blob: ccf4a5c688776759b7d5aa7edb296b574e97d68e [file] [log] [blame]
/*
* Afatech AF9035 DVB USB driver
*
* Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
* Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "af9035.h"
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
static u16 af9035_checksum(const u8 *buf, size_t len)
{
size_t i;
u16 checksum = 0;
for (i = 1; i < len; i++) {
if (i % 2)
checksum += buf[i] << 8;
else
checksum += buf[i];
}
checksum = ~checksum;
return checksum;
}
static int af9035_ctrl_msg(struct dvb_usb_device *d, struct usb_req *req)
{
#define REQ_HDR_LEN 4 /* send header size */
#define ACK_HDR_LEN 3 /* rece header size */
#define CHECKSUM_LEN 2
#define USB_TIMEOUT 2000
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
int ret, wlen, rlen;
u16 checksum, tmp_checksum;
mutex_lock(&d->usb_mutex);
/* buffer overflow check */
if (req->wlen > (BUF_LEN - REQ_HDR_LEN - CHECKSUM_LEN) ||
req->rlen > (BUF_LEN - ACK_HDR_LEN - CHECKSUM_LEN)) {
dev_err(&intf->dev, "too much data wlen=%d rlen=%d\n",
req->wlen, req->rlen);
ret = -EINVAL;
goto exit;
}
state->buf[0] = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN - 1;
state->buf[1] = req->mbox;
state->buf[2] = req->cmd;
state->buf[3] = state->seq++;
memcpy(&state->buf[REQ_HDR_LEN], req->wbuf, req->wlen);
wlen = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN;
rlen = ACK_HDR_LEN + req->rlen + CHECKSUM_LEN;
/* calc and add checksum */
checksum = af9035_checksum(state->buf, state->buf[0] - 1);
state->buf[state->buf[0] - 1] = (checksum >> 8);
state->buf[state->buf[0] - 0] = (checksum & 0xff);
/* no ack for these packets */
if (req->cmd == CMD_FW_DL)
rlen = 0;
ret = dvb_usbv2_generic_rw_locked(d,
state->buf, wlen, state->buf, rlen);
if (ret)
goto exit;
/* no ack for those packets */
if (req->cmd == CMD_FW_DL)
goto exit;
/* verify checksum */
checksum = af9035_checksum(state->buf, rlen - 2);
tmp_checksum = (state->buf[rlen - 2] << 8) | state->buf[rlen - 1];
if (tmp_checksum != checksum) {
dev_err(&intf->dev, "command=%02x checksum mismatch (%04x != %04x)\n",
req->cmd, tmp_checksum, checksum);
ret = -EIO;
goto exit;
}
/* check status */
if (state->buf[2]) {
/* fw returns status 1 when IR code was not received */
if (req->cmd == CMD_IR_GET || state->buf[2] == 1) {
ret = 1;
goto exit;
}
dev_dbg(&intf->dev, "command=%02x failed fw error=%d\n",
req->cmd, state->buf[2]);
ret = -EIO;
goto exit;
}
/* read request, copy returned data to return buf */
if (req->rlen)
memcpy(req->rbuf, &state->buf[ACK_HDR_LEN], req->rlen);
exit:
mutex_unlock(&d->usb_mutex);
if (ret < 0)
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
/* write multiple registers */
static int af9035_wr_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
{
struct usb_interface *intf = d->intf;
u8 wbuf[MAX_XFER_SIZE];
u8 mbox = (reg >> 16) & 0xff;
struct usb_req req = { CMD_MEM_WR, mbox, 6 + len, wbuf, 0, NULL };
if (6 + len > sizeof(wbuf)) {
dev_warn(&intf->dev, "i2c wr: len=%d is too big!\n", len);
return -EOPNOTSUPP;
}
wbuf[0] = len;
wbuf[1] = 2;
wbuf[2] = 0;
wbuf[3] = 0;
wbuf[4] = (reg >> 8) & 0xff;
wbuf[5] = (reg >> 0) & 0xff;
memcpy(&wbuf[6], val, len);
return af9035_ctrl_msg(d, &req);
}
/* read multiple registers */
static int af9035_rd_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
{
u8 wbuf[] = { len, 2, 0, 0, (reg >> 8) & 0xff, reg & 0xff };
u8 mbox = (reg >> 16) & 0xff;
struct usb_req req = { CMD_MEM_RD, mbox, sizeof(wbuf), wbuf, len, val };
return af9035_ctrl_msg(d, &req);
}
/* write single register */
static int af9035_wr_reg(struct dvb_usb_device *d, u32 reg, u8 val)
{
return af9035_wr_regs(d, reg, &val, 1);
}
/* read single register */
static int af9035_rd_reg(struct dvb_usb_device *d, u32 reg, u8 *val)
{
return af9035_rd_regs(d, reg, val, 1);
}
/* write single register with mask */
static int af9035_wr_reg_mask(struct dvb_usb_device *d, u32 reg, u8 val,
u8 mask)
{
int ret;
u8 tmp;
/* no need for read if whole reg is written */
if (mask != 0xff) {
ret = af9035_rd_regs(d, reg, &tmp, 1);
if (ret)
return ret;
val &= mask;
tmp &= ~mask;
val |= tmp;
}
return af9035_wr_regs(d, reg, &val, 1);
}
static int af9035_add_i2c_dev(struct dvb_usb_device *d, const char *type,
u8 addr, void *platform_data, struct i2c_adapter *adapter)
{
int ret, num;
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
struct i2c_client *client;
struct i2c_board_info board_info = {
.addr = addr,
.platform_data = platform_data,
};
strlcpy(board_info.type, type, I2C_NAME_SIZE);
/* find first free client */
for (num = 0; num < AF9035_I2C_CLIENT_MAX; num++) {
if (state->i2c_client[num] == NULL)
break;
}
dev_dbg(&intf->dev, "num=%d\n", num);
if (num == AF9035_I2C_CLIENT_MAX) {
dev_err(&intf->dev, "I2C client out of index\n");
ret = -ENODEV;
goto err;
}
request_module("%s", board_info.type);
/* register I2C device */
client = i2c_new_device(adapter, &board_info);
if (client == NULL || client->dev.driver == NULL) {
ret = -ENODEV;
goto err;
}
/* increase I2C driver usage count */
if (!try_module_get(client->dev.driver->owner)) {
i2c_unregister_device(client);
ret = -ENODEV;
goto err;
}
state->i2c_client[num] = client;
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static void af9035_del_i2c_dev(struct dvb_usb_device *d)
{
int num;
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
struct i2c_client *client;
/* find last used client */
num = AF9035_I2C_CLIENT_MAX;
while (num--) {
if (state->i2c_client[num] != NULL)
break;
}
dev_dbg(&intf->dev, "num=%d\n", num);
if (num == -1) {
dev_err(&intf->dev, "I2C client out of index\n");
goto err;
}
client = state->i2c_client[num];
/* decrease I2C driver usage count */
module_put(client->dev.driver->owner);
/* unregister I2C device */
i2c_unregister_device(client);
state->i2c_client[num] = NULL;
return;
err:
dev_dbg(&intf->dev, "failed\n");
}
static int af9035_i2c_master_xfer(struct i2c_adapter *adap,
struct i2c_msg msg[], int num)
{
struct dvb_usb_device *d = i2c_get_adapdata(adap);
struct state *state = d_to_priv(d);
int ret;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
/*
* AF9035 I2C sub header is 5 bytes long. Meaning of those bytes are:
* 0: data len
* 1: I2C addr << 1
* 2: reg addr len
* byte 3 and 4 can be used as reg addr
* 3: reg addr MSB
* used when reg addr len is set to 2
* 4: reg addr LSB
* used when reg addr len is set to 1 or 2
*
* For the simplify we do not use register addr at all.
