| /* |
| * Copyright (C) 2004-2006 Atmel Corporation |
| * |
| * Based on MIPS implementation arch/mips/kernel/time.c |
| * Copyright 2001 MontaVista Software Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clocksource.h> |
| #include <linux/time.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/profile.h> |
| #include <linux/sysdev.h> |
| |
| #include <asm/div64.h> |
| #include <asm/sysreg.h> |
| #include <asm/io.h> |
| #include <asm/sections.h> |
| |
| static cycle_t read_cycle_count(void) |
| { |
| return (cycle_t)sysreg_read(COUNT); |
| } |
| |
| static struct clocksource clocksource_avr32 = { |
| .name = "avr32", |
| .rating = 350, |
| .read = read_cycle_count, |
| .mask = CLOCKSOURCE_MASK(32), |
| .shift = 16, |
| .is_continuous = 1, |
| }; |
| |
| /* |
| * By default we provide the null RTC ops |
| */ |
| static unsigned long null_rtc_get_time(void) |
| { |
| return mktime(2004, 1, 1, 0, 0, 0); |
| } |
| |
| static int null_rtc_set_time(unsigned long sec) |
| { |
| return 0; |
| } |
| |
| static unsigned long (*rtc_get_time)(void) = null_rtc_get_time; |
| static int (*rtc_set_time)(unsigned long) = null_rtc_set_time; |
| |
| /* how many counter cycles in a jiffy? */ |
| static unsigned long cycles_per_jiffy; |
| |
| /* cycle counter value at the previous timer interrupt */ |
| static unsigned int timerhi, timerlo; |
| |
| /* the count value for the next timer interrupt */ |
| static unsigned int expirelo; |
| |
| static void avr32_timer_ack(void) |
| { |
| unsigned int count; |
| |
| /* Ack this timer interrupt and set the next one */ |
| expirelo += cycles_per_jiffy; |
| if (expirelo == 0) { |
| printk(KERN_DEBUG "expirelo == 0\n"); |
| sysreg_write(COMPARE, expirelo + 1); |
| } else { |
| sysreg_write(COMPARE, expirelo); |
| } |
| |
| /* Check to see if we have missed any timer interrupts */ |
| count = sysreg_read(COUNT); |
| if ((count - expirelo) < 0x7fffffff) { |
| expirelo = count + cycles_per_jiffy; |
| sysreg_write(COMPARE, expirelo); |
| } |
| } |
| |
| static unsigned int avr32_hpt_read(void) |
| { |
| return sysreg_read(COUNT); |
| } |
| |
| /* |
| * Taken from MIPS c0_hpt_timer_init(). |
| * |
| * Why is it so complicated, and what is "count"? My assumption is |
| * that `count' specifies the "reference cycle", i.e. the cycle since |
| * reset that should mean "zero". The reason COUNT is written twice is |
| * probably to make sure we don't get any timer interrupts while we |
| * are messing with the counter. |
| */ |
| static void avr32_hpt_init(unsigned int count) |
| { |
| count = sysreg_read(COUNT) - count; |
| expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; |
| sysreg_write(COUNT, expirelo - cycles_per_jiffy); |
| sysreg_write(COMPARE, expirelo); |
| sysreg_write(COUNT, count); |
| } |
| |
| /* |
| * local_timer_interrupt() does profiling and process accounting on a |
| * per-CPU basis. |
| * |
| * In UP mode, it is invoked from the (global) timer_interrupt. |
| */ |
| static void local_timer_interrupt(int irq, void *dev_id) |
| { |
| if (current->pid) |
| profile_tick(CPU_PROFILING); |
| update_process_times(user_mode(get_irq_regs())); |
| } |
| |
| static irqreturn_t |
| timer_interrupt(int irq, void *dev_id) |
| { |
| unsigned int count; |
| |
| /* ack timer interrupt and try to set next interrupt */ |
| count = avr32_hpt_read(); |
| avr32_timer_ack(); |
| |
| /* Update timerhi/timerlo for intra-jiffy calibration */ |
| timerhi += count < timerlo; /* Wrap around */ |
| timerlo = count; |
| |
| /* |
| * Call the generic timer interrupt handler |
| */ |
| write_seqlock(&xtime_lock); |
| do_timer(1); |
| write_sequnlock(&xtime_lock); |
| |
| /* |
| * In UP mode, we call local_timer_interrupt() to do profiling |
| * and process accounting. |
| * |
| * SMP is not supported yet. |
| */ |
| local_timer_interrupt(irq, dev_id); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct irqaction timer_irqaction = { |
| .handler = timer_interrupt, |
| .flags = IRQF_DISABLED, |
| .name = "timer", |
| }; |
| |
| void __init time_init(void) |
| { |
| unsigned long mult, shift, count_hz; |
| int ret; |
| |
| xtime.tv_sec = rtc_get_time(); |
| xtime.tv_nsec = 0; |
| |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| |
| printk("Before time_init: count=%08lx, compare=%08lx\n", |
| (unsigned long)sysreg_read(COUNT), |
| (unsigned long)sysreg_read(COMPARE)); |
| |
| count_hz = clk_get_rate(boot_cpu_data.clk); |
| shift = clocksource_avr32.shift; |
| mult = clocksource_hz2mult(count_hz, shift); |
| clocksource_avr32.mult = mult; |
| |
| printk("Cycle counter: mult=%lu, shift=%lu\n", mult, shift); |
| |
| { |
| u64 tmp; |
| |
| tmp = TICK_NSEC; |
| tmp <<= shift; |
| tmp += mult / 2; |
| do_div(tmp, mult); |
| |
| cycles_per_jiffy = tmp; |
| } |
| |
| /* This sets up the high precision timer for the first interrupt. */ |
| avr32_hpt_init(avr32_hpt_read()); |
| |
| printk("After time_init: count=%08lx, compare=%08lx\n", |
| (unsigned long)sysreg_read(COUNT), |
| (unsigned long)sysreg_read(COMPARE)); |
| |
| ret = clocksource_register(&clocksource_avr32); |
| if (ret) |
| printk(KERN_ERR |
| "timer: could not register clocksource: %d\n", ret); |
| |
| ret = setup_irq(0, &timer_irqaction); |
| if (ret) |
| printk("timer: could not request IRQ 0: %d\n", ret); |
| } |
| |
| static struct sysdev_class timer_class = { |
| set_kset_name("timer"), |
| }; |
| |
| static struct sys_device timer_device = { |
| .id = 0, |
| .cls = &timer_class, |
| }; |
| |
| static int __init init_timer_sysfs(void) |
| { |
| int err = sysdev_class_register(&timer_class); |
| if (!err) |
| err = sysdev_register(&timer_device); |
| return err; |
| } |
| |
| device_initcall(init_timer_sysfs); |