu */ |
| cpu_irq_affinity[cpu] |= irq_mask; |
| } else { |
| /* disable the interrupt for this cpu */ |
| cpu_irq_affinity[cpu] &= ~irq_mask; |
| } |
| } |
| /* this is magic, we now have the correct affinity maps, so |
| * enable the interrupt. This will send an enable CPI to |
| * those cpu's who need to enable it in their local masks, |
| * causing them to correct for the new affinity . If the |
| * interrupt is currently globally disabled, it will simply be |
| * disabled again as it comes in (voyager lazy disable). If |
| * the affinity map is tightened to disable the interrupt on a |
| * cpu, it will be pushed off when it comes in */ |
| unmask_vic_irq(irq); |
| } |
| |
| static void |
| ack_vic_irq(unsigned int irq) |
| { |
| if (irq & 8) { |
| outb(0x62,0x20); /* Specific EOI to cascade */ |
| outb(0x60|(irq & 7),0xA0); |
| } else { |
| outb(0x60 | (irq & 7),0x20); |
| } |
| } |
| |
| /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259 |
| * but are not vectored by it. This means that the 8259 mask must be |
| * lowered to receive them */ |
| static __init void |
| vic_enable_cpi(void) |
| { |
| __u8 cpu = smp_processor_id(); |
| |
| /* just take a copy of the current mask (nop for boot cpu) */ |
| vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id]; |
| |
| enable_local_vic_irq(VIC_CPI_LEVEL0); |
| enable_local_vic_irq(VIC_CPI_LEVEL1); |
| /* for sys int and cmn int */ |
| enable_local_vic_irq(7); |
| |
| if(is_cpu_quad()) { |
| outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0); |
| outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1); |
| VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n", |
| cpu, QIC_CPI_ENABLE)); |
| } |
| |
| VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n", |
| cpu, vic_irq_mask[cpu])); |
| } |
| |
| void |
| voyager_smp_dump() |
| { |
| int old_cpu = smp_processor_id(), cpu; |
| |
| /* dump the interrupt masks of each processor */ |
| for_each_online_cpu(cpu) { |
| __u16 imr, isr, irr; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID); |
| imr = (inb(0xa1) << 8) | inb(0x21); |
| outb(0x0a, 0xa0); |
| irr = inb(0xa0) << 8; |
| outb(0x0a, 0x20); |
| irr |= inb(0x20); |
| outb(0x0b, 0xa0); |
| isr = inb(0xa0) << 8; |
| outb(0x0b, 0x20); |
| isr |= inb(0x20); |
| outb(old_cpu, VIC_PROCESSOR_ID); |
| local_irq_restore(flags); |
| printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n", |
| cpu, vic_irq_mask[cpu], imr, irr, isr); |
| #if 0 |
| /* These lines are put in to try to unstick an un ack'd irq */ |
| if(isr != 0) { |
| int irq; |
| for(irq=0; irq<16; irq++) { |
| if(isr & (1<<irq)) { |
| printk("\tCPU%d: ack irq %d\n", |
| cpu, irq); |
| local_irq_save(flags); |
| outb(VIC_CPU_MASQUERADE_ENABLE | cpu, |
| VIC_PROCESSOR_ID); |
| ack_vic_irq(irq); |
| outb(old_cpu, VIC_PROCESSOR_ID); |
| local_irq_restore(flags); |
| } |
| } |
| } |
| #endif |
| } |
| } |
| |
| void |
| smp_voyager_power_off(void *dummy) |
| { |
| if(smp_processor_id() == boot_cpu_id) |
| voyager_power_off(); |
| else |
| smp_stop_cpu_function(NULL); |
| } |
| |
| void __init |
| smp_prepare_cpus(unsigned int max_cpus) |
| { |
| /* FIXME: ignore max_cpus for now */ |
| smp_boot_cpus(); |
| } |
| |
| void __devinit smp_prepare_boot_cpu(void) |
| { |
| cpu_set(smp_processor_id(), cpu_online_map); |
| cpu_set(smp_processor_id(), cpu_callout_map); |
| cpu_set(smp_processor_id(), cpu_possible_map); |
| cpu_set(smp_processor_id(), cpu_present_map); |
| } |
| |
| int __devinit |
| __cpu_up(unsigned int cpu) |
| { |
| /* This only works at boot for x86. See "rewrite" above. */ |
| if (cpu_isset(cpu, smp_commenced_mask)) |
| return -ENOSYS; |
| |
| /* In case one didn't come up */ |
| if (!cpu_isset(cpu, cpu_callin_map)) |
| return -EIO; |
| /* Unleash the CPU! */ |
| cpu_set(cpu, smp_commenced_mask); |
| while (!cpu_isset(cpu, cpu_online_map)) |
| mb(); |
| return 0; |
| } |
| |
| void __init |
| smp_cpus_done(unsigned int max_cpus) |
| { |
| zap_low_mappings(); |
| } |
| |
| void __init |
| smp_setup_processor_id(void) |
| { |
| current_thread_info()->cpu = hard_smp_processor_id(); |
| write_pda(cpu_number, hard_smp_processor_id()); |
| } |