* NOTE: As a firmware knows tuner type there is very small possibility
* there could be some tuner I2C hacks done by firmware and this may
* lead problems if firmware expects those bytes are used.
*
* TODO: Here is few hacks. AF9035 chip integrates AF9033 demodulator.
* IT9135 chip integrates AF9033 demodulator and RF tuner. For dual
* tuner devices, there is also external AF9033 demodulator connected
* via external I2C bus. All AF9033 demod I2C traffic, both single and
* dual tuner configuration, is covered by firmware - actual USB IO
* looks just like a memory access.
* In case of IT913x chip, there is own tuner driver. It is implemented
* currently as a I2C driver, even tuner IP block is likely build
* directly into the demodulator memory space and there is no own I2C
* bus. I2C subsystem does not allow register multiple devices to same
* bus, having same slave address. Due to that we reuse demod address,
* shifted by one bit, on that case.
*
* For IT930x we use a different command and the sub header is
* different as well:
* 0: data len
* 1: I2C bus (0x03 seems to be only value used)
* 2: I2C addr << 1
*/
#define AF9035_IS_I2C_XFER_WRITE_READ(_msg, _num) \
(_num == 2 && !(_msg[0].flags & I2C_M_RD) && (_msg[1].flags & I2C_M_RD))
#define AF9035_IS_I2C_XFER_WRITE(_msg, _num) \
(_num == 1 && !(_msg[0].flags & I2C_M_RD))
#define AF9035_IS_I2C_XFER_READ(_msg, _num) \
(_num == 1 && (_msg[0].flags & I2C_M_RD))
if (AF9035_IS_I2C_XFER_WRITE_READ(msg, num)) {
if (msg[0].len > 40 || msg[1].len > 40) {
/* TODO: correct limits > 40 */
ret = -EOPNOTSUPP;
} else if ((msg[0].addr == state->af9033_i2c_addr[0]) ||
(msg[0].addr == state->af9033_i2c_addr[1])) {
/* demod access via firmware interface */
u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
msg[0].buf[2];
if (msg[0].addr == state->af9033_i2c_addr[1])
reg |= 0x100000;
ret = af9035_rd_regs(d, reg, &msg[1].buf[0],
msg[1].len);
} else if (state->no_read) {
memset(msg[1].buf, 0, msg[1].len);
ret = 0;
} else {
/* I2C write + read */
u8 buf[MAX_XFER_SIZE];
struct usb_req req = { CMD_I2C_RD, 0, 5 + msg[0].len,
buf, msg[1].len, msg[1].buf };
if (state->chip_type == 0x9306) {
req.cmd = CMD_GENERIC_I2C_RD;
req.wlen = 3 + msg[0].len;
}
req.mbox |= ((msg[0].addr & 0x80) >> 3);
buf[0] = msg[1].len;
if (state->chip_type == 0x9306) {
buf[1] = 0x03; /* I2C bus */
buf[2] = msg[0].addr << 1;
memcpy(&buf[3], msg[0].buf, msg[0].len);
} else {
buf[1] = msg[0].addr << 1;
buf[3] = 0x00; /* reg addr MSB */
buf[4] = 0x00; /* reg addr LSB */
/* Keep prev behavior for write req len > 2*/
if (msg[0].len > 2) {
buf[2] = 0x00; /* reg addr len */
memcpy(&buf[5], msg[0].buf, msg[0].len);
/* Use reg addr fields if write req len <= 2 */
} else {
req.wlen = 5;
buf[2] = msg[0].len;
if (msg[0].len == 2) {
buf[3] = msg[0].buf[0];
buf[4] = msg[0].buf[1];
} else if (msg[0].len == 1) {
buf[4] = msg[0].buf[0];
}
}
}
ret = af9035_ctrl_msg(d, &req);
}
} else if (AF9035_IS_I2C_XFER_WRITE(msg, num)) {
if (msg[0].len > 40) {
/* TODO: correct limits > 40 */
ret = -EOPNOTSUPP;
} else if ((msg[0].addr == state->af9033_i2c_addr[0]) ||
(msg[0].addr == state->af9033_i2c_addr[1])) {
/* demod access via firmware interface */
u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
msg[0].buf[2];
if (msg[0].addr == state->af9033_i2c_addr[1])
reg |= 0x100000;
ret = af9035_wr_regs(d, reg, &msg[0].buf[3],
msg[0].len - 3);
} else {
/* I2C write */
u8 buf[MAX_XFER_SIZE];
struct usb_req req = { CMD_I2C_WR, 0, 5 + msg[0].len,
buf, 0, NULL };
if (state->chip_type == 0x9306) {
req.cmd = CMD_GENERIC_I2C_WR;
req.wlen = 3 + msg[0].len;
}
req.mbox |= ((msg[0].addr & 0x80) >> 3);
buf[0] = msg[0].len;
if (state->chip_type == 0x9306) {
buf[1] = 0x03; /* I2C bus */
buf[2] = msg[0].addr << 1;
memcpy(&buf[3], msg[0].buf, msg[0].len);
} else {
buf[1] = msg[0].addr << 1;
buf[2] = 0x00; /* reg addr len */
buf[3] = 0x00; /* reg addr MSB */
buf[4] = 0x00; /* reg addr LSB */
memcpy(&buf[5], msg[0].buf, msg[0].len);
}
ret = af9035_ctrl_msg(d, &req);
}
} else if (AF9035_IS_I2C_XFER_READ(msg, num)) {
if (msg[0].len > 40) {
/* TODO: correct limits > 40 */
ret = -EOPNOTSUPP;
} else if (state->no_read) {
memset(msg[0].buf, 0, msg[0].len);
ret = 0;
} else {
/* I2C read */
u8 buf[5];
struct usb_req req = { CMD_I2C_RD, 0, sizeof(buf),
buf, msg[0].len, msg[0].buf };
if (state->chip_type == 0x9306) {
req.cmd = CMD_GENERIC_I2C_RD;
req.wlen = 3;
}
req.mbox |= ((msg[0].addr & 0x80) >> 3);
buf[0] = msg[0].len;
if (state->chip_type == 0x9306) {
buf[1] = 0x03; /* I2C bus */
buf[2] = msg[0].addr << 1;
} else {
buf[1] = msg[0].addr << 1;
buf[2] = 0x00; /* reg addr len */
buf[3] = 0x00; /* reg addr MSB */
buf[4] = 0x00; /* reg addr LSB */
}
ret = af9035_ctrl_msg(d, &req);
}
} else {
/*
* We support only three kind of I2C transactions:
* 1) 1 x write + 1 x read (repeated start)
* 2) 1 x write
* 3) 1 x read
*/
ret = -EOPNOTSUPP;
}
mutex_unlock(&d->i2c_mutex);
if (ret < 0)
return ret;
else
return num;
}
static u32 af9035_i2c_functionality(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static struct i2c_algorithm af9035_i2c_algo = {
.master_xfer = af9035_i2c_master_xfer,
.functionality = af9035_i2c_functionality,
};
static int af9035_identify_state(struct dvb_usb_device *d, const char **name)
{
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
int ret, i, ts_mode_invalid;
unsigned int utmp, eeprom_addr;
u8 tmp;
u8 wbuf[1] = { 1 };
u8 rbuf[4];
struct usb_req req = { CMD_FW_QUERYINFO, 0, sizeof(wbuf), wbuf,
sizeof(rbuf), rbuf };
ret = af9035_rd_regs(d, 0x1222, rbuf, 3);
if (ret < 0)
goto err;
state->chip_version = rbuf[0];
state->chip_type = rbuf[2] << 8 | rbuf[1] << 0;
ret = af9035_rd_reg(d, 0x384f, &state->prechip_version);
if (ret < 0)
goto err;
dev_info(&intf->dev, "prechip_version=%02x chip_version=%02x chip_type=%04x\n",
state->prechip_version, state->chip_version, state->chip_type);
if (state->chip_type == 0x9135) {
if (state->chip_version == 0x02) {
*name = AF9035_FIRMWARE_IT9135_V2;
utmp = 0x00461d;
} else {
*name = AF9035_FIRMWARE_IT9135_V1;
utmp = 0x00461b;
}
/* Check if eeprom exists */
ret = af9035_rd_reg(d, utmp, &tmp);
if (ret < 0)
goto err;
if (tmp == 0x00) {
dev_dbg(&intf->dev, "no eeprom\n");
state->no_eeprom = true;
goto check_firmware_status;
}
eeprom_addr = EEPROM_BASE_IT9135;
} else if (state->chip_type == 0x9306) {
*name = AF9035_FIRMWARE_IT9303;
state->no_eeprom = true;
goto check_firmware_status;
} else {
*name = AF9035_FIRMWARE_AF9035;
eeprom_addr = EEPROM_BASE_AF9035;
}
/* Read and store eeprom */
for (i = 0; i < 256; i += 32) {
ret = af9035_rd_regs(d, eeprom_addr + i, &state->eeprom[i], 32);
if (ret < 0)
goto err;
}
dev_dbg(&intf->dev, "eeprom dump:\n");
for (i = 0; i < 256; i += 16)
dev_dbg(&intf->dev, "%*ph\n", 16, &state->eeprom[i]);
/* check for dual tuner mode */
tmp = state->eeprom[EEPROM_TS_MODE];
ts_mode_invalid = 0;
switch (tmp) {
case 0:
break;
case 1:
case 3:
state->dual_mode = true;
break;
case 5:
if (state->chip_type != 0x9135 && state->chip_type != 0x9306)
state->dual_mode = true; /* AF9035 */
else
ts_mode_invalid = 1;
break;
default:
ts_mode_invalid = 1;
}
dev_dbg(&intf->dev, "ts mode=%d dual mode=%d\n", tmp, state->dual_mode);
if (ts_mode_invalid)
dev_info(&intf->dev, "ts mode=%d not supported, defaulting to single tuner mode!", tmp);
check_firmware_status:
ret = af9035_ctrl_msg(d, &req);
if (ret < 0)
goto err;
dev_dbg(&intf->dev, "reply=%*ph\n", 4, rbuf);
if (rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])
ret = WARM;
else
ret = COLD;
return ret;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_download_firmware_old(struct dvb_usb_device *d,
const struct firmware *fw)
{
struct usb_interface *intf = d->intf;
int ret, i, j, len;
u8 wbuf[1];
struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
struct usb_req req_fw_dl = { CMD_FW_DL, 0, 0, wbuf, 0, NULL };
u8 hdr_core;
u16 hdr_addr, hdr_data_len, hdr_checksum;
#define MAX_DATA 58
#define HDR_SIZE 7
/*
* Thanks to Daniel Glöckner <daniel-gl@gmx.net> about that info!
*
* byte 0: MCS 51 core
* There are two inside the AF9035 (1=Link and 2=OFDM) with separate
* address spaces
* byte 1-2: Big endian destination address
* byte 3-4: Big endian number of data bytes following the header
* byte 5-6: Big endian header checksum, apparently ignored by the chip
* Calculated as ~(h[0]*256+h[1]+h[2]*256+h[3]+h[4]*256)
*/
for (i = fw->size; i > HDR_SIZE;) {
hdr_core = fw->data[fw->size - i + 0];
hdr_addr = fw->data[fw->size - i + 1] << 8;
hdr_addr |= fw->data[fw->size - i + 2] << 0;
hdr_data_len = fw->data[fw->size - i + 3] << 8;
hdr_data_len |= fw->data[fw->size - i + 4] << 0;
hdr_checksum = fw->data[fw->size - i + 5] << 8;
hdr_checksum |= fw->data[fw->size - i + 6] << 0;
dev_dbg(&intf->dev, "core=%d addr=%04x data_len=%d checksum=%04x\n",
hdr_core, hdr_addr, hdr_data_len, hdr_checksum);
if (((hdr_core != 1) && (hdr_core != 2)) ||
(hdr_data_len > i)) {
dev_dbg(&intf->dev, "bad firmware\n");
break;
}
/* download begin packet */
req.cmd = CMD_FW_DL_BEGIN;
ret = af9035_ctrl_msg(d, &req);
if (ret < 0)
goto err;
/* download firmware packet(s) */
for (j = HDR_SIZE + hdr_data_len; j > 0; j -= MAX_DATA) {
len = j;
if (len > MAX_DATA)
len = MAX_DATA;
req_fw_dl.wlen = len;
req_fw_dl.wbuf = (u8 *) &fw->data[fw->size - i +
HDR_SIZE + hdr_data_len - j];
ret = af9035_ctrl_msg(d, &req_fw_dl);
if (ret < 0)
goto err;
}
/* download end packet */
req.cmd = CMD_FW_DL_END;
ret = af9035_ctrl_msg(d, &req);
if (ret < 0)
goto err;
i -= hdr_data_len + HDR_SIZE;
dev_dbg(&intf->dev, "data uploaded=%zu\n", fw->size - i);
}
/* print warn if firmware is bad, continue and see what happens */
if (i)
dev_warn(&intf->dev, "bad firmware\n");
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_download_firmware_new(struct dvb_usb_device *d,
const struct firmware *fw)
{
struct usb_interface *intf = d->intf;
int ret, i, i_prev;
struct usb_req req_fw_dl = { CMD_FW_SCATTER_WR, 0, 0, NULL, 0, NULL };
#define HDR_SIZE 7
/*
* There seems to be following firmware header. Meaning of bytes 0-3
* is unknown.
*
* 0: 3
* 1: 0, 1
* 2: 0
* 3: 1, 2, 3
* 4: addr MSB
* 5: addr LSB
* 6: count of data bytes ?
*/
for (i = HDR_SIZE, i_prev = 0; i <= fw->size; i++) {
if (i == fw->size ||
(fw->data[i + 0] == 0x03 &&
(fw->data[i + 1] == 0x00 ||
fw->data[i + 1] == 0x01) &&
fw->data[i + 2] == 0x00)) {
req_fw_dl.wlen = i - i_prev;
req_fw_dl.wbuf = (u8 *) &fw->data[i_prev];
i_prev = i;
ret = af9035_ctrl_msg(d, &req_fw_dl);
if (ret < 0)
goto err;
dev_dbg(&intf->dev, "data uploaded=%d\n", i);
}
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_download_firmware(struct dvb_usb_device *d,
const struct firmware *fw)
{
struct usb_interface *intf = d->intf;
struct state *state = d_to_priv(d);
int ret;
u8 wbuf[1];
u8 rbuf[4];
u8 tmp;
struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf };
dev_dbg(&intf->dev, "\n");
/*
* In case of dual tuner configuration we need to do some extra
* initialization in order to download firmware to slave demod too,
* which is done by master demod.
* Master feeds also clock and controls power via GPIO.
*/
if (state->dual_mode) {
/* configure gpioh1, reset & power slave demod */
ret = af9035_wr_reg_mask(d, 0x00d8b0, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0x00d8b1, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0x00d8af, 0x00, 0x01);
if (ret < 0)
goto err;
usleep_range(10000, 50000);
ret = af9035_wr_reg_mask(d, 0x00d8af, 0x01, 0x01);
if (ret < 0)
goto err;
/* tell the slave I2C address */
tmp = state->eeprom[EEPROM_2ND_DEMOD_ADDR];
/* Use default I2C address if eeprom has no address set */
if (!tmp)
tmp = 0x1d << 1; /* 8-bit format used by chip */
if ((state->chip_type == 0x9135) ||
(state->chip_type == 0x9306)) {
ret = af9035_wr_reg(d, 0x004bfb, tmp);
if (ret < 0)
goto err;
} else {
ret = af9035_wr_reg(d, 0x00417f, tmp);
if (ret < 0)
goto err;
/* enable clock out */
ret = af9035_wr_reg_mask(d, 0x00d81a, 0x01, 0x01);
if (ret < 0)
goto err;
}
}
if (fw->data[0] == 0x01)
ret = af9035_download_firmware_old(d, fw);
else
ret = af9035_download_firmware_new(d, fw);
if (ret < 0)
goto err;
/* firmware loaded, request boot */
req.cmd = CMD_FW_BOOT;
ret = af9035_ctrl_msg(d, &req);
if (ret < 0)
goto err;
/* ensure firmware starts */
wbuf[0] = 1;
ret = af9035_ctrl_msg(d, &req_fw_ver);
if (ret < 0)
goto err;
if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) {
dev_err(&intf->dev, "firmware did not run\n");
ret = -ENODEV;
goto err;
}
dev_info(&intf->dev, "firmware version=%d.%d.%d.%d",
rbuf[0], rbuf[1], rbuf[2], rbuf[3]);
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_read_config(struct dvb_usb_device *d)
{
struct usb_interface *intf = d->intf;
struct state *state = d_to_priv(d);
int ret, i;
u8 tmp;
u16 tmp16;
/* Demod I2C address */
state->af9033_i2c_addr[0] = 0x1c;
state->af9033_i2c_addr[1] = 0x1d;
state->af9033_config[0].adc_multiplier = AF9033_ADC_MULTIPLIER_2X;
state->af9033_config[1].adc_multiplier = AF9033_ADC_MULTIPLIER_2X;
state->af9033_config[0].ts_mode = AF9033_TS_MODE_USB;
state->af9033_config[1].ts_mode = AF9033_TS_MODE_SERIAL;
if (state->chip_type == 0x9135) {
/* feed clock for integrated RF tuner */
state->af9033_config[0].dyn0_clk = true;
state->af9033_config[1].dyn0_clk = true;
if (state->chip_version == 0x02) {
state->af9033_config[0].tuner = AF9033_TUNER_IT9135_60;
state->af9033_config[1].tuner = AF9033_TUNER_IT9135_60;
} else {
state->af9033_config[0].tuner = AF9033_TUNER_IT9135_38;
state->af9033_config[1].tuner = AF9033_TUNER_IT9135_38;
}
if (state->no_eeprom) {
/* Remote controller to NEC polling by default */
state->ir_mode = 0x05;
state->ir_type = 0x00;
goto skip_eeprom;
}
} else if (state->chip_type == 0x9306) {
/*
* IT930x is an USB bridge, only single demod-single tuner
* configurations seen so far.
*/
return 0;
}
/* Remote controller */
state->ir_mode = state->eeprom[EEPROM_IR_MODE];
state->ir_type = state->eeprom[EEPROM_IR_TYPE];
if (state->dual_mode) {
/* Read 2nd demodulator I2C address. 8-bit format on eeprom */
tmp = state->eeprom[EEPROM_2ND_DEMOD_ADDR];
if (tmp)
state->af9033_i2c_addr[1] = tmp >> 1;
dev_dbg(&intf->dev, "2nd demod I2C addr=%02x\n",
state->af9033_i2c_addr[1]);
}
for (i = 0; i < state->dual_mode + 1; i++) {
unsigned int eeprom_offset = 0;
/* tuner */
tmp = state->eeprom[EEPROM_1_TUNER_ID + eeprom_offset];
dev_dbg(&intf->dev, "[%d]tuner=%02x\n", i, tmp);
/* tuner sanity check */
if (state->chip_type == 0x9135) {
if (state->chip_version == 0x02) {
/* IT9135 BX (v2) */
switch (tmp) {
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
state->af9033_config[i].tuner = tmp;
break;
}
} else {
/* IT9135 AX (v1) */
switch (tmp) {
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
state->af9033_config[i].tuner = tmp;
break;
}
}
} else {
/* AF9035 */
state->af9033_config[i].tuner = tmp;
}
if (state->af9033_config[i].tuner != tmp) {
dev_info(&intf->dev, "[%d] overriding tuner from %02x to %02x\n",
i, tmp, state->af9033_config[i].tuner);
}
switch (state->af9033_config[i].tuner) {
case AF9033_TUNER_TUA9001:
case AF9033_TUNER_FC0011:
case AF9033_TUNER_MXL5007T:
case AF9033_TUNER_TDA18218:
case AF9033_TUNER_FC2580:
case AF9033_TUNER_FC0012:
state->af9033_config[i].spec_inv = 1;
break;
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
break;
default:
dev_warn(&intf->dev, "tuner id=%02x not supported, please report!",
tmp);
}
/* disable dual mode if driver does not support it */
if (i == 1)
switch (state->af9033_config[i].tuner) {
case AF9033_TUNER_FC0012:
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
case AF9033_TUNER_MXL5007T:
break;
default:
state->dual_mode = false;
dev_info(&intf->dev, "driver does not support 2nd tuner and will disable it");
}
/* tuner IF frequency */
tmp = state->eeprom[EEPROM_1_IF_L + eeprom_offset];
tmp16 = tmp << 0;
tmp = state->eeprom[EEPROM_1_IF_H + eeprom_offset];
tmp16 |= tmp << 8;
dev_dbg(&intf->dev, "[%d]IF=%d\n", i, tmp16);
eeprom_offset += 0x10; /* shift for the 2nd tuner params */
}
skip_eeprom:
/* get demod clock */
ret = af9035_rd_reg(d, 0x00d800, &tmp);
if (ret < 0)
goto err;
tmp = (tmp >> 0) & 0x0f;
for (i = 0; i < ARRAY_SIZE(state->af9033_config); i++) {
if (state->chip_type == 0x9135)
state->af9033_config[i].clock = clock_lut_it9135[tmp];
else
state->af9033_config[i].clock = clock_lut_af9035[tmp];
}
state->no_read = false;
/* Some MXL5007T devices cannot properly handle tuner I2C read ops. */
if (state->af9033_config[0].tuner == AF9033_TUNER_MXL5007T &&
le16_to_cpu(d->udev->descriptor.idVendor) == USB_VID_AVERMEDIA)
switch (le16_to_cpu(d->udev->descriptor.idProduct)) {
case USB_PID_AVERMEDIA_A867:
case USB_PID_AVERMEDIA_TWINSTAR:
dev_info(&intf->dev,
"Device may have issues with I2C read operations. Enabling fix.\n");
state->no_read = true;
break;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_tua9001_tuner_callback(struct dvb_usb_device *d,
int cmd, int arg)
{
struct usb_interface *intf = d->intf;
int ret;
u8 val;
dev_dbg(&intf->dev, "cmd=%d arg=%d\n", cmd, arg);
/*
* CEN always enabled by hardware wiring
* RESETN GPIOT3
* RXEN GPIOT2
*/
switch (cmd) {
case TUA9001_CMD_RESETN:
if (arg)
val = 0x00;
else
val = 0x01;
ret = af9035_wr_reg_mask(d, 0x00d8e7, val, 0x01);
if (ret < 0)
goto err;
break;
case TUA9001_CMD_RXEN:
if (arg)
val = 0x01;
else
val = 0x00;
ret = af9035_wr_reg_mask(d, 0x00d8eb, val, 0x01);
if (ret < 0)
goto err;
break;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_fc0011_tuner_callback(struct dvb_usb_device *d,
int cmd, int arg)
{
struct usb_interface *intf = d->intf;
int ret;
switch (cmd) {
case FC0011_FE_CALLBACK_POWER:
/* Tuner enable */
ret = af9035_wr_reg_mask(d, 0xd8eb, 1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ec, 1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ed, 1, 1);
if (ret < 0)
goto err;
/* LED */
ret = af9035_wr_reg_mask(d, 0xd8d0, 1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8d1, 1, 1);
if (ret < 0)
goto err;
usleep_range(10000, 50000);
break;
case FC0011_FE_CALLBACK_RESET:
ret = af9035_wr_reg(d, 0xd8e9, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0xd8e8, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0xd8e7, 1);
if (ret < 0)
goto err;
usleep_range(10000, 20000);
ret = af9035_wr_reg(d, 0xd8e7, 0);
if (ret < 0)
goto err;
usleep_range(10000, 20000);
break;
default:
ret = -EINVAL;
goto err;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_tuner_callback(struct dvb_usb_device *d, int cmd, int arg)
{
struct state *state = d_to_priv(d);
switch (state->af9033_config[0].tuner) {
case AF9033_TUNER_FC0011:
return af9035_fc0011_tuner_callback(d, cmd, arg);
case AF9033_TUNER_TUA9001:
return af9035_tua9001_tuner_callback(d, cmd, arg);
default:
break;
}
return 0;
}
static int af9035_frontend_callback(void *adapter_priv, int component,
int cmd, int arg)
{
struct i2c_adapter *adap = adapter_priv;
struct dvb_usb_device *d = i2c_get_adapdata(adap);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "component=%d cmd=%d arg=%d\n",
component, cmd, arg);
switch (component) {
case DVB_FRONTEND_COMPONENT_TUNER:
return af9035_tuner_callback(d, cmd, arg);
default:
break;
}
return 0;
}
static int af9035_get_adapter_count(struct dvb_usb_device *d)
{
struct state *state = d_to_priv(d);
return state->dual_mode + 1;
}
static int af9035_frontend_attach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
int ret;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
if (!state->af9033_config[adap->id].tuner) {
/* unsupported tuner */
ret = -ENODEV;
goto err;
}
state->af9033_config[adap->id].fe = &adap->fe[0];
state->af9033_config[adap->id].ops = &state->ops;
ret = af9035_add_i2c_dev(d, "af9033", state->af9033_i2c_addr[adap->id],
&state->af9033_config[adap->id], &d->i2c_adap);
if (ret)
goto err;
if (adap->fe[0] == NULL) {
ret = -ENODEV;
goto err;
}
/* disable I2C-gate */
adap->fe[0]->ops.i2c_gate_ctrl = NULL;
adap->fe[0]->callback = af9035_frontend_callback;
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int it930x_frontend_attach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
int ret;
struct si2168_config si2168_config;
struct i2c_adapter *adapter;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
memset(&si2168_config, 0, sizeof(si2168_config));
si2168_config.i2c_adapter = &adapter;
si2168_config.fe = &adap->fe[0];
si2168_config.ts_mode = SI2168_TS_SERIAL;
state->af9033_config[adap->id].fe = &adap->fe[0];
state->af9033_config[adap->id].ops = &state->ops;
ret = af9035_add_i2c_dev(d, "si2168", 0x67, &si2168_config,
&d->i2c_adap);
if (ret)
goto err;
if (adap->fe[0] == NULL) {
ret = -ENODEV;
goto err;
}
state->i2c_adapter_demod = adapter;
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_frontend_detach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
if (adap->id == 1) {
if (state->i2c_client[1])
af9035_del_i2c_dev(d);
} else if (adap->id == 0) {
if (state->i2c_client[0])
af9035_del_i2c_dev(d);
}
return 0;
}
static const struct fc0011_config af9035_fc0011_config = {
.i2c_address = 0x60,
};
static struct mxl5007t_config af9035_mxl5007t_config[] = {
{
.xtal_freq_hz = MxL_XTAL_24_MHZ,
.if_freq_hz = MxL_IF_4_57_MHZ,
.invert_if = 0,
.loop_thru_enable = 0,
.clk_out_enable = 0,
.clk_out_amp = MxL_CLKOUT_AMP_0_94V,
}, {
.xtal_freq_hz = MxL_XTAL_24_MHZ,
.if_freq_hz = MxL_IF_4_57_MHZ,
.invert_if = 0,
.loop_thru_enable = 1,
.clk_out_enable = 1,
.clk_out_amp = MxL_CLKOUT_AMP_0_94V,
}
};
static struct tda18218_config af9035_tda18218_config = {
.i2c_address = 0x60,
.i2c_wr_max = 21,
};
static const struct fc0012_config af9035_fc0012_config[] = {
{
.i2c_address = 0x63,
.xtal_freq = FC_XTAL_36_MHZ,
.dual_master = true,
.loop_through = true,
.clock_out = true,
}, {
.i2c_address = 0x63 | 0x80, /* I2C bus select hack */
.xtal_freq = FC_XTAL_36_MHZ,
.dual_master = true,
}
};
static int af9035_tuner_attach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
int ret;
struct dvb_frontend *fe;
struct i2c_msg msg[1];
u8 tuner_addr;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
/*
* XXX: Hack used in that function: we abuse unused I2C address bit [7]
* to carry info about used I2C bus for dual tuner configuration.
*/
switch (state->af9033_config[adap->id].tuner) {
case AF9033_TUNER_TUA9001: {
struct tua9001_platform_data tua9001_pdata = {
.dvb_frontend = adap->fe[0],
};
/*
* AF9035 gpiot3 = TUA9001 RESETN
* AF9035 gpiot2 = TUA9001 RXEN
*/
/* configure gpiot2 and gpiot2 as output */
ret = af9035_wr_reg_mask(d, 0x00d8ec, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0x00d8ed, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0x00d8e8, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0x00d8e9, 0x01, 0x01);
if (ret < 0)
goto err;
/* attach tuner */
ret = af9035_add_i2c_dev(d, "tua9001", 0x60, &tua9001_pdata,
&d->i2c_adap);
if (ret)
goto err;
fe = adap->fe[0];
break;
}
case AF9033_TUNER_FC0011:
fe = dvb_attach(fc0011_attach, adap->fe[0],
&d->i2c_adap, &af9035_fc0011_config);
break;
case AF9033_TUNER_MXL5007T:
if (adap->id == 0) {
ret = af9035_wr_reg(d, 0x00d8e0, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8e1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8df, 0);
if (ret < 0)
goto err;
msleep(30);
ret = af9035_wr_reg(d, 0x00d8df, 1);
if (ret < 0)
goto err;
msleep(300);
ret = af9035_wr_reg(d, 0x00d8c0, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8c1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8bf, 0);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8b4, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8b5, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8b3, 1);
if (ret < 0)
goto err;
tuner_addr = 0x60;
} else {
tuner_addr = 0x60 | 0x80; /* I2C bus hack */
}
/* attach tuner */
fe = dvb_attach(mxl5007t_attach, adap->fe[0], &d->i2c_adap,
tuner_addr, &af9035_mxl5007t_config[adap->id]);
break;
case AF9033_TUNER_TDA18218:
/* attach tuner */
fe = dvb_attach(tda18218_attach, adap->fe[0],
&d->i2c_adap, &af9035_tda18218_config);
break;
case AF9033_TUNER_FC2580: {
struct fc2580_platform_data fc2580_pdata = {
.dvb_frontend = adap->fe[0],
};
/* Tuner enable using gpiot2_o, gpiot2_en and gpiot2_on */
ret = af9035_wr_reg_mask(d, 0xd8eb, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ec, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ed, 0x01, 0x01);
if (ret < 0)
goto err;
usleep_range(10000, 50000);
/* attach tuner */
ret = af9035_add_i2c_dev(d, "fc2580", 0x56, &fc2580_pdata,
&d->i2c_adap);
if (ret)
goto err;
fe = adap->fe[0];
break;
}
case AF9033_TUNER_FC0012:
/*
* AF9035 gpiot2 = FC0012 enable
* XXX: there seems to be something on gpioh8 too, but on my
* my test I didn't find any difference.
*/
if (adap->id == 0) {
/* configure gpiot2 as output and high */
ret = af9035_wr_reg_mask(d, 0xd8eb, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ec, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ed, 0x01, 0x01);
if (ret < 0)
goto err;
} else {
/*
* FIXME: That belongs for the FC0012 driver.
* Write 02 to FC0012 master tuner register 0d directly
* in order to make slave tuner working.
*/
msg[0].addr = 0x63;
msg[0].flags = 0;
msg[0].len = 2;
msg[0].buf = "\x0d\x02";
ret = i2c_transfer(&d->i2c_adap, msg, 1);
if (ret < 0)
goto err;
}
usleep_range(10000, 50000);
fe = dvb_attach(fc0012_attach, adap->fe[0], &d->i2c_adap,
&af9035_fc0012_config[adap->id]);
break;
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
{
struct platform_device *pdev;
const char *name;
struct it913x_platform_data it913x_pdata = {
.regmap = state->af9033_config[adap->id].regmap,
.fe = adap->fe[0],
};
switch (state->af9033_config[adap->id].tuner) {
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
name = "it9133ax-tuner";
break;
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
name = "it9133bx-tuner";
break;
default:
ret = -ENODEV;
goto err;
}
if (state->dual_mode) {
if (adap->id == 0)
it913x_pdata.role = IT913X_ROLE_DUAL_MASTER;
else
it913x_pdata.role = IT913X_ROLE_DUAL_SLAVE;
} else {
it913x_pdata.role = IT913X_ROLE_SINGLE;
}
request_module("%s", "it913x");
pdev = platform_device_register_data(&d->intf->dev, name,
PLATFORM_DEVID_AUTO,
&it913x_pdata,
sizeof(it913x_pdata));
if (IS_ERR(pdev) || !pdev->dev.driver) {
ret = -ENODEV;
goto err;
}
if (!try_module_get(pdev->dev.driver->owner)) {
platform_device_unregister(pdev);
ret = -ENODEV;
goto err;
}
state->platform_device_tuner[adap->id] = pdev;
fe = adap->fe[0];
break;
}
default:
fe = NULL;
}
if (fe == NULL) {
ret = -ENODEV;
goto err;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int it930x_tuner_attach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
int ret;
struct si2157_config si2157_config;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
/* I2C master bus 2 clock speed 300k */
ret = af9035_wr_reg(d, 0x00f6a7, 0x07);
if (ret < 0)
goto err;
/* I2C master bus 1,3 clock speed 300k */
ret = af9035_wr_reg(d, 0x00f103, 0x07);
if (ret < 0)
goto err;
/* set gpio11 low */
ret = af9035_wr_reg_mask(d, 0xd8d4, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8d5, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8d3, 0x01, 0x01);
if (ret < 0)
goto err;
/* Tuner enable using gpiot2_en, gpiot2_on and gpiot2_o (reset) */
ret = af9035_wr_reg_mask(d, 0xd8b8, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8b9, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8b7, 0x00, 0x01);
if (ret < 0)
goto err;
msleep(200);
ret = af9035_wr_reg_mask(d, 0xd8b7, 0x01, 0x01);
if (ret < 0)
goto err;
memset(&si2157_config, 0, sizeof(si2157_config));
si2157_config.fe = adap->fe[0];
si2157_config.if_port = 1;
ret = af9035_add_i2c_dev(d, "si2157", 0x63,
&si2157_config, state->i2c_adapter_demod);
if (ret)
goto err;
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int it930x_tuner_detach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
if (adap->id == 1) {
if (state->i2c_client[3])
af9035_del_i2c_dev(d);
} else if (adap->id == 0) {
if (state->i2c_client[1])
af9035_del_i2c_dev(d);
}
return 0;
}
static int af9035_tuner_detach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
switch (state->af9033_config[adap->id].tuner) {
case AF9033_TUNER_TUA9001:
case AF9033_TUNER_FC2580:
if (adap->id == 1) {
if (state->i2c_client[3])
af9035_del_i2c_dev(d);
} else if (adap->id == 0) {
if (state->i2c_client[1])
af9035_del_i2c_dev(d);
}
break;
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
{
struct platform_device *pdev;
pdev = state->platform_device_tuner[adap->id];
if (pdev) {
module_put(pdev->dev.driver->owner);
platform_device_unregister(pdev);
}
break;
}
}
return 0;
}
static int af9035_init(struct dvb_usb_device *d)
{
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
int ret, i;
u16 frame_size = (d->udev->speed == USB_SPEED_FULL ? 5 : 87) * 188 / 4;
u8 packet_size = (d->udev->speed == USB_SPEED_FULL ? 64 : 512) / 4;
struct reg_val_mask tab[] = {
{ 0x80f99d, 0x01, 0x01 },
{ 0x80f9a4, 0x01, 0x01 },
{ 0x00dd11, 0x00, 0x20 },
{ 0x00dd11, 0x00, 0x40 },
{ 0x00dd13, 0x00, 0x20 },
{ 0x00dd13, 0x00, 0x40 },
{ 0x00dd11, 0x20, 0x20 },
{ 0x00dd88, (frame_size >> 0) & 0xff, 0xff},
{ 0x00dd89, (frame_size >> 8) & 0xff, 0xff},
{ 0x00dd0c, packet_size, 0xff},
{ 0x00dd11, state->dual_mode << 6, 0x40 },
{ 0x00dd8a, (frame_size >> 0) & 0xff, 0xff},
{ 0x00dd8b, (frame_size >> 8) & 0xff, 0xff},
{ 0x00dd0d, packet_size, 0xff },
{ 0x80f9a3, state->dual_mode, 0x01 },
{ 0x80f9cd, state->dual_mode, 0x01 },
{ 0x80f99d, 0x00, 0x01 },
{ 0x80f9a4, 0x00, 0x01 },
};
dev_dbg(&intf->dev, "USB speed=%d frame_size=%04x packet_size=%02x\n",
d->udev->speed, frame_size, packet_size);
/* init endpoints */
for (i = 0; i < ARRAY_SIZE(tab); i++) {
ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val,
tab[i].mask);
if (ret < 0)
goto err;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int it930x_init(struct dvb_usb_device *d)
{
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
int ret, i;
u16 frame_size = (d->udev->speed == USB_SPEED_FULL ? 5 : 816) * 188 / 4;
u8 packet_size = (d->udev->speed == USB_SPEED_FULL ? 64 : 512) / 4;
struct reg_val_mask tab[] = {
{ 0x00da1a, 0x00, 0x01 }, /* ignore_sync_byte */
{ 0x00f41f, 0x04, 0x04 }, /* dvbt_inten */
{ 0x00da10, 0x00, 0x01 }, /* mpeg_full_speed */
{ 0x00f41a, 0x01, 0x01 }, /* dvbt_en */
{ 0x00da1d, 0x01, 0x01 }, /* mp2_sw_rst, reset EP4 */
{ 0x00dd11, 0x00, 0x20 }, /* ep4_tx_en, disable EP4 */
{ 0x00dd13, 0x00, 0x20 }, /* ep4_tx_nak, disable EP4 NAK */
{ 0x00dd11, 0x20, 0x20 }, /* ep4_tx_en, enable EP4 */
{ 0x00dd11, 0x00, 0x40 }, /* ep5_tx_en, disable EP5 */
{ 0x00dd13, 0x00, 0x40 }, /* ep5_tx_nak, disable EP5 NAK */
{ 0x00dd11, state->dual_mode << 6, 0x40 }, /* enable EP5 */
{ 0x00dd88, (frame_size >> 0) & 0xff, 0xff},
{ 0x00dd89, (frame_size >> 8) & 0xff, 0xff},
{ 0x00dd0c, packet_size, 0xff},
{ 0x00dd8a, (frame_size >> 0) & 0xff, 0xff},
{ 0x00dd8b, (frame_size >> 8) & 0xff, 0xff},
{ 0x00dd0d, packet_size, 0xff },
{ 0x00da1d, 0x00, 0x01 }, /* mp2_sw_rst, disable */
{ 0x00d833, 0x01, 0xff }, /* slew rate ctrl: slew rate boosts */
{ 0x00d830, 0x00, 0xff }, /* Bit 0 of output driving control */
{ 0x00d831, 0x01, 0xff }, /* Bit 1 of output driving control */
{ 0x00d832, 0x00, 0xff }, /* Bit 2 of output driving control */
/* suspend gpio1 for TS-C */
{ 0x00d8b0, 0x01, 0xff }, /* gpio1 */
{ 0x00d8b1, 0x01, 0xff }, /* gpio1 */
{ 0x00d8af, 0x00, 0xff }, /* gpio1 */
/* suspend gpio7 for TS-D */
{ 0x00d8c4, 0x01, 0xff }, /* gpio7 */
{ 0x00d8c5, 0x01, 0xff }, /* gpio7 */
{ 0x00d8c3, 0x00, 0xff }, /* gpio7 */
/* suspend gpio13 for TS-B */
{ 0x00d8dc, 0x01, 0xff }, /* gpio13 */
{ 0x00d8dd, 0x01, 0xff }, /* gpio13 */
{ 0x00d8db, 0x00, 0xff }, /* gpio13 */
/* suspend gpio14 for TS-E */
{ 0x00d8e4, 0x01, 0xff }, /* gpio14 */
{ 0x00d8e5, 0x01, 0xff }, /* gpio14 */
{ 0x00d8e3, 0x00, 0xff }, /* gpio14 */
/* suspend gpio15 for TS-A */
{ 0x00d8e8, 0x01, 0xff }, /* gpio15 */
{ 0x00d8e9, 0x01, 0xff }, /* gpio15 */
{ 0x00d8e7, 0x00, 0xff }, /* gpio15 */
{ 0x00da58, 0x00, 0x01 }, /* ts_in_src, serial */
{ 0x00da73, 0x01, 0xff }, /* ts0_aggre_mode */
{ 0x00da78, 0x47, 0xff }, /* ts0_sync_byte */
{ 0x00da4c, 0x01, 0xff }, /* ts0_en */
{ 0x00da5a, 0x1f, 0xff }, /* ts_fail_ignore */
};
dev_dbg(&intf->dev, "USB speed=%d frame_size=%04x packet_size=%02x\n",
d->udev->speed, frame_size, packet_size);
/* init endpoints */
for (i = 0; i < ARRAY_SIZE(tab); i++) {
ret = af9035_wr_reg_mask(d, tab[i].reg,
tab[i].val, tab[i].mask);
if (ret < 0)
goto err;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
#if IS_ENABLED(CONFIG_RC_CORE)
static int af9035_rc_query(struct dvb_usb_device *d)
{
struct usb_interface *intf = d->intf;
int ret;
enum rc_type proto;
u32 key;
u8 buf[4];
struct usb_req req = { CMD_IR_GET, 0, 0, NULL, 4, buf };
ret = af9035_ctrl_msg(d, &req);
if (ret == 1)
return 0;
else if (ret < 0)
goto err;
if ((buf[2] + buf[3]) == 0xff) {
if ((buf[0] + buf[1]) == 0xff) {
/* NEC standard 16bit */
key = RC_SCANCODE_NEC(buf[0], buf[2]);
proto = RC_TYPE_NEC;
} else {
/* NEC extended 24bit */
key = RC_SCANCODE_NECX(buf[0] << 8 | buf[1], buf[2]);
proto = RC_TYPE_NECX;
}
} else {
/* NEC full code 32bit */
key = RC_SCANCODE_NEC32(buf[0] << 24 | buf[1] << 16 |
buf[2] << 8 | buf[3]);
proto = RC_TYPE_NEC32;
}
dev_dbg(&intf->dev, "%*ph\n", 4, buf);
rc_keydown(d->rc_dev, proto, key, 0);
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_get_rc_config(struct dvb_usb_device *d, struct dvb_usb_rc *rc)
{
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "ir_mode=%02x ir_type=%02x\n",
state->ir_mode, state->ir_type);
/* don't activate rc if in HID mode or if not available */
if (state->ir_mode == 0x05) {
switch (state->ir_type) {
case 0: /* NEC */
default:
rc->allowed_protos = RC_BIT_NEC | RC_BIT_NECX |
RC_BIT_NEC32;
break;
case 1: /* RC6 */
rc->allowed_protos = RC_BIT_RC6_MCE;
break;
}
rc->query = af9035_rc_query;
rc->interval = 500;
/* load empty to enable rc */
if (!rc->map_name)
rc->map_name = RC_MAP_EMPTY;
}
return 0;
}
#else
#define af9035_get_rc_config NULL
#endif
static int af9035_get_stream_config(struct dvb_frontend *fe, u8 *ts_type,
struct usb_data_stream_properties *stream)
{
struct dvb_usb_device *d = fe_to_d(fe);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "adap=%d\n", fe_to_adap(fe)->id);
if (d->udev->speed == USB_SPEED_FULL)
stream->u.bulk.buffersize = 5 * 188;
return 0;
}
static int af9035_pid_filter_ctrl(struct dvb_usb_adapter *adap, int onoff)
{
struct state *state = adap_to_priv(adap);
return state->ops.pid_filter_ctrl(adap->fe[0], onoff);
}
static int af9035_pid_filter(struct dvb_usb_adapter *adap, int index, u16 pid,
int onoff)
{
struct state *state = adap_to_priv(adap);
return state->ops.pid_filter(adap->fe[0], index, pid, onoff);
}
static int af9035_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
char manufacturer[sizeof("Afatech")];
memset(manufacturer, 0, sizeof(manufacturer));
usb_string(udev, udev->descriptor.iManufacturer,
manufacturer, sizeof(manufacturer));
/*
* There is two devices having same ID but different chipset. One uses
* AF9015 and the other IT9135 chipset. Only difference seen on lsusb
* is iManufacturer string.
*
* idVendor 0x0ccd TerraTec Electronic GmbH
* idProduct 0x0099
* bcdDevice 2.00
* iManufacturer 1 Afatech
* iProduct 2 DVB-T 2
*
* idVendor 0x0ccd TerraTec Electronic GmbH
* idProduct 0x0099
* bcdDevice 2.00
* iManufacturer 1 ITE Technologies, Inc.
* iProduct 2 DVB-T TV Stick
*/
if ((le16_to_cpu(udev->descriptor.idVendor) == USB_VID_TERRATEC) &&
(le16_to_cpu(udev->descriptor.idProduct) == 0x0099)) {
if (!strcmp("Afatech", manufacturer)) {
dev_dbg(&udev->dev, "rejecting device\n");
return -ENODEV;
}
}
return dvb_usbv2_probe(intf, id);
}
/* interface 0 is used by DVB-T receiver and
interface 1 is for remote controller (HID) */
static const struct dvb_usb_device_properties af9035_props = {
.driver_name = KBUILD_MODNAME,
.owner = THIS_MODULE,
.adapter_nr = adapter_nr,
.size_of_priv = sizeof(struct state),
.generic_bulk_ctrl_endpoint = 0x02,
.generic_bulk_ctrl_endpoint_response = 0x81,
.identify_state = af9035_identify_state,
.download_firmware = af9035_download_firmware,
.i2c_algo = &af9035_i2c_algo,
.read_config = af9035_read_config,
.frontend_attach = af9035_frontend_attach,
.frontend_detach = af9035_frontend_detach,
.tuner_attach = af9035_tuner_attach,
.tuner_detach = af9035_tuner_detach,
.init = af9035_init,
.get_rc_config = af9035_get_rc_config,
.get_stream_config = af9035_get_stream_config,
.get_adapter_count = af9035_get_adapter_count,
.adapter = {
{
.caps = DVB_USB_ADAP_HAS_PID_FILTER |
DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF,
.pid_filter_count = 32,
.pid_filter_ctrl = af9035_pid_filter_ctrl,
.pid_filter = af9035_pid_filter,
.stream = DVB_USB_STREAM_BULK(0x84, 6, 87 * 188),
}, {
.caps = DVB_USB_ADAP_HAS_PID_FILTER |
DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF,
.pid_filter_count = 32,
.pid_filter_ctrl = af9035_pid_filter_ctrl,
.pid_filter = af9035_pid_filter,
.stream = DVB_USB_STREAM_BULK(0x85, 6, 87 * 188),
},
},
};
static const struct dvb_usb_device_properties it930x_props = {
.driver_name = KBUILD_MODNAME,
.owner = THIS_MODULE,
.adapter_nr = adapter_nr,
.size_of_priv = sizeof(struct state),
.generic_bulk_ctrl_endpoint = 0x02,
.generic_bulk_ctrl_endpoint_response = 0x81,
.identify_state = af9035_identify_state,
.download_firmware = af9035_download_firmware,
.i2c_algo = &af9035_i2c_algo,
.read_config = af9035_read_config,
.frontend_attach = it930x_frontend_attach,
.frontend_detach = af9035_frontend_detach,
.tuner_attach = it930x_tuner_attach,
.tuner_detach = it930x_tuner_detach,
.init = it930x_init,
.get_stream_config = af9035_get_stream_config,
.get_adapter_count = af9035_get_adapter_count,
.adapter = {
{
.stream = DVB_USB_STREAM_BULK(0x84, 4, 816 * 188),
}, {
.stream = DVB_USB_STREAM_BULK(0x85, 4, 816 * 188),
},
},
};
static const struct usb_device_id af9035_id_table[] = {
/* AF9035 devices */
{ DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_9035,
&af9035_props, "Afatech AF9035 reference design", NULL) },
{ DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1000,
&af9035_props, "Afatech AF9035 reference design", NULL) },
{ DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1001,
&af9035_props, "Afatech AF9035 reference design", NULL) },
{ DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1002,
&af9035_props, "Afatech AF9035 reference design", NULL) },
{ DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1003,
&af9035_props, "Afatech AF9035 reference design", NULL) },
{ DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK,
&af9035_props, "TerraTec Cinergy T Stick", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835,
&af9035_props, "AVerMedia AVerTV Volar HD/PRO (A835)", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_B835,
&af9035_props, "AVerMedia AVerTV Volar HD/PRO (A835)", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_1867,
&af9035_props, "AVerMedia HD Volar (A867)", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A867,
&af9035_props, "AVerMedia HD Volar (A867)", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TWINSTAR,
&af9035_props, "AVerMedia Twinstar (A825)", NULL) },
{ DVB_USB_DEVICE(USB_VID_ASUS, USB_PID_ASUS_U3100MINI_PLUS,
&af9035_props, "Asus U3100Mini Plus", NULL) },
{ DVB_USB_DEVICE(USB_VID_TERRATEC, 0x00aa,
&af9035_props, "TerraTec Cinergy T Stick (rev. 2)", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, 0x0337,
&af9035_props, "AVerMedia HD Volar (A867)", NULL) },
{ DVB_USB_DEVICE(USB_VID_GTEK, USB_PID_EVOLVEO_XTRATV_STICK,
&af9035_props, "EVOLVEO XtraTV stick", NULL) },
/* IT9135 devices */
{ DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135,
&af9035_props, "ITE 9135 Generic", RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135_9005,
&af9035_props, "ITE 9135(9005) Generic", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135_9006,
&af9035_props, "ITE 9135(9006) Generic", RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_1835,
&af9035_props, "Avermedia A835B(1835)", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_2835,
&af9035_props, "Avermedia A835B(2835)", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_3835,
&af9035_props, "Avermedia A835B(3835)", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_4835,
&af9035_props, "Avermedia A835B(4835)", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TD110,
&af9035_props, "Avermedia AverTV Volar HD 2 (TD110)", RC_MAP_AVERMEDIA_RM_KS) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_H335,
&af9035_props, "Avermedia H335", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_UB499_2T_T09,
&af9035_props, "Kworld UB499-2T T09", RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_SVEON_STV22_IT9137,
&af9035_props, "Sveon STV22 Dual DVB-T HDTV",
RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_CTVDIGDUAL_V2,
&af9035_props, "Digital Dual TV Receiver CTVDIGDUAL_V2",
RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_T1,
&af9035_props, "TerraTec T1", RC_MAP_IT913X_V1) },
/* XXX: that same ID [0ccd:0099] is used by af9015 driver too */
{ DVB_USB_DEVICE(USB_VID_TERRATEC, 0x0099,
&af9035_props, "TerraTec Cinergy T Stick Dual RC (rev. 2)",
NULL) },
{ DVB_USB_DEVICE(USB_VID_LEADTEK, 0x6a05,
&af9035_props, "Leadtek WinFast DTV Dongle Dual", NULL) },
{ DVB_USB_DEVICE(USB_VID_HAUPPAUGE, 0xf900,
&af9035_props, "Hauppauge WinTV-MiniStick 2", NULL) },
{ DVB_USB_DEVICE(USB_VID_PCTV, USB_PID_PCTV_78E,
&af9035_props, "PCTV AndroiDTV (78e)", RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_PCTV, USB_PID_PCTV_79E,
&af9035_props, "PCTV microStick (79e)", RC_MAP_IT913X_V2) },
/* IT930x devices */
{ DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9303,
&it930x_props, "ITE 9303 Generic", NULL) },
{ }
};
MODULE_DEVICE_TABLE(usb, af9035_id_table);
static struct usb_driver af9035_usb_driver = {
.name = KBUILD_MODNAME,
.id_table = af9035_id_table,
.probe = af9035_probe,
.disconnect = dvb_usbv2_disconnect,
.suspend = dvb_usbv2_suspend,
.resume = dvb_usbv2_resume,
.reset_resume = dvb_usbv2_reset_resume,
.no_dynamic_id = 1,
.soft_unbind = 1,
};
module_usb_driver(af9035_usb_driver);
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9035 driver");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(AF9035_FIRMWARE_AF9035);
MODULE_FIRMWARE(AF9035_FIRMWARE_IT9135_V1);
MODULE_FIRMWARE(AF9035_FIRMWARE_IT9135_V2);
MODULE_FIRMWARE(AF9035_FIRMWARE_IT9303